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Abstract: Flavonols are one of the most plentiful flavonoid subclasses found in natural products
and are extensively used as dietary supplements. Numerous in vitro and in vivo studies have
shown the cardioprotective properties of flavonols, especially quercetin. This group of substances
exerts positive impacts primarily due to their antiatherogenic, antithrombotic, and antioxidant
activities. The potential of flavonols to promote vasodilation and regulation of apoptotic processes
in the endothelium are other beneficial effects on the cardiovascular system. Despite promising
experimental findings, randomized controlled trials and meta-analyses have yielded inconsistent
results on the influence of these substances on human cardiovascular parameters. Thus, this review
aims to summarize the most recent clinical data on the intake of these substances and their effects
on the cardiovascular system. The present study will help clinicians and other healthcare workers
understand the value of flavonol supplementation in both subjects at risk for cardiovascular disease
and patients with cardiovascular diseases.

Keywords: flavonols; quercetin; cardiovascular diseases; inflammation

1. Introduction

Cardiovascular diseases (CVDs) are a group of heart and blood-vessel disorders. They
include coronary heart disease (CHD), cerebrovascular disease, peripheral arterial disease,
rheumatic heart disease, congenital heart disease, deep-vein thrombosis, and pulmonary
embolism. CVDs, particularly ischemic heart disease (IHD) and stroke, are the major cause
of global mortality and prolonged disability [1]. Extensive epidemiological studies have
shown that principally modifiable risk factors (e.g., high blood glucose, hypertension,
dyslipidemia, and obesity), as well as lifestyle features (e.g., unhealthy dietary patterns,
low physical activity, and alcohol and tobacco use), are considered as important risk factors
for CVDs [2–5]. Thus, public health experts advocate for medication use, lifestyle changes,
and dietary modifications for preventing the incidence of CVDs and their complications,
especially among patients with, or at high risk of, CVDs [6,7].

Reduced risk of chronic diseases, including CVDs, has been linked to high consump-
tion of fruits and vegetables [6,8,9]. Besides their vitamin and fiber content, these foodstuffs
are known for high levels of flavonoids in general, and more specifically of flavonols.
Among the flavonols, the five most abundant in plants are kaempferol, quercetin, fisetin,
isorhamnetin, and myricetin [10]. Flavonols, and especially quercetin, show a broad range
of biological functions. As a result of their action on cell-signaling pathways associated
with oxidative stress and inflammation, they may improve lipid metabolism, vascular
function, blood pressure, and glucose metabolism [11–13]. Based on the role of these effects
in the pathogenesis of CVDs, applications of flavonols have been considered to decrease or
prevent the progression of CVDs.

In recent years, researchers have been debating whether discoveries made in vitro and
in vivo with quercetin and other flavonols have any relevance in human clinical trials. The
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scientific community has established a great interest in the characterization and validation
of flavonoids in CVDs by exploring their molecular processes and conducting dozens of
new clinical trials.

In the query performed in the ClinicalTrials.gov database in January 2022, only the
keyword “quercetin” identified 101 clinical studies in which this flavonol was registered.
Thus, the present study aims to update and provide a more comprehensive estimate of the
association between flavonol intake, either as dietary supplements or pure compounds,
flavonoid mixtures or extracts, and their cardioprotective effects in humans.

2. Materials and Methods

To assess the effects of flavonols on cardiovascular health, the Medline (http://www.
ncbi.nlm.nih.gov/pubmed) was searched using a combination of the following queries in
titles and abstracts:

(flavonols OR kaempferol OR quercetin OR fisetin OR isorhamnetin OR myricetin OR
rutin) AND (“cardiovascular disease” OR ”heart diseases” OR stroke OR blood pressure OR
hypertension OR hyperlipidemia OR cholesterol OR triglycerides OR obesity OR “blood
glucose” OR “endothelial function” OR atherosclerosis OR “coronary heart disease” OR
“cerebrovascular disease” OR “peripheral arterial disease” OR “rheumatic heart disease”
OR “congenital heart disease” OR “deep vein thrombosis” OR “pulmonary embolism” OR
“ischemic heart disease”).

The search was limited to clinical trials, meta-analyses, or randomized controlled trials.
The literature was searched from 1 January 2017 to 8 January 2022. As a result, we retrieved
19 clinical papers for full-text reading. It is worth noting that the majority of the studies
were performed with quercetin. The available data indicate scare numbers of clinical trials
of kaempferol, isorhamnetin and tamarixetin, fisetin, and myricetin.

We did not introduce any time restrictions on the publication of preclinical data.
However, we provided an update of the most recent articles (published in 2021) that may
be not known to the readers.

3. Flavonols and Their Metabolites

Flavonoids are a large group of polyphenols found in plants. They may be further
split into six subclasses: anthocyanins, flavanols, flavanones, flavones, flavonols, and
isoflavones. Subgroups of flavanonols, chalcone, and neoflavonoids have also been dis-
tinguished by some authors [10,14,15]. Flavonols (together with flavanols) are the most
ubiquitous flavonoids found throughout the plant kingdom. Kaempferol, quercetin, fisetin,
isorhamnetin, and myricetin are the most common dietary flavonols.

All naturally occurring flavonoids are composed of three rings (Figure 1) and are
subdivided into various subclasses depending on the degree of unsaturation of the central
ring and the number of its carbon to which the peripheral ring is attached. Flavonoids
are found in the form of aglycones, glycosides, and methylated derivatives [16]. The free
forms of flavonols are aglycones, which have lipophilic properties. Because aglycones are
unstable, quite reactive, and have low solubility, flavanols possess a tremendous diversity
of glycoside forms, both in terms of the position and type of sugar moieties. The sugar
substituents most frequently attached to flavonols are monosaccharides, such as glucose,
rhamnose, galactose, arabinose, xylose, and the disaccharide rutinose, which is composed
of glucose and rhamnose connected by a β-glycosidic bond [17]. Glycosylation enables the
preservation of the hydrophilicity and stability of hydrophobic flavonoids. Further, the
conjugation of flavonoid aglycones and glycosyl groups can alter flavonoids’ biological
activity, reduce toxic and side effects, and enhance specific targeting [18].

ClinicalTrials.gov
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1. Chemical structure of the main flavonols present in plant food, based on [17,19].

Figure 1 presents the basic structure of flavonols and examples of specific substances
in the flavonols subclass.

4. Food Sources and Dietary Intake

Flavonols are found in various foods of plant origin. Table 1 shows their main dietary
sources, which include capers, parsley, elderberry juice, and sorrel [20]. It should be noted
that the presence of particular flavonols in vegetables and fruits may vary significantly
depending on the cultivar, climate (sun exposure, precipitation), seasonality, species of
plant, food processing, and storage conditions [21,22]. Differences in flavonols’ contents
between samples of the same plant species are usually moderate [20]. The method of
cooking food also has an impact on flavonol content. A decrease of 50–60% in quercetin was
recorded in red and yellow onion boiled for 60 min. However, quercetin derivatives were
transferred into the liquid part of the soup [23,24]. Similarly, boiling led to a considerable
loss of quercetin and kaempferol in broccoli [25].

The amount of flavonol intake from food is primarily determined by individual
dietary habits. Quercetin, one of the most abundant flavonols, is consumed in the largest
quantities (about 14 mg per day in Europe) [26]. According to new research, the average
daily intake of flavonols differs by country. In Europe, the estimated daily intake was
on average 18 mg/day, while in the United States (US) population and among Japanese
adults, mean intakes were 18 and 58 mg/day, respectively [26,27]. Similarly to US adults,
habitual dietary intake of this flavonoid subclass in a cohort of United Kingdom women
was on average 58.3 mg/day, and the major food sources included onion and spinach [28].
However, a comparison of the results of nutritional assessments of flavanol intake is based
on diverse data sources which may differ and be imprecise. The most commonly used
databases of flavonol content in foods are the US Department of Agriculture (USDA)
databases (https://fdc.nal.usda.gov/) and the online Phenol-Explorer database (https:
//phenol-explorer.eu). Because only a limited number of foods have been investigated
for polyphenol content using various analytical methods, these tables may be of limited
utility. It is interesting to note that the improved availability of food-composition data for
flavonoids has enabled a more precise measurement of intakes [29].

https://fdc.nal.usda.gov/
https://phenol-explorer.eu
https://phenol-explorer.eu
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Table 1. Content of flavonols in selected foodstuffs (mg per 100 g of foodstuff), based on [20].

Flavonols (mg/100 g), Edible Portion

Product Quercetin Kaempferol Myricetin Isorhamnetin Total

Fresh capers 233.84 259.19 nd nd 493.03
Dried parsley

(Petroselinum crispum) 0.0 0.0 nd 331.24 331.24

Saffron (Crocus sativus) nd 205.48 nd nd 205.48
Dill weed (Anethum

graveolens) 55.15 13.33 0.70 43.50 112.68

Elderberry juice
concentrate 108.16 nd nd nd 108.16

Sorrel (Rumex spp.) 86.20 10.30 5.70 0.00 102.20
Kale (Brassica oleracea

(Acephala Group)) 22.58 46.80 0.00 23.60 92.98

Fennel, leaves 48.80 6.50 19.80 9.30 84.40
Rocket lettuce

(Diplotaxis tenuifolia) 66.19 1.78 nd 0.78 68.75

Coriander (Coriandrum
sativum) 52.90 0.00 nd 0.00 52.90

Arugula (Eruca sativa) 7.92 34.89 nd 4.30 47.11
Red onions 39.21 0.70 2.16 4.58 46.65

Carob flour (Ceratonia
siliqua) 38.78 0.44 6.73 nd 45.95

Elderberries (Sambucus
spp.) 26.77 0.58 nd 5.42 32.77

Ginger (Zingiber
zerumbet) 0.00 33.60 0.00 0.00 33.60

Goji berries nd 6.20 11.40 13.60 31.20
Chia seeds 18.42 12.30 nd nd 30.72

Fresh Cranberries
(Vaccinium

macrocarpon)
16.64 0.09 7.63 nd 24.36

Chard (Beta vulgaris
subsp. Vulagaris) 7.50 9.20 2.20 nd 18.90

Chokeberry 18.53 0.34 0.00 nd 18.87
Dried and sweetened

cranberries 12.79 0.01 5.67 nd 18.47

Mizuna (Japanese
mustard) 8.55 6.03 nd 3.84 18.42

Chives 0.00 17.11 0.00 0.00 17.11
Buckwheat

(Fagopyrum esculentum
Moench)

15.38 nd nd nd 15.38

Cooked
asparagus 15.16 nd nd nd 15.16

Plums, black diamond 12.45 0.01 0.01 0.00 12.47
Blackcurrants (Ribes

nigrum) 4.45 0.71 6.18 0.12 11.46

Spinach (Spinacia
oleracea) 3.97 6.38 0.35 nd 10.70

Blueberries (Vaccinium
spp.) 7.67 1.66 1.30 nd 10.63

Endive (Cichorium
endivia) 0.00 10.10 0.00 nd 10.10

Chicory 6.49 2.45 0.0 nd 8.94
Fresh figs 5.47 0.00 0.00 nd 5.47

Cooked Brussel
sprouts 4.33 0.91 nd nd 5.24

Apples, Gala, raw 3.80 0.00 0.00 nd 3.80
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5. Bioavailability

The structural class, the total amount of hydroxyl groups, replacement of functional
groups around their nuclear structure, and degree of polymerization all influence flavonol
bioavailability, metabolism, and biological activity [17,30]. Estimating the bioavailability
of flavonols, which is defined as the portion of an initially administered dose that reaches
the systemic circulation unchanged after a single oral dose, is essential in determining
the potential mechanisms of its action [31]. It is well-known that flavonols are poorly
absorbed, with an extremely low oral bioavailability [17,32,33]. The investigation on the
pharmacokinetics of quercetin, the well-studied flavonol, in humans suggested very poor
oral bioavailability of this substance (2–4%), mostly due to its extensive metabolism and/or
rapid elimination. However, conjugated forms, the naturally occurring form of quercetin,
have higher bioavailability than the free forms, and the estimated absorption ranges from
3% to 17% in healthy individuals [34]. The features of linked sugar moieties and their solu-
bility in water or lipids are the factors that most impact and normally improve quercetin
bioavailability [31]. Thus, the present research is focused on various novel formulation
strategies such as lipid vesicles, polymeric nanoparticles, solid-lipid nanoparticles, com-
plexation techniques, liposomes, and micelles, which appear to increase flavonol solubility
and bioavailability [33,35,36].

According to literature data, flavonols are rapidly enzymatically hydrolyzed and
absorbed in the intestine, where they undergo glucuronidation and sulfidation by phase
II enzymes in epithelial cells and in the liver. After metabolization, these substances are
distributed throughout the whole organism, where they are transported to target tissues.
Finally, flavonols and their metabolites are excreted through feces, urine, and exhalation of
carbon dioxide [17]. However, flavonols metabolism in body tissues is not well-understood.
Evidence suggests that intestinal bacteria are deeply involved in the production of flavonol
metabolites [37,38]. Furthermore, the action of these compounds varies across individuals
based on food matrix and processing; then, enzymatic levels are determined by genetic
variables and diet, age, and sex, and finally microbial functionality.

6. Flavonols and Their Cardioprotective Activity

Flavonols have numerous cardioprotective properties, such as platelet stabilization,
anti-inflammatory, antidiabetic, antihypertensive, and hypocholesterolemic activity [39–50].
To the best of our knowledge, quercetin is the most widely distributed and well-known
flavonol obtained from natural sources, as well as the best-studied flavonol, in both
in vitro and in vivo studies [51]. Quercetin can protect the cardiovascular system by
multiple pathways.

Lastly, more in-depth research revealed that quercetin’s positive effects on myocar-
dial inflammation were linked to its antioxidant and anti-inflammatory activity. Chang
et al. showed that quercetin pretreatment protects human cardiomyocytes from hypoxia-
induced oxidative-stress damage by inhibiting reactive-oxygen-species (ROS) production
and oxidative-stress damage, improving mitophagy and energy metabolism, regulating
mitochondrial/endoplasmic-reticulum function, and reducing apoptosis [52]. Furthermore,
Cheng et al. studied the effects of quercetin on mouse models of myocardial fibrosis
and heart failure, finding that quercetin administration reduced myocardial fibrosis and
enhanced cardiac function in high-glucose-exposed inflammation-injury cardiomyocyte
cell line HL-1 [53]. These effects were partially mediated by increased mitochondrial en-
ergy metabolism as well as regulation of mitochondrial fusion/fission and mitochondrial
biosynthesis. In addition, quercetin reduced the incidence of heart failure by inhibiting
the inflammatory response and oxidative-stress injury, protecting mouse cardiomyocytes
under inflammatory conditions, and improving myocardial fibrosis [53]. Similarly, in
the ischemia/reperfusion-induced rat model, quercetin exerted cardioprotective effects
by inhibiting inflammatory responses and improving contractility potential. Quercetin
was associated with diminished levels of interleukin 1β (IL-1β), IL-6, and tumor necrosis
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factor-alpha (TNF-α). Further, quercetin’s anti-inflammatory effects might be mediated in
part by mitochondrial K-ATP (mitoKATP) channels and the nitric-oxide (NO) system [54].

In animal and cell-culture studies, flavonols, particularly quercetin, were observed to
have antihypertensive effects. The angiotensin-converting enzyme (ACE) is well-known
for its role in the renin-angiotensin-aldosterone system (RAAS), which regulates plasma
sodium concentration, arterial blood pressure, and extracellular volume [55,56]. Inhibitors
of ACE are widely used for the treatment of hypertension. Interestingly, in vitro study
showed that the flavonol-rich extract of Actinidia macrosperma (a wild kiwifruit) inhib-
ited ACE [57]. These findings demonstrated that flavonol may inhibit enzyme activity
by nonspecific binding to the enzyme or by competing for the active side with the sub-
strate. Findings from this in vitro study indicate that flavonols may have the potential to
exert an antihypertensive effect in vivo. Galindo et al. evaluated the effects of quercetin
administered orally on different cardiovascular protective effects in spontaneously hyper-
tensive rats (SHR) [58]. Intake of quercetin reduced the systolic blood pressure, normalized
the heart rate, and reduced heart hypertrophy. Further, quercetin allowed aortic relax-
ation in SHR by enhancing NO and decreasing the expression of NADPH oxidase in
some subunits. Similarly, Elbarbry et al. determined the effect of oral administration of
quercetin in drinking water (10, 30, and 60 mg/L) on blood pressure and arachidonic
acid (AA) metabolism in spontaneously hypertensive rats [59]. Medium- and high-dose
quercetin ameliorated blood pressure in SHR. Further, by reducing the activity of the key
enzymes involved in AA metabolism (cytochrome P450 4A and soluble epoxide hydrolase,
sEH), quercetin influenced AA metabolism in the kidney [59]. Thus, the antihyperten-
sive effects of quercetin may be partially due to its effect on AA metabolism, although
the mechanism underlying the improvements in blood pressure by this substance is still
unknown. The synergic effect of quercetin metabolites on blood pressure has been also
investigated. Najmanová et al. showed that combinations of three colonic metabolites
of quercetin, 3,4-dihydroxyphenylacetic acid (DHPA), 4-methylcatechol (4MC), and 3-(3-
hydroxyphenyl)propionic acid (3HPPA) had a more pronounced antihypertensive effect
than single metabolites in SHR [60]. The longest-lasting effect was achieved by combining
3HPPA and 4MC.

Thrombosis, myocardial infarction, stroke, and atherosclerosis in coronary or carotid
arteries are caused by dysregulation of blood-platelet activation [61]. The cardioprotective
function of flavonols is greatly influenced by its antiplatelet-aggregation effects via a variety
of mechanisms, the most significant of which seems to be suppression of the arachidonic
acid-based pathway. The Campomanesia adamantium peel extract, rich in quercetin and
myricetin, exerted antiplatelet activity in the platelet aggregation caused by arachidonic
acid (AA) in platelet-rich plasma [62]. These effects were at least partly mediated through
cyclooxygenase 1 (COX-1) inhibition and thus decreased platelet aggregation, increasing
cyclic nucleotide levels, decreasing intracellular and total calcium mobilization and throm-
boxane B2 (TXB2) levels. In addition, quercetin inhibited the access of AA to the catalytic
site of COX-1. Indeed, this resulted in a decrease in inflammation and platelet aggregation.
Flavonols were also shown to inhibit platelet function and thrombus formation through
effects on early activatory processes, where two quercetin metabolites, isorhamnetin and
tamarixetin, interacted with aspirin and enhanced antiplatelet efficacy [63]. Quercetin
derivatives in combination with aspirin may be potentially used in prevention and treat-
ment of cardiovascular diseases associated with platelet hyperactivation. However, this
clinical effect may be questionable as bioavailability of favonols is low. In vitro anti-platelet
activity of phenolic compounds was shown only at very high concentrations that are un-
likely to be achieved in vivo [64]. Nevertheless, it should be taken into account that flavonol
metabolites formed by colon microbiota may reach significantly high plasma levels and
exert a biologically relevant antiplatelet effect [65].

In line with the above investigation, the effect of flavonols on lipid metabolism has
been also investigated. Flavonols have been demonstrated to reduce hyperlipidemia and
atherosclerotic-lesion formation. The action of flavonoids appears to be multifaceted and
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dependent on parallel processes. Li et al. determined the effects of Allium cepa extract,
rich in quercetin and isoquercetin, on hyperlipidemia Sprague Dawley (SD) experiment
rat models [66]. Allium cepa extract reduced total cholesterol (TC), triglycerides (TG),
low-density lipoprotein cholesterol (LDL-c), and malondialdehyde (MDA) and increased
high-density lipoprotein cholesterol (HDL-c) in SD rats. Further, the extract promoted
the degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and in-
creased LDL-receptor (LDLR) expression in the liver. Downregulation of HMGCR lowered
intracellular cholesterol concentrations, which led to an increase in LDL-receptor expres-
sion. This, in turn, increased cellular lipoprotein absorption and cholesterol elimination
from the circulation. It is recognized that reverse cholesterol transport (RCT) protects
against atherosclerosis by transporting excess cholesterol from peripheral tissues to the
liver and small intestine for excretion [67]. Consistent with this, a recent study confirmed
that atherosclerosis mice fed a high-fat diet (15% fat and 1.25% cholesterol) and quercetin-
supplemented diet (12.5 mg/kg/day) improved RCT [68]. In this study, quercetin intake
led to increased cholesterol-accepting ability of plasma and high-density lipoprotein (HDL)
and decreased the content of MDA in plasma and oxidized phosphocholine carried by
HDL. It is interesting to note that the underlying mechanism of quercetin’s in vivo action is
possibly attributed to the increased cholesterol-accepting capacity of HDL; the increased
expression levels of proteins related to RCT, such as ATP-binding cassettes (ABC) A1 and
G1; and the reduction in oxidation. Similarly, Li. et al. confirmed that quercetin blocked
damage of ox-LDL-induced RAW264.7 cells and improved viability, as well as reduced lipid
accumulation and senescence by regulation of ABCAl, ABCG1, liver X receptor-α (LXR-α),
proprotein convertase subtilisin/kexin type 9 (PCSK9), P53, P21, and P16 expression [69].
These findings help clarify the lipid-lowering properties of quercetin (Table 2).

Table 2. In vivo and in vitro research update (studies published in 2021) on flavonols and their
cardioprotective effects in pathological conditions.

Disorder/Substances In Vitro or In Vivo
Model Mode of Action References

Atrial Fibrillation

Quercetin

Human isoprenaline
(ISO)-induced atrial
fibrillation tissues,
ISO-induced rats

Regulating miRNA
expression,
inhibiting the
proliferation,
myofibroblast
differentiation, and
collagen deposition in
ISO-treated rat cardiac
fibroblasts (RCFs)

Wang et al.
[40]

Quercetin
Atrial fibrillation model
cells and aged-rat
myocardial tissues

↑
Autophagy via
regulating miRNA-223-
3p/FOXO3

Hu et al.
[41]

Myocardial Inflammation and Inflammatory Markers

Ulva fasciata methanolic
extract

(polyphenolics that
contain quercetin and

rutin)

Hyperthyroidism-
associated heart
inflammation albino rat
model

↓
↓
↓

TNF-α, MPO, and CRP
TG, TC
Cardiac biomarkers
CK-MB, LDH, and
troponin
ROS-scavenging
potential

Ibrahim et al.
[42]
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Table 2. Cont.

Disorder/Substances In Vitro or In Vivo
Model Mode of Action References

Sorbus aucuparia L.
fruits extract
(rowanberry)

(quercetin contained)

Human blood buffy
coats

↑

Inhibiting the
formation of AGEs
Protecting the plasma
proteins and lipids
against nitration and
oxidation
The nonenzymatic
antioxidant capacity of
plasma
Neutralizing multiple
oxidants generated
in vivo

Rutkowska et al.
[43]

Quercetin and lycopene

ISO-induced cardiac
injury toxicity in
Sprague Dawley (SD)
rats

↓
↓

Myocardial damage
Oxidative-stress
markers
Activatingenzymic
antioxidant defense
gene-expression
pathways

Chen et al.
[44]

Quercetin
Mouse cardiomyocytes
under inflammatory
conditions

Inhibiting the
inflammatory response
and oxidative-stress
injury
Inhibiting myocardial
fibrosis

Chang et al.
[53]

Quercetin
Hypoxia or
reoxygenation human
cardiomyocytes

Inhibiting
oxidative-stress
damage
Regulating mitophagy
and
endoplasmic-reticulum
stress via
SIRT1/TMBIM6

Chang et al.
[52]

Myocardial Ischemia-Reperfusion Injury

Quercetin-loaded
mesoporous silica

nanoparticles
(Q-MSNs)

Myocardial
ischemia-reperfusion
injury, rats

↓

Enhancing the
activation of the
JAK2/STAT3 pathway
Inhibiting cell
apoptosis and
oxidative stress
Myocardial infarction
size

Liu et al.
[45]

Quercetin
Ischemia/reperfusion-
induced rat
model

↓

1β (IL-1β), IL-6 and
TNF-α
Inhibiting mitoKATP
channels
Blocking NO system

Liu et al.
[54]

Hypercholesterolemia

Allium cepa extract Hyperlipidemia
Sprague Dawley rats

↓
↑
↓

TC, TG, LDL-c, MDA
HDL-c
LDL-receptor
expression in liver
Degradation of
HMGCR

Li et al.
[66]
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Table 2. Cont.

Disorder/Substances In Vitro or In Vivo
Model Mode of Action References

Arterial Vascular Calcification

Mg combined with
polyphenols: quercetin,
curcumin, resveratrol

Rat vascular
smooth-muscle cells

Synergistic effect in
inhibiting vascular
calcification
Inhibition of calcium
deposition

Mehansho et al.
[46]

Cardiomyocyte Hypertrophy

Quercetin and rutin
Ang II-induced
cardiomyocyte
hypertrophy

Rutin and quercetin
had similarly
prevented Ang
II-induced
cardiomyocyte
hypertrophy by
blunting the ROS/NO
axis

Siti et al.
[47]

Endothelial Dysfunction

Sugar apple and unripe
papaya, which

contained gallic acid
and quercetin

Human endothelial
cells

Promotion of
endothelial function
Inducing cell migration
and vascular
capillary-like tube
formation

Wattanapitaya-kul et al.
[48]

Cardioprotection

Quercetin with
sitagliptin

(anti-diabetic
medication)

Doxorubicin
(DOX)-induced
cardiotoxicity, Wistar
rats

↓

↑

Troponin, LDH, CKP,
CRP, TC, LDL-c, TG,
atherogenic index of
plasma
TAOC

Aziz et al.
[49]

Quercetin High-fat diets, (HFD)
mice ↓

Normalization of heart
weight and TG
Cardiac fibrosis,
cardiomyocyte
hypertrophy, oxidative
stress, intramyocardial
fat deposition, and
vascular rarefaction

Yu et al.
[50]

↑—increase, ↓—decrease, Ang II—angiotensin II, AGEs—advanced glycation end products, CK-MB—creatine
kinase-MB isoenzyme, CKP—creatine phosphokinase, CRP—C-reactive protein, FOXO3—Forkhead Box O3,
HDL-c—high-density lipoprotein cholesterol, HMGCR—3-hydroxy-3-methylglutaryl-coenzyme A reductase,
IL—interleukin, JAK2—janus kinase 2, LDL-c—low-density lipoprotein cholesterol, LDH—lactate dehydrogenase,
MDA—malondialdehyde, miRNA—microRNA, mitoKATP—mitochondrial ATP-sensitive potassium channel,
MPO—metalloproteinase, NO—nitric oxide, ROS—reactive oxygen species, SIRT1—silent information regulator
protein 1, STAT3—signal transduction and activator of transcription 3, TAOC—total antioxidant capacity, TC—
total cholesterol, TG—triglycerides, TMBIM6—transmembrane BAX inhibitor-1 motif-containing 6, TNF-α—
tumor necrosis factor-alpha.

7. Clinical Studies on Flavanol Interventions—An Update from the Last 5 Years

Recently, growing attention has been focused on using natural antioxidant sources in
the prevention and treatment of cardiovascular diseases, especially for the cardiovascular-
risk population. Food flavonoids have shown capability in the prevention of CVDs. Com-
prehensive analyses of observational studies showed an inverse association between dietary
flavonoid intake and mortality, including CVD-related mortality [70]. A recent study in-
volving 39 prospective cohort studies including 1,501,645 individuals reported that higher
consumption of flavonols was consistently associated with a lower risk of coronary heart
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disease (CHD). In addition, intake of quercetin was shown to be linearly associated with a
lower risk of CHD, where the lowest risk was observed for up to 12–14 mg day−1 [71].

Preclinical data have established flavonols as chemicals with metabolic regulatory
actions that may contribute to preventing or delaying the onset of cardiovascular diseases,
but human evidence is still limited. The anti-inflammatory effects of flavonols, their im-
pact on the cardiovascular system in both cardiovascular-risk and cardiovascular-disease
populations have been the subject of current randomized controlled human trials (Supple-
mentary Table S1). This section of the review focuses on clinical studies from over the past
five years which present the strongest evidence for flavonol intake’s preventive function in
the manifestation of cardiovascular diseases.

7.1. Flavonols and Endothelial Function

The endothelium is directly involved in peripheral vascular diseases. Endothelial dys-
function (ED) is characterized as an imbalance of numerous endothelium-derived relaxing
and constrictor factors, as well as an altered metabolizm of available nitric oxide (NO) [72].
As a result, vascular homeostasis is disrupted, manifesting in a prothrombotic, proinflam-
matory, and less compliant blood-vessel wall. ED is an early event in the development
of hypertension and CVD. Recent findings from randomized clinical studies support the
beneficial effect of quercetin on endothelial function [73,74].

Apples are one of the most abundant sources of quercetin. Bondonno et al. inves-
tigated the effects of acute and/or chronic Cripps Pink apple-extract intake (12.5 mg vs.
195.3 mg of quercetin daily) on endothelial function in 30 participants at risk of cardio-
vascular disease [73]. Endothelial function was assessed using flow-mediated dilation
(FMD) of the brachial artery. Both the acute and the 4-week intervention by 195.3 mg
improved FMD. Similarly, a higher FMD response was observed in the group of patients
who acutely supplemented enzymatically modified isoquercitrin [74]. These data sug-
gest that quercetin glycosides found in apples potentially modulated endothelial function
through the regulation of vascular tone. These results further show that these substances
can enhance NO bioavailability, possibly by stimulating endothelial NO synthase (eNOS)
activity. Unexpectedly, no benefit in terms of blood pressure (BP) and arterial stiffness was
detected by neither Cripps Pink apple intake nor isoquercetin.

7.2. Effects of Flavonols on Lipid Profile

Evidence over the past decades and current research shows a link between dyslipi-
demia and risk of stroke and atherosclerotic cardiovascular disease (ASCVD). Low-density
lipoprotein cholesterol (LDL-c) is a well-known modifiable risk factor for ASCVD and a
key target for intervention in both primary and secondary prevention of ASCVD.

The effect of flavonols on lipids and several biochemical parameters associated with
metabolic syndrome (MetS) in participants at high cardiovascular risk was widely investi-
gated. A twelve-week dietary supplementation with bread enriched with (−)-epicatechin
and quercetin (0.05%) improved total cholesterol, LDL-cholesterol, triglycerides, and
fasting plasma glucose in 156 participants who had at least three of the risk factors for
MetS [75]. Further, the combination therapy (ezetimibe and nutraceutical compound in
which quercetin was found) reduced total cholesterol (TC) and LDL-c levels by 25.9%
and 38.7%, respectively, among statin-intolerant hypercholesterolemic subjects [76]. It
was found that the lipid-lowering effect of red yeast rice, which was administrated in the
therapy, may have modulatory effects on the endogenous synthesis of LDL-c by inhibiting
the HMGCR. Moreover, this treatment is recommended as an alternative to lipid-lowering
therapy in the case of statin intolerance [77]. A study that analyzed data from 18 random-
ized controlled trials involving 530 subjects reported that chronic supplementation with
flavonol (mostly quercetin) had a beneficial effect on blood lipid levels [78]. In the same
study, secondary analyses of subgroups revealed that participants from Asian countries
and those with diagnosed cardiovascular diseases or dyslipidemia had the greatest benefit
on flavonol intake when compared to healthy subjects with normal baseline values.
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Not all studies provide evidence to support beneficial effects on TC and LDL-c concen-
trations in healthy individuals and patients at high cardiovascular risk. A recent interven-
tion trial found that regular lemon-balm-extract intake, rich in flavonols, for 12 weeks did
not improve TC and LDL-c parameters in type 2 diabetic patients [79]. Nevertheless, there
was a significant change in HDL-c levels. Apart from a significant reduction in triglicery-
dies at doses above 500 mg/day, quercetin supplementation had no positive effect on
plasma lipids according to a meta-analysis by Sahebkar, which included 221 subjects from
five randomized controlled trials [80]. Similarly, a recent meta-analysis of 18 randomized
controlled studies with a total of 896 participants reported that quercetin administration
for 8 weeks or longer had no significant effect on TC and LDL-c levels. However, levels
of HDL-c and TG were favorably changed [81]. Taking into account that epidemiological
evidence indicates that increased HDL-C concentrations correlate inversely with CVD risk,
these findings point to a potentially important clinical benefit of daily flavonol intake,
especially quercetin [82].

7.3. Effects of Flavonols on Blood Pressure

Hypertension is the leading cause of cardiovascular events such as myocardial infarc-
tion, stroke, and heart failure. Reductions in BP through antihypertensive treatment lower
the risk of all major cardiovascular events.

The latest research provides evidence for the beneficial effects of flavonols, mostly
quercetin on BP, and supports the use of quercetin as a combination therapy in patients
with hypertension and those at cardiovascular risk. A recent long-term intervention trial
showed that daily quercetin supplementation (1000 mg 2 times per day for 6 months, then
500 mg 2 times per day for a subsequent 6 months) improved BP without increasing the
dose or adding new antihypertensive drugs in patients with gout in combination with
essential hypertension [83]. One year of intervention led to a 5.5% and 3.6% reduction in
systolic BP and diastolic BP, respectively. Dietary supplementation of quercetin reduced
levels of uric acid by 33.7% and normalized renal function. Further, administration of
lemon-balm extract (700 mg hydroalcoholic extract of M. officinalis/daily per 12 weeks)
significantly reduced systolic BP in diabetes patients [79]. However, no beneficial effects on
BP were observed in patients after myocardial infarction (MI) [84]. In line with the clinical
studies mentioned above, the antihypertensive effects of flavonols were also reported in
recent meta-analyses [81,85]. It must be highlighted that these beneficial effects depend on
the formulation and dosage of quercetin, as well as the duration of treatment.

7.4. Effects of Flavonols on Other Parameters Related to Cardiovascular Health

Current research shows a link between changes in inflammatory profile and the risk
of several chronic conditions, including metabolic syndrome, type 2 diabetes mellitus, and
CVDs [86–88]. Interestingly, the high-flavonol diet was related to a decrease in urinary iso-
prostanes, which is a well-known marker of oxidative stress [89]. In a recent clinical study,
flavonol supplementation appeared to ameliorate inflammatory factors in postmyocardial-
infarction patients, with either slight or no effects on proinflammatory markers and antioxi-
dant parameters among overweight and obese adults with hypertension and metabolically
healthy men and women [84,90–92]. This disparity between results could be due to inflam-
matory factors being in the normal range at the baseline, low supplementation dosage, a
small number of participants, duration, and plasma-flavonol concentration.

Flavonols’ effects on the incidence of venous-system disease, advanced glycation end
products (AGEs), and biomarkers of heart health risk have also been reported in recent
clinical studies [89,93–95]. Blood biomarkers of heart health, such as homocysteine (Hcy),
high-sensitivity C-reactive protein (hs-CRP), oxidized LDL (ox-LDL), gamma-glutamyl
transferase (GGT), uric acid, and blood lipid profile were investigated among the Russian
population under a multivitamin, multimineral, and phytonutrient (VMP) supplement
which contained quercetin. An eight-week intervention reduced serum Hcy and GGT [94].
Flavonols were also shown to influence plasma concentrations of methylglyoxal (MGO).
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MGO is a crucial component in the rapid formation of advanced glycation end products
(AGEs). MGO and AGEs have been linked to diabetes and its consequences. An interven-
tion trial showed that daily quercetin intake (160 mg) for 4 weeks reduced MGO by 10.6%
from baseline values in healthy (pre)hypertensive participants [93]. Given these findings,
it is tempting to speculate that quercetin’s MGO-scavenging effect could lead to a new
treatment strategy for diseases in which MGO plays a key role.

Flavonol treatment was also investigated in extremity-immobilization patients. Immo-
bilization can be a cause of venous stasis and deep-venous thrombosis (DVT), which in-
cluded vessel-wall damage, stasis or low flow, and hypercoagulability. O-(b-Hydroxyethyl)-
rutosides (Oxerutin) are a standardized combination of the semisynthetic flavonoids created
by replacing the hydroxyl groups with hydroxyethyl groups in the naturally occurring
flavonol rutin. Yildiz et al. showed that 6–8-week Oxerutin intake reduced the incidence of
superficial venous reflux in the distal crural veins in cast immobilization for lower-limb-
fracture patients [95].

8. Summary

Cardiovascular diseases are the group of disorders that continue to be a leading
cause of morbidity and mortality around the world. Understanding the significance of a
natural food supplement as a novel avenue of investigation for the implementation of novel
cardioprotective strategies and the management of current therapies would contribute
to the prevention of CVDs. The assessment and treatment of various modifiable CVD
risk factors, such as elevated cholesterol levels, specially LDL-c, high blood pressure, and
high blood glucose, is required for optimum management of individuals with or at risk
for CVDs.

The present narrative review provides a synthesis of results from randomized con-
trolled trials on the cardioprotective effects of flavonols, especially quercetin. At least
19 clinical data have been conducted in the last five years to examine the relationship
between flavonol supplementation and cardiovascular disease markers. The major result
was that intake of flavonols—mainly quercetin—may modulate endothelial function, has
lowering effects on plasma lipids, and may ameliorate blood hypertension in different
groups of patients. However, the current analyses detected inconsistencies between the
results of RCTs and meta-analyses. The first limitation of the presented clinical data is
relatively heterogeneous populations (e.g., healthy participants as well as those with MetS,
obesity, hypertension, or patients after myocardial infarction) in terms of the inherent risk of
CVD. Moreover, an unbalanced gender ratio was observed. More limitations include a short
duration of observation, limited sample sizes, and a wide range of flavonol-supplement
types and dosages. Finally, the combined effects of flavonols and other phytochemicals
used in some of the included trials may limit the current findings.

Regarding flavonols’ effects on human cardiovascular health, future research on
flavonols should focus on the numerous food sources of flavonols, the effective flavonol
dosage, and the optimal frequency and duration of flavonol intake. The majority of
presented trials were short-term or observed acute effects of flavonol intake. Thus, there
is a need for more research to examine the impact of long-term flavonol intake and to
identify any potential side effects of their use. It is important to notice that none of the
included studies found that investigated substances caused serious adverse events. Finally,
future research on flavonols should concentrate on interindividual variability in flavonoid
metabolism as it relates to the gut microbiome and nutrient interactions.

In conclusion, the findings of this review provide evidence that a flavonol-rich diet
can help protect against the rising trends of the world’s leading cause of death. The
present review would help doctors and other healthcare workers understand the role of
both supplements and natural sources of flavonols, especially quercetin in cardiovascular-
disease prevention and management.



Nutrients 2022, 14, 1439 13 of 17

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14071439/s1, Table S1: The summary of (A) clinical trials in
particular disorders and (B) meta-analyses.

Author Contributions: Conceptualization, A.K. and D.S.-W.; methodology, A.K. and D.S.-W.; investi-
gation, A.K. and D.S.-W.; resources, A.K.; writing—original draft preparation, A.K.; writing—review
and editing, D.S.-W.; visualization, A.K.; supervision, D.S.-W.; project administration, A.K. and
D.S.-W.; funding acquisition, D.S.-W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin,

E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019
Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [CrossRef]

2. Atar, D.; Jukema, J.W.; Molemans, B.; Taub, P.R.; Goto, S.; Mach, F.; CerezoOlmos, C.; Underberg, J.; Keech, A.; Tokgözoğlu, L.;
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