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Abstract

Malignant tumors of the central nervous system (CNS) continue to be a leading cause of cancer-

related mortality in both children and adults. Traditional therapies for malignant brain tumors 

consist of surgical resection and adjuvant chemoradiation; such approaches are often associated 

with extreme morbidity. Accordingly, novel, targeted therapeutics for neoplasms of the CNS, such 

as immunotherapy with oncolytic engineered herpes simplex virus (HSV) therapy, are urgently 

warranted. Herein, we discuss treatment challenges related to HSV virotherapy delivery, entry, 
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replication, and spread, and in so doing focus on host antiviral immune responses and the immune 

microenvironment. Strategies to overcome such challenges including viral re-engineering, 

modulation of the immunoregulatory microenvironment and combinatorial therapies with 

virotherapy, such as checkpoint inhibitors, radiation, and vaccination are also examined in detail.
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HSV; virotherapy; oncolytic; brain tumors; experimental therapeutics; immunotherapy; cancer 
vaccination

Introduction:

Cancers affecting the central nervous system (CNS) result in severe morbidity/mortality in 

both pediatric and adult populations (1, 2). As such cancer survivors often sustain long-term 

disabilities such as neurosensory and neurocognitive impairments, resulting from the current 

standards of care (3). Such long-term complications as well as tumor resistance to current 

therapies have increased the need for innovative approaches to treat malignant brain tumors, 

especially within pediatric populations. In line with such needs, oncolytic viral therapy has 

emerged as a promising approach.

Among viral therapeutics, genetically engineered oncolytic herpes simplex viruses (oHSV) 

offer several advantages. HSV-1 has been extensively studied and its essential and non-

essential genes have been defined. It is a large, enveloped neurotropic DNA virus that does 

not integrate into host DNA (4). Accordingly, HSV has proven ideal for targeting cancers of 

neural origin due to its intrinsic neurotropism (5). Of note, the γ134.5 neurovirulence diploid 

gene, which is necessary for viral replication in normal cells but not tumor cells, may be 

deleted in oHSV, thereby allowing normal cells to be spared while tumor cells are selectively 

targeted (6). The virus is highly immunogenic and can stimulate a robust anti-tumor immune 

response. In addition to deleting the neurovirulence gene, foreign genes can be inserted into 

the virus genome to augment the oncolytic effects and enhance anti-tumor immunity while 

not interfering with other dispensable and indispensable gene functions. Lastly, oHSV is 

sensitive to anti-viral medications such as acyclic guanosine analogs (acyclovir, ganciclovir, 

valganciclovir) in the unlikely event that it causes disease.

The first genetically engineered oHSV dlsptk (see Table 1 for a summary of oHSVs 

discussed in the text) which is thymidine-kinase deficient, effectively killed human glioma 

cells in vitro and led to prolonged survival when used in an in vivo model (7). While 

promising, such preclinical testing of first-generation viral vectors demonstrated the need for 

increased efficacy and safety testing due to poor replication and resistance to antiviral drugs. 

Subsequently, other first-generation mutant HSV vectors were developed such as G207, 

which has an ICP34.5 deletion at both γ134.5 loci and a lacZ insertion inactivating the ICP6 

gene (UL39), helping inhibit late viral protein synthesis (6). Of note, the multi-mutated 

G207 virus is sensitive to anti-HSV therapies thereby increasing its safety profile. Preclinical 

evaluation of G207 in mice and non-human primates led to its use as the first oHSV in 

clinical trials in the United States (8). Such work led to clinical trials with other first-

generation oHSV such as HSV1716 (9), which contains deletions of both ICP34.5 encoding 
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genes. HSV1716 was evaluated in the United Kingdom in three clinical trials at the same 

time G207 was studied in the United States (10–12). These trials ultimately paved the way 

for talimogene laherparepvec (T-Vec), a second-generation oHSV which has become the first 

oncolytic virus approved by the US Food and Drug Administration (FDA) for the treatment 

of any cancer, melanoma in this case (13); T-Vec has two deletions, namely γ134.5 and α47 

genes, and contains an insertion of human granulocyte-macrophage colony-stimulating 

factor into the γ134.5 loci. Interestingly, third-generation agents containing therapeutic 

mutations in the genome are now being investigated; G47∆, a triple-mutated vector with 

deletions in both copies of the γ134.5 gene, a deletion in the α47 gene, and a lacZ insertion 

in the ICP6 locus became the first third-generation HSV-1 to be tested in humans with 

glioblastoma (GBM) in Japan (14). Multiple clinical trials using oHSV to treat malignant 

tumors of the CNS in children and adults are underway or have been completed (Table 2).

While past and present clinical trials have demonstrated safety and some evidence of 

efficacy, it has become apparent that mechanisms of therapeutic resistance to oHSV exist 

and strategies for overcoming these mechanisms are, therefore, needed. Herein, we review 

the treatment challenges and mechanisms of therapeutic resistance to oHSV, and we discuss 

approaches to overcoming these challenges and maximizing oHSV immunotherapy (Figure 

1). Failure of oHSV treatment may result from several causes. These can be broadly grouped 

into three categories that include those related to the viral vector, the tumor/

microenvironment, and/or failure of the host immune response.

Viral Delivery

Delivery of the virus to the tumor is critical; suboptimal delivery is one potential mechanism 

of treatment failure. Various routes of delivery to CNS tumors have been tested preclinically 

including intravascular, intrathecal, intracerebral, and intratumoral (15). Clinical trials are 

investigating administration of oHSVs for CNS tumors via catheters designed to deliver 

virus into the region of the tumor (16) (, ), by injecting intracerebrally into the surrounding 

tumor resection cavity (17), and by intratumoral/peritumoral injection (, ). Systemic 

administration is less reliable due to leaky vasculature and limited interstitial transportation 

in addition to the loss of virus during first-pass elimination through the liver (18).

The blood-brain barrier (BBB) creates a unique challenge for systemic delivery of oHSV in 

treating CNS tumors. While the BBB may be disrupted in certain metastatic and high-grade 

brain tumors (19), overcoming an intact BBB via targeted disruption may allow for greater 

viral entry and replication within the tumor following systemic delivery. This method was 

effective in preclinical studies of metastatic breast cancer in the brain when combined with 

the systemic injection of G47∆ oHSV (20). Even if the BBB is disrupted, it is prudent to 

note that intravenous delivery risks neutralization of the virus through host immune defense. 

In the case of HSV-1, most adults are seropositive, possibly leading to greater clearance 

when injected systemically. However, a study performed in HSV-1 immunized mice revealed 

that the ability of the virus to kill tumor cells was not hindered by seropositivity (21). While 

this study suggests that systemically delivered viral therapies should be effective in HSV 

seropositive humans, the clinical implications of these findings remain to be fully elucidated, 
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as there may be a differential effect of pre-existing antibodies on viral oncolysis and 

subsequent development of an anti-tumor immune response.

Lastly, off target viral replication is a potential risk. Virus that has been poorly targeted or 

virus that has evolved may lead to infection of host tissue. As virus replicates, the 

probability for mutant progeny increases. Although this has not been reported to occur 

clinically, it is a theoretical concern as viruses continue to be advanced to human trials (22). 

This concern has resulted in direct inoculation of the tumor as the favored technique. 

Limitations related to intratumoral injection also exist such as the inability to specifically 

target difficult-to-access tumors, tumors located within eloquent areas of the brain, and 

metastatic disease. Additionally, the risks and expense associated with complex 

neurosurgical procedures involved in intratumoral delivery make repeat dosing difficult. 

Given such limitations, different methods of delivery are being explored. Intraventricular 

injection may ultimately provide access to tumors that are otherwise inaccessible without the 

need for repeated invasive cranial procedures, but potential toxicity from this delivery 

approach requires additional studies (8). Preclinically, HSV 1716 delivered 

intracerebroventricularly into BALB/c mice led to the loss of ependymal cells and 

hydrocephalus, without adverse effects on mortality (23). Conversely, an earlier study of 

G207 injected intracerebrally or intracerebroventricularly did not lead to adverse effects on 

the ependymal cells (24). These divergent findings may be related to the difference in 

virulence between the two viral constructs and/or due to differences in HSV sensitivity of 

the mouse strains used in the studies.

Viral entry, replication and spread

Following delivery, the next stage that may impede action of oHSV is efficient entry of the 

virus into the tumor. The primary mode of entry for HSV-1 in the normal replicative process 

is via fusion of the viral envelope to the target cell membrane utilizing interaction of 

glycoprotein gD, G, B, gH and gL to cell attachment receptors with subsequent transport of 

genetic material to the nucleus through microtubular apparatus (25). However, another, less 

common, mode of entry is via endocytic vesicles that fuse with viral envelopes (26). In this 

type of entry, it is possible for the endosome to recognize the virus before it travels to the 

nucleus (27), thereby preventing lysis and resultant viral spread. Additionally, there is 

evidence that virus particles undergo degradation within the pre-lysosomal vesicles, 

resulting in a failure of viral infection (28).

For the membrane to begin fusion, a receptor binding protein must be activated by the virus. 

The three classes of membrane receptors that have proven important for HSV-1 entry are 

heparin sulfate proteoglycan, herpes virus entry mediator (HVEM, HveA, TNFRSF14, 

ATAR and CD270), and nectin-1 (CD111, poliovirus receptor-related-1) (26). One of the 

most abundant heparin sulfate proteoglycans is the syndecan family. Syndecans act as co-

receptors on the cell surface and attach to glycoproteins that have been enveloped by HSV-1 

(29) acting to stabilize the virus and allow for interactions of its glycoproteins with the 

receptors directly involved in fusion. HVEM is a member of the tumor necrosis factor 

receptor family and is mainly expressed on T and B lymphocytes. CD111, the most efficient 

HSV entry receptor, is expressed in many cell types, including neurons and brain tumors 
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including glioma, ependymoma, medulloblastoma, and supratentorial primitive 

neuroectodermal tumor (30). Further, in both adult glioblastoma and pediatric brain tumor 

xenografts, CD111 expression was inversely correlated with the half maximal lethal dose 

(LD50) of oHSV (30). These findings suggest that expression levels of CD111 may predict 

tumor cell killing by oHSV and that CD111 expression may be a useful biomarker to 

identify individuals most likely to benefit from the therapy. While CD111 expression 

similarly predicted sensitivity to oHSV in several extracranial solid tumor models, effective 

cell infection and killing by oHSV in neuroblastoma was seen even at low levels of CD111 

(31). Another study showed that induction of CD111 on malignant peripheral nerve sheath 

tumors that initially expressed low CD111 did not improve cell killing (32). Therefore, 

CD111 expression may only predict viral infectivity in certain tumor types. Possibly, other 

receptors or entry mechanisms described above may ultimately be involved.

Retargeting oHSV

To enhance tumor cell specific targeting and to reduce the risk of adversely harming normal 

cells, a myriad of viral retargeting techniques are being tested. The two-primary methods for 

retargeting oHSV have thus far focused on altering the glycoprotein receptor specificity or 

modifying transcription through the insertion of tumor-specific promoters. One example of 

inserting a gene coding for a sequence that is tumor-specific has been to replace the capsid 

epitope for HVEM with single-chain Fv fragments that target cell receptors only on the 

tumor, which increases infection selectivity (33). Human epidermal growth factor receptor 2 

(HER2) has been studied as a target receptor and achieved specificity by deleting the gD 

sequences involved in binding to HVEM and CD111 and replacing them with single-chain 

variable-fragment antibody (34). In an orthotopic mouse model of HER2-engineered human 

glioma, epidermal growth factor receptor-retargeted virus led to a complete response in 73% 

of mice (35). Recently, Campadelli-Fiume and colleagues (36) developed an IL-12-armed, 

HER2-retargeted, fully-virulent oHSV that carries no deletion/mutation (R-115). The virus 

was safe and effective at inhibiting the growth of primary HER2+ lung carcinoma in mice 

and induced a systemic immunotherapeutic vaccine response in survivors. The safety of such 

an approach will have to be tested in brain tumor models; nevertheless, this study highlights 

the potential of fully virulent retargeted oHSVs.

Other retargeted, mutant oHSVs have been developed. Retargeting G207 through regulation 

of the virulence gene by a Musashi1 promoter in an in vivo glioma model resulted in 

increased therapeutic efficacy without altering the safety profile (37). R5141 was developed 

to only enter and replicate in cells that express IL-13Rα2 and not through CD111 (38); in 

addition, R5181, containing a urokinase plasminogen activator insertion, was capable of 

entering cells expressing the non-viral, urokinase plasminogen activator receptor (39). These 

results provide evidence that viruses may be consistently targeted to enter select populations 

within tumors. While promising, advanced combinations of targets will ultimately be 

required to deal with inter and intratumoral heterogeneity.

An example of modifying transcription through the insertion of tumor-specific promoter is 

oHSV rQNestin34.5v.2 (rQNestin), which contains a reinsertion of one of the two deleted 

neurovirulence genes (γ134.5) under transcriptional control of a nestin gene enhancer/
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promoter instead of the constitutive viral promoter (40). Thus, transcription of these viral 

replication promotors increases in the targeted tumor tissue. This oHSV is being tested in a 

Phase 1 clinical trial in GBM patients (). rQNestin is the only ICP34.5-positive oHSV to be 

used in brain tumor patients, and safety of this approach will need to be confirmed. Recently, 

rQNestin was re-engineered to possess GADD34, the human version of ICP34.5 with 

expression selective to GBM. This oHSV, termed NG34, resulted in similar replication and 

efficacy in mice as compared to its parent oHSV, but with less neurovirulence (41). The 

above mentioned studies demonstrate the capability of oHSV to be transcriptionally 

retargeted to specifically infect tumor cells.

Improving replication

Viral replication is necessary to attain appropriate viral titers and prolong viral infection to 

maximize the anti-tumor response. Multiple modifications and deletions attenuate viral 

replication of oHSV (42), and an unfavorable microenvironment including the extracellular 

matrix (ECM), hypoxia, and innate immune cells may contribute to decreased replication. To 

improve replication without increasing neurovirulence, Cassady, et al. developed chimeric 

HSVs that express the human cytomegalovirus (HCMV) PKR-evasion genes, TRS1 (C130) 

and IRS1 (C134) (43). Transfer of these genes from HCMV to the ∆γ134.5 HSV (HCMV/

HSV-1) resulted in replication and virus protein production similar to that of wild-type HSV 

(44). They also noted that introduction of the IRS1 gene did not restore neurovirulence and 

led to increased survival in an in vivo xenograft model of GBM. Finally, they found that 

some mice with TRS1 insertion died compared to IRS1, suggesting limited neurovirulence. 

A clinical trial employing C134 with the IRS1 insertion is forthcoming (Table 2) and has 

received FDA approval.

In a similar effort to enhance replication, Nakashima et al. (45) inhibited histone deacetylase 

6 (HDAC6), which may have antiviral functions leading to viral autophagy instead of viral 

shuttling to the nucleus for replication. Inhibition of HDAC6 resulted in increased 

replication of oHSV rQNestin and rHSVQ1 in glioma cell lines and increased viral shuttling 

to the nucleus. Inhibition of HDAC6 also led to increased viral titers in vivo, again 

suggesting improved replication (45). Beyond HDAC6 inhibition, recent evidence has 

emerged to suggest that the signal transducer and activator of transcription 3 (STAT3) 

activation may enhance replication (46). Over-expression of STAT3 increased oHSV 

replication while decreased levels of STAT3 impaired replication of oHSV (46). More 

studies will ultimately be needed to clarify the clinical relevance of such therapeutic 

approaches.

Tumor Features

Brain tumor genotypic/phenotypic heterogeneity poses an innate clinical problem. Tumors 

may differ in their expression of HSV entry molecules or foster a local microenvironment 

that is not conducive to viral replication and spread. Intact innate responses of tumor cells, 

normal neuroglia, or immune cells within the tumor microenvironment, pose a barrier to 

viral replication. The microenvironment contains a variety of cells including immune and 

endothelial cells, host fibroblasts, and pericyte cells as well as neurons, astrocytes, and 

microglia recruited to the growing tumor. These cells secrete an ECM which provides 
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structural support to cancer cells. In addition to structural support, the matrix is also 

responsible for aiding tumor growth, progression, neovasculature, invasion, and metastasis 

(reviewed in (47)). Given such a complicated milieu, it is not surprising that numerous 

factors within the microenvironment can both aid and modulate the anti-tumor response. As 

a clever approach to improve spread of oHSV in brain tissue, Dmitrieva et al. (48) generated 

an oHSV (OV-Chase) that expressed Chondroitinase-ABC (Chase-ABC), which is a 

bacterial enzyme that can remove chondroitin sulfate glycoso-aminogylcans from 

proteoglycans. Secreted and membrane-bond forms of chondroitin sulfate 

glycosoaminoglycans link to hyaluronan, forming the major ECM in the brain. By degrading 

the ECM, they demonstrated increased virus spread throughout intracranial tumors (48). 

Therefore, the microenvironment must be considered when developing novel oHSV.

Among this myriad of microenvironmental factors, tissue hypoxia plays a crucial role in the 

development and progression of malignant gliomas having been associated with tumor 

growth, aggressiveness, invasion and spread (49). Friedman, et al. reported that GBM 

xenograft lines exposed to hypoxia led to a decrease in oHSV infectivity, replication, and 

cytotoxicity compared to wild-type virus (50); however, they were able to successfully 

employ the chimeric HCMV/HSV-1 virus, which has improved late viral protein synthesis 

during states of hypoxia (44). This second-generation virus demonstrated similar efficacy to 

wild-type HSV-1 in targeting glioma cells and glioma stem-like cells during hypoxia. This 

effect was at least partially due to p38 mitogen-activated protein kinase signaling pathway, 

which enhances late viral gene expression. These findings differ from those reported 

previously by Aghi et al. (51), who found that G207 replication increased in U87 glioma 

cells under hypoxia. One explanation for this difference may be the use of a single, long-

term established tumor cell line in the latter study. Further, when the viral ICP4 gene in 

glioma cells was placed under the control of an HIF-responsive promoter of the HSV-1 

d120, which contains partial ICP4 gene deletions (52), HIF-HSV resulted in similar 

replication in hypoxia and normoxia. Importantly, wild-type ICP4 was restored under the 

control of the HIF promoter creating potential toxicity in patients that could result in 

encephalitis. Together, these results suggest that oxygen tension should be considered when 

developing next-generation viral vectors for clinical therapy.

Host antiviral immune response; improving the immune microenvironment

The host immune response poses another obstacle to effective oHSV therapy. In order to 

maximize the efficacy and durability of clinical responses to oHSV, the development of an 

anti-tumor immune response is likely critical; while an antiviral immune response may 

decrease efficacy. Antigen-presenting cells (APCs) of the innate immune system, 

particularly dendritic cells, first recognize viral nucleotides and respond to viral infection by 

producing interferons (IFNs) in order to create a less permissive environment for viral 

replication (53). Indeed, early HSV replication can be inhibited by treatment with IFN. Virus 

is recognized by APCs through the binding of pattern recognition receptor toll-like receptor 

9 (TLR9) with unmethylated CpG motifs present in the HSV genome, which leads to a 

downstream signaling cascade resulting in IFN production (54). In addition to IFNs, virus 

recognition also leads to the production and release of TNFα, IL-1 beta (IL-1β), IL-6, IL-12, 

chemokine (C-C motif) ligand 2 (CCL2), CCL7, CCL8, CCL9, chemokine (C-X-C motif) 
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ligand 1 (CXCL1), CXCL4, and CXCL5 (55), which further augments the anti-viral 

response. When the innate immune system targets and removes the virus, it limits the 

oncolytic effects of the virus. Viral replication and spread within the tumor is also 

compromised due to the destruction of virally infected cells by infiltrating inflammatory 

cells (56). Specifically, macrophages can infiltrate and engulf the virus (57), whereas NK 

cells may kill infected cells prior to the release of functional progeny virions leading to 

ineffective viral propagation and a blunted anti-tumor response.

In conjunction with innate immunity, adaptive immunity plays a role in oncolytic viral 

infection. Following infection, viral antigens may be presented to cytotoxic T cells via APCs 

prior to tumor associated antigens (58). In this way, activation of virus-specific T cells 

contributes to premature viral clearance. These T cells also contribute to the production of 

IFN-γ, which has been shown to limit viral spread and protect against viral challenge. B 

cells have also been shown to play a role in anti-viral immunity to HSV. For example, in 

mice immunocompromised as a result of cyclophosphamide (CPA) treatment, HSV-1 

antiserum transfer resulted in 100% survival in mice compared to mice that received a 

control serum (59).

Recent studies suggest the adaptive immune system also plays a critical role in the anti-

tumor response, independent of replication (60). C134 and its control ∆γ134.5 oHSV 

prolonged survival in immunocompetent mice bearing a murine malignant glioma, but not 

immunocompromised mice. The authors suggest this effect was due to the lack of a T cell 

response in immunodeficient mice, showing that adaptive immunity was integral for the anti-

tumor response.

To overcome some of the aforementioned challenges, investigators have employed drugs to 

block the migration or activity of pro-inflammatory cells. One example is pretreatment with 

CPA, a chemotherapy and immunomodulatory drug. Pretreatment with CPA decreased HSV 

clearance and increased replication in vivo by inhibiting innate immunity (61). Currently, a 

clinical trial is recruiting patients with recurrent glioma to investigate the effectiveness of 

combining rQNestin with CPA (). Another example is to use anti-inflammatory cytokines to 

dampen the anti-viral response. Pretreatment with TGF-β, an immunosuppressant, led to a 

decrease in NK cytolytic activity and increased viral titers in an in vitro model of GBM (62). 

Further, TGF-β treatment prior to oncolytic HSV inhibited tumor growth and led to 

prolonged survival in a mouse model of GBM. Finally, inhibiting angiogenesis by inhibiting 

vascular endothelial growth factor (VEGF) enhanced the anti-tumor effects of oHSV (63).

Clearly, the tumor immune microenvironment greatly influences therapeutic responses to 

oHSV. For example, modulation of NK cells can both positively and negatively affect viral 

therapy. NK cells promote viral clearance but are also involved in anti-tumor immunity. In 

preclinical studies, following oHSV infection, NK cells rapidly infiltrated the tumor and led 

to premature clearance of the virus in a GBM model (64). Depletion of NK cells in mice 

bearing GBM resulted in higher viral titers and increased survival compared to control mice. 

The anti-viral effects were dependent on the NK cytotoxicity receptors NKp30 and NKp46. 

Importantly, human GBMs up-regulate NK cell receptor ligands, suggesting that in this 

tumor type, NK cells are detrimental to oHSV therapy (64). Similarly, inhibition of NK cells 
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by valproic acid, a HDAC inhibitor, led to a decrease in both NK and macrophage 

recruitment in a murine GBM tumor model, thereby suppressing the killing of oHSV-

infected tumor cells (65). Pretreatment with low-dose CPA increased viral replication and 

decreased HSV-related immune cell infiltration into the tumor (61). These results suggest 

that pharmacologically altering the tumor microenvironment, specifically making it 

temporarily immunosuppressive, may enhance viral oncolysis. However, making the tumor 

microenvironment more immunosuppressive may be detrimental to the development of an 

anti-tumor immune response. The challenge for researchers is discovering the ideal balance 

to maximize the therapeutic effect.

Myeloid-derived suppressor cells also contribute to the immunosuppressive tumor 

microenvironment through inhibition of T cell activity. These cells infiltrate the tumor 

microenvironment and lead to an unfavorable microenvironment and inhibit an anti-tumor 

immune cell response likely through production of anti-inflammatory cytokines such as 

IL-10 (66). In support of this concept, M002, which produces murine IL-12 (67), led to a 

decrease in myeloid-derived suppressor cells in a sarcoma model in immunocompetent mice 

leading to a more favorable environment for tumor killing (68).

Arming oHSV – the addition of therapeutic transgenes

HSV has a large genome (152 kilobase [kb]) with approximately 30kb of genes that are non-

essential for productive replication in tumor cells (69). These genes can be removed to 

provide room for packaging genetically engineered viral DNA (containing foreign genes 

designed to augment anti-tumor effects) into infectious capsids. The different types of genes 

that have been utilized include genes that can influence the tumor microenvironment, induce 

apoptosis, enzymes that activate pro-drugs, and reporter genes (47).

Cytokine insertions have been investigated due to their ability to modulate the anti-tumor 

response. Cytokines enhance the activity of cytotoxic T cells, leading to greater anti-tumor 

efficacy. The first clinically approved oHSV, T-Vec, contains an insertion of granulocyte-

macrophage colony-stimulating factor, which has been shown to induce myeloid precursor 

cells and recruit dendritic cells (13). Preclinically, murine IL-12 producing M002 virus (67) 

improved survival in mice with intracranial gliomas and M002 outperformed first-generation 

oHSV in vivo in patient-derived xenograft high-grade brain tumors (30, 70). Following the 

preclinical evaluation of the safety of M032, which encodes a functional human IL-12, a 

Phase 1 clinical trial was designed and is ongoing in adults with recurrent GBM () (71). 

Another murine IL-12 expressing virus, G47Δ-mIL12, was effective at targeting GBM stem 

cells and the tumor microenvironment by increasing IFN-γ release, inhibiting angiogenesis, 

and reducing Tregs (72). When G47Δ-mIL12 was combined with axitinib, a VEGF receptor 

tyrosine kinase inhibitor, the combination therapy enhanced anti-tumor efficacy in 

immunodeficient and immunocompetent orthotopic GBM murine models compared to either 

therapy alone (73).

Another arming strategy involves inserting anti-angiogenic transgenes into the oHSV vector 

as increased vascularity and microvascular proliferation are hallmarks of malignant gliomas 

(74). G47∆ armed with platelet factor-4, a member of the CXC chemokine family has been 

shown to inhibit angiogenesis (75). Specifically, expression of platelet factor-4 resulted in 
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inhibition of tumor growth and increased survival without altering viral replication in two 

neural tumor models in vivo. Similarly, vasculostatin-expressing Rapid Anti-angiogenesis 

Mediated By Oncolytic (RAMBO) virus resulted in a significant reduction in angiogenesis 

compared to control virus in vivo (74). Mice with intracranial gliomas treated with RAMBO 

had increased survival compared to control mice, and RAMBO led to a significant reduction 

in microvascular density, suggesting the virus hindered recruitment of the vascular supply to 

the tumor. These data demonstrate that modulating the tumor vasculature through armed 

oncolytic viruses can aid in reducing tumor growth and progression.

Recently, a novel oHSV was developed to express a single-chain antibody against 

programmed cell death protein 1 (PD-1) (76). When injected into two preclinical mouse 

models of GBM, the virus led to an effective anti-tumor response. Importantly, when 

immunocompetent mice were re-challenged with GBM, they were able to reject the 

challenge, suggesting the presence of anti-tumor memory. These data support the use of 

oHSV armed with checkpoint inhibitors.

Checkpoint inhibition

Immune checkpoints are self-regulatory pathways that ensure the immune system is 

regulated and can discriminate between self and non-self (77). T cells, which play a vital 

role in immune function, express a number of immune checkpoint receptors, and, thus, have 

become the focus of checkpoint inhibition therapy (77). These receptors regulate T cell 

function in response to various stimuli including infection and tumor antigens (77). When an 

antigen is recognized by a T-cell in the correct inflammatory context, the T cell performs 

effector functions that amplify the immune response, including direct cytolysis and 

production of IFNs that inhibit tumor cell replication. The IFNs, however, also increase 

checkpoint molecule expression (78), which may downregulate the T cell response and 

activate T regulatory cells (Tregs). Clinically, increased Tregs within the tumor are 

associated with a poor prognosis (79). Of note, tumor cells infected with virus also produce 

IFNs and thus, have increased checkpoint expression, providing a rational basis for the 

combination of oHSV and checkpoint inhibitor therapy.

Tumor cells have the ability to evade immune recognition through checkpoint pathway 

activation (80). When the tumor cell is recognized by T cells, checkpoint protein expression 

(e.g. Cytotoxic T Lymphocyte Antigen-4 [CTLA-4], Programmed Cell Death protein-1 and 

Programmed Death Ligand 1 [PD-1/PD-L1]) may be upregulated and can competitively 

engage specific signaling receptors expressed by APCs, activating the checkpoint pathway 

and essentially inactivating the T-cell response against the tumor (80). When these proteins 

are present on the tumor or within the microenvironment, they allow tumor cells to evade 

immune cell recognition. Members of the indoleamine 2,3-dioxygenase (IDO) family are 

able to convert tryptophan to kynurenine required to maintain the physiologic differentiation 

and maturation of Tregs (81). Specific inhibitors that block the actions of the IDO family 

members diminish the differentiation of T cells into Tregs, thereby minimizing their negative 

regulatory effect on ongoing immune responses. Therefore, a strategy to increase the virus-

induced T-cell anti-tumor response can be designed via the rational application of 
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checkpoint inhibitors. Currently, there are a number of checkpoint inhibitors that have 

advanced to clinical trials including those for CTLA-4, PD-1/PD-L1, and IDO (82).

Due to the heterogeneous and ever-evolving tumor environment, it is possible for tumor cells 

to adapt to checkpoint inhibitor therapy when used alone. These adaptations may include 

down-regulation of checkpoint protein ligands, changes in cytokine signaling, and utilization 

of alternative pathways (83). Brain tumors pose additional challenges due to systemic 

immune dysfunction, reduced levels of circulating lymphocytes, and/or decreased 

penetration of drugs through the BBB (84). In the first randomized phase 3 clinical trial of 

PD-1/PD-L1 pathway inhibition, nivolumab, an anti-PD-1 monoclonal antibody, failed to 

prolong overall survival in recurrent GBM patients when used alone (). Combining 

checkpoint inhibition with oHSV may lead to a sustained anti-tumor immune response due 

to the release of tumor antigens following virus-mediated tumor cell lysis (82). In a 

syngeneic mouse glioma model, the triple combination of oHSV G47Δ-mIL12 with anti-

PD-1 and anti-CTLA-4 checkpoint inhibitors cured most mice, and surviving mice that were 

re-challenged with tumor cells did not succumb to tumors demonstrating the effectiveness of 

the treatment on immunologic memory (85). Recently, clinical trials have sought to 

investigate the impact of combined oncolytic virotherapy with checkpoint inhibition. In the 

first randomized open-label Phase 2 study combining oHSV T-Vec and CTLA-4 inhibitor 

ipilimumab, the combination improved the objective response rate in patients with advanced 

melanoma to 39% from 18% for those that received ipilimumab alone (86). The combination 

therapy led to greater anti-tumor activity without additional adverse events and provides 

evidence for continued investigation of oHSV in parallel with checkpoint inhibitors.

Radiation

Combination therapies may increase the therapeutic effects of treatment by altering the 

microenvironment in a way that amplifies the anti-tumor immune response. One clinically 

relevant example is via the addition of ionizing radiation. Radiation may synergize with 

oHSV by increasing the innate and adaptive anti-tumor immune response. Tumor antigens 

are released following radiation leading to an increase in their presentation and resulting in 

chemokine induction and subsequent effector T cell recruitment thereby priming cytotoxic T 

cells specific to the tumor and increasing T cell function in tumors (87). Preclinical studies 

demonstrated that oHSV-1 treatment followed by radiation increased viral replication and 

efficacy and prolonged survival in a malignant glioma model (88). Furthermore, combining 

radiation with oHSV may be a way to induce an anti-tumor immune response to distant sites 

of metastatic disease not specifically targeted by the virus. G207 combined with a single 5 

Gray dose of radiation was tested in adults with recurrent high-grade gliomas (89). The 

combination treatment was safe and six of nine patients had stable disease or partial 

response. The concept of combining oHSV with radiation is being further tested in an 

ongoing Phase 1 clinical trial of G207 with a single dose of radiation in children with 

recurrent supratentorial brain tumors (Table 2) (90).

Vaccination

Viral replication resulting in tumor lysis provides a tumor debris field that makes tumor 

antigens accessible to dendritic cells and other APCs. These cells are activated by the 
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presence of viral nucleic acids that bind to TLR9 and induce cytokines that promote the 

priming of cytotoxic T cells directed against the tumor. This stimulatory environment may 

also prime an anti-viral immune response that results in viral clearance. Therefore, strategies 

for directing the immune response to specific tumor antigens to enhance the anti-tumor 

effect while mitigating viral clearance should be explored.

A promising approach is the use of cancer vaccines to prime cytotoxic T cells against 

specific tumor antigens (91), which can be further augmented by virotherapy. Cancer 

vaccines can be grouped into different categories including cell vaccines, genetic vaccines, 

and protein/peptide vaccines (92). Cell vaccines are prepared using either patient-derived 

tumor cells or dendritic cells. In the case of dendritic cells, patients are treated with dendritic 

cells that have been loaded with tumor-associated antigens in order to provoke an anti-tumor 

immune response (93). Another strategy is to use nucleic acids encoding multiple tumor 

antigens as DNA or RNA, which may be delivered as either the naked nucleic acid sequence 

or packaged within synthetic- or viral- vectors (94, 95). Nucleic acid-based vaccines can be 

programmed to have innate stimulatory capacity (96), or may even encode adjuvants, such as 

IL-12, that can be produced in situ (97). Protein/peptide vaccines provide the advantage that 

the antigen does not require production in situ but can be processed and presented by 

dendritic cells for T-cell priming. However, protein and peptides alone are weakly 

immunogenic and require packaging into particles, such as lipid or polymer-based systems, 

with specific adjuvants (e.g. TLR agonists) that promote dendritic cell uptake and induce the 

production of IFNs needed to prime T-cell immunity (98). In this regard, polymer carriers of 

TLR-7 and −8 agonists linked to protein/peptide antigens that self-assemble into 

nanoparticles have been developed as an effective strategy for delivering antigens to 

dendritic cells to induce high magnitude and quality T cell immunity (99). Such a strategy 

may be used to safely prime cytotoxic T cell responses prior to oncolytic virotherapy 

treatment thereby maximizing the tumor-directed immune response.

A central challenge for vaccination approaches is selecting appropriate antigens that direct 

the T-cell response to tumors but avoid off-target effects. Suitable antigens include tumor-

associated self-antigens, which are germ-line encoded and preferentially expressed on tumor 

cells; and “neoantigens,” which are mutant self-proteins that are necessarily tumor-specific 

(100). A major focus of ongoing research and development activities is to develop optimal 

strategies for maximizing the breadth and magnitude of anticancer T-cell immunity using 

such technologies that can be scaled as patient-specific, on-demand therapies and 

determining ideal combination therapies to use with tumor vaccination such as virotherapy.

Conclusions:

Therapeutic resistance and treatment challenges related to viral delivery, entry, and 

replication must be overcome before the promise of oHSV can be fully realized. Oncolytic 

HSV have many advantages as compared to other viral vectors and may ultimately be 

engineered and/or used in combination with other treatment strategies in an effort to 

overcome resistance mechanisms and maximize clinical response. The various approaches 

described above hold great promise, and if successful, these treatments may be extended to 

all solid tumors, both within and outside the CNS.
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Figure 1. 
Summary of mechanisms of resistance and strategies to overcome resistance. Suboptimal 

delivery is one possible mechanism of treatment failure. Intratumoral injection is the most 

common route of delivery but other routes have been tested. Intravascular and 

intraventricular delivery are currently being investigated and may allow access to otherwise 

inaccessible tumors. Efficient entry is imperative for oHSV action. CD111 is the most 

efficient entry receptor but expression varies among tumors. To enhance targeting of oHSV, 

viral retargeting techniques to tumor specific antigens are being investigated. Viral 

replication and spread is necessary to prolong viral infection and effectively maximize the 

anti-tumor response. Host recognition of the virus and degradation within vesicles prevents 

viral infection. Chimeric HSVs, HDAC6 inhibition, and STAT3 expression can alter oHSV 

replication. The tumor microenvironment contains immune and endothelial cells, fibroblasts, 

pericyte cells, and neurons, astrocytes, and microglia. The extracellular matrix created by 

these cells aids in tumor growth, progression, invasion, and metastasis. Altering the tumor 

microenvironment can help modulate the anti-tumor response. The host anti-viral immune 

response may decrease viral efficacy and development of an anti-tumor response. Antigen 

presenting cells (APCs) recognize viral antigen, which leads to interferon (IFN) production 

resulting in less viral replication. Suppressing the innate immune response to the virus 

decreases IFN production resulting in greater viral efficacy. Vaccination with tumor antigens 

can augment the immune response to the tumor. Arming oHSVs with various cytokines in 
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addition to checkpoint inhibition allows sustained T cell activation contributing to a robust 

anti-tumor response.
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Table 1:

Summary of oHSVs

Virus Deletion/Mutation Foreign gene/promoter insertion Reference

C130 Deletion in both copies of γ134.5 gene Expresses the HCMV TRS1 gene product (43)

C134 Deletion in both copies of γ134.5 gene IRS1 gene under control of an HCMV 
immediate early promoter

(43, 44, 60)

dlsptk Thymidine-kinase deficient None (7)

G207 Deletion in both copies of γ134.5 gene and 
disabling lacZ insertion in UL39

None (6, 8, 16, 17, 24, 30, 
37, 51, 89)

G47∆ Deletion of the γ134.5 and α47 genes and a 
disabling lacZ insertion within ICP6

Murine angiostatin (14, 20, 75)

G47∆-IL12 Deletion of the γ134.5 and α47 genes and a 
disabling lacZ insertion within ICP6

Murine IL-12 gene insert (72, 73, 85)

HSV1716 Deletion in both copies of γ134.5 gene None (9–12, 23)

M002 Deletion in both copies of γ134.5 gene Murine IL-12 gene insert (30, 67, 68, 70)

M032 Deletion in both copies of γ134.5 gene Human IL-12 gene insert (71)

NG34 Deletion in ICP6 and ICP34.5 genes Human GADD34 gene transcriptionally 
controlled by the Nestin promoter

(41)

R-115 None Murine IL-12; CMV promoter (36)

R5141 Deletion of polylysine tract in gB Insertion of IL-13 between amino acids 24 
and 25 of gD

(38)

R5181 Deletion of polylysine tract in gB Insertion of urokinase plasminogen 
activator between amino acids 24 and 25 
of gD

(39)

RAMBO Deletion in both copies of γ134.5 gene and in-
frame gene-disrupting insertion of GFP within 
ICP6 gene

Vasculostatin (Vstat120) under control of 
the HSV IE 4/5 promoter

(74)

rHSVQ1 Deletion in UL39 and γ134.5 genes None (40, 45)

rQNestin34.5v.2 Deletion in γ134.5 gene and UL39 ICP-34.5 under control of synthetic nestin 
promoter

(40, 45)

talimogene 
laherparepvec (T-

Vec)

Deletions of the ICP34.5 and ICP47 genes Granulocyte-macrophage colony-
stimulating factor, CMV promoter

(13, 86)
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Table 2:

Summary of past and ongoing oHSV brain tumor clinical trials

Tumor Type
a Virus Type Clinical Trial Identification Pediatric or Adult Status Reference

HGG rQNestin 34.5v.2 Adult Recruiting (40)

M032-HSV-1 Adult Recruiting (71)

HSV G207 Adult Completed (8, 17, 89)

HGG C134-HSV-1 Adult Not Yet Recruiting (57)

Supratentorial Neoplasm HSV G207 Pediatric Recruiting (16, 90)

HGG HSV-1716 Pediatric Terminated

HGG HSV-1716 Adult Completed (10–12)

a
HGG = high grade glioma
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