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Effective and precise adenine base editing
in mouse zygotes

Dear Editor,

Many human genetic diseases are caused by pathogenic
single nucleotide mutations. Animal models are often used to
study these diseases where the pathogenic point mutations
are created and/or corrected through gene editing (e.g., the
CRISPR/Cas9 system) (Komoret al., 2017; Lianget al., 2017).
CRISPR/Cas9-mediated gene editing depends on DNA dou-
ble-strand breaks (DSBs), which can be of low efficiency and
lead to indels and off-target cleavage (Kim et al., 2016). We
and others have shown that base editors (BEs)may represent
an attractive alternative for disease mouse model generation
(Liang et al., 2017; Kim et al., 2017). Compared to CRISPR/
Cas9, cytidine base editors (CBEs) can generate C•G to T•A
mutations in mouse zygotes without activating DSB repair
pathways (Liang et al., 2017; Kim et al., 2017; Komor et al.,
2016). In addition, CBEs showed much lower off-targets than
CRISPR/Cas9 (Kim et al., 2017), making the editing process
potentially safer and more controllable. Recently, adenine
base editors (ABEs) that were developed from the tRNA-
specific adenosine deaminase (TADA) of Escherichia coli
were also reported (Gaudelli et al., 2017). As a RNA-guided
programmable adenine deaminase, ABE can catalyze the
conversion of A to I. Following DNA replication, base I is
replaced by G, resulting in A•T to G•C conversion (Gaudelli
et al., 2017; Hu et al., 2018). The development of ABEs has
clearly expanded the editing capacity and application of BEs.
Here, we tested whether ABEs could effectively generate
disease mouse models, and found high efficiency by ABEs in
producing edited mouse zygotes and mice with single-nu-
cleotide substitutions.

Unlike CBEs that can generate premature stop codons
with C-T conversion (TAG, TAA or TGA), ABEs cannot pro-
duce a new stop codon to disrupt gene function via A-G
conversion. We therefore targeted mRNA splice sites in
order to induce gene dysfunction. Since mammalian mRNA
splicing requires a 5′ GU donor and a 3′ AG acceptor at
intron-exon junctions, ABEs can block mRNA splicing and
hence inactivate gene function by converting splice donors
and acceptors to GC and GG. We named this strategy ABE-
induced mRNA splicing defect (AI-MAST).

We first used ABE7.10 to target the mouse Tyr gene,
whose dysfunction results in albinism in mice (Zhang et al.,

2016). A gRNA was designed to target the splice donor at
exon 3 of the Tyr gene, which is also predicted to be an ideal
site for ABE. We then injected both ABE7.10 mRNA and the
gRNA into mouse zygotes (Fig. S1A). Of the 20 embryos
harvested 48 h later, 9 were edited (45.0%) with efficiencies
ranging from 11.2% to 24.6% (Fig. S1B–D). In addition, 106
injected zygotes were transplanted into pseudopregnant
mothers. Among the 23 pups obtained, 13 (56.5%) showed
A-to-G editing with conversion frequencies of 14.6%–48.1%
(Figs. S1B and S2), attesting to the feasibility of AI-MAST in
generating point mutations in mice.

It should be noted that we did not obtain any white-coated
F0 mice, likely due to insufficient A-to-G conversion rate at
the splice donor site. However, when the T1–12 F0 mouse
was mated with homozygous Tyr mutant (c.655G>T, p.
E219X) C57BL/6J mice (Liang et al., 2017), 2/5 (40.0%)
pups were albino (Fig. S3A). Sanger sequencing results
indicated that the 2 albino pups were compound heterozy-
gous for both the ABE target site and Tyr site (c.655G>T, p.
E219X) (Fig. S3B), lending support to Tyr gene dysfunction
as a result of A•T to G•C conversion at the splice donor of
exon 3. Furthermore, analysis of RNAs extracted from the
skin of these compound heterozygous mice found significant
reduction of correctly spliced Tyr mRNAs compared with
TyrE219X/+ mice (Fig. S3C and S3D). Both TyrE219X/+ and
TyrE219X/E219X mice showed obvious reduction of Tyr mRNA,
indicating that TyrE219X mutant RNA is subjected to degra-
dation by nonsense-mediated mRNA decay (NMD). These
data demonstrate that AI-MAST is capable of inducing
mRNA splicing defects. However, whether phenotypes
associated with mRNA splicing defects can be observed in
F0 mice remains unknown.

To further explore one-step generation of disease mouse
models using ABEs, we designed two gRNAs that targeted
the splice sites at exons 61 and 66 of Dmd (Fig. 1A). These
two sites were chosen because Dunchenne muscular dys-
trophy (DMD) remains a progressive neuromuscular
degenerative disorder with no effective treatment. The lar-
gest in the human genome with 79 exons and 2.4 Mb long,
the human DMD gene has recorded thousands of mutations
(2,898 in the UMD-DMD database for DMD patients),
including insertions, deletions, duplications and point muta-
tions. At least 158 splice site mutations have been identified
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thus far, including the splice donor of exon 61 (c.9163
+1G>A, GU-to-AU; c.9163+2T>G, GU-to-GG) and splice
acceptor of exon 66 (c.9564-2A>T, AG-to-TG) (http://www.
umd.be/DMD/4DACTION/W_DMDT1/9). Exons 61 and 66
are highly conserved between human and mouse, both at
the genomic DNA (>91% similarity) and protein (100%)
sequence level. With gRNA-1 and gRNA-2, 15/18 (83.3%)

and 9/17 (52.9%) embryos were respectively edited
(Fig. 1B). Allelic mutation frequencies in these embryos
ranged from 10.1% to 88.7% (Fig. S4). Following trans-
plantation of the gRNA-1 (270) and gRNA-2 (122) injected
zygotes, 70.1% (47/67) pups were edited with varying allelic
mutation frequency for gRNA-1, and 42.3% (11/26) pups
were edited for gRNA-2 with a slightly lower allelic mutation
frequency compared to gRNA-1 (Fig. 1B–E). While allelic
mutation frequency differs among F0 mice, a total of 15 F0
mice were obtained that exhibited >95.0% frequency. Of the
67 F0 mice from group gRNA-1, 14 were edited with >95.0%
efficiency (20.9%) (Fig. 1B). Remarkably, 5 of these 14 mice
showed a rate of >99.0% (Fig. 1D). These 5 mice may in fact
be pure mutant mice without any wild-type alleles, consid-
ering that error rates of deep sequencing may run up to 1%
(Liang et al., 2017). In addition, one F0 mouse was edited
with 98.0% efficiency from group gRNA-2 (Fig. 1E). These
results combinedly suggest high editing efficiency of ABEs
and the AI-MAST strategy in mouse zygotes.

We next sought to determine whether the ABE-induced
Dmd splice site mutant mice would display DMD pheno-
types. First, we quantified correctly spliced Dmd mRNAs by
qPCR analysis of RNAs isolated from the quadriceps and
hearts of mutant mice and their wild-type (WT) littermates
(Fig. S5A). Correctly spliced Dmd mRNAs decreased sig-
nificantly (>90%) in edited mice, indicating highly efficient
base editing by AI-MAST (Figs. 2A and S5B). In addition, we
were also able to detect incorrectly spliced transcripts that
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Figure 1. continued.

Figure 1. Efficient targeting of the mouse Dmd gene by

adenine base editors (ABEs). (A) Schematic representation of

the two gRNA target sites in the Dmd gene locus. Exon-intron

boundary sequences (both strands) are shown with exon

sequences capitalized and intron sequences in lower case. The

gRNA target sequence is underlined, with PAM in green and the

adenine being mutated in red. (B) The number of injected and

transplanted embryos and subsequent pup information for each

gRNA group are listed in the table. (C) Representative Sanger

sequencing chromatograms of PCR amplicons spanning each

gRNA target site fromwild-type (WT) vs. mutant mice (D1–12 and
D2–22 for group gRNA-1 and gRNA-2 respectively). Red triangle

marks the targeted/mutated adenine. (D) PCR amplicons span-

ning the gRNA-1 target site from the F0 newborns were analyzed

by deep sequencing. Exons and introns are in capital and lower

case letters respectively. Base substitutions, red. PAM, green. The

frequency of each mutant allele within individual pups is listed on

the right. (E) PCRamplicons spanning the gRNA-2 target site from

the F0 newborns were analyzed by deep sequencing.
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Figure 2. One-step generation of DMD mice by ABE-induced mRNA splicing defect strategy (AI-MAST). (A) qPCR was carried

out using RNAs extracted from the quadriceps and hearts of WT (D1–4, D1–14, D1–31) and mutant mice (D1–18, D1–25, D1–27) to
quantify correctly spliced Dmd mRNAs. Data are presented as mean ± SEM (n = 3). **P < 0.01. ***P <0.001. Statistical significance

was determined using the two-tailed Student’s t-test. (B) Immunofluorescence staining of Dmd in WT and mutant mice from (A).

Representative images from pups D1–4 (WT) and D1–18 (mutant) were shown (n = 3). (C) Forelimb grip strength of 4–5 week old

male and female mice from the Dmd gRNA-1 group was assessed using a force transducer. ***P < 0.001. Statistical significance was

determined using the two-tailed t-test. (D) Serum creatine kinase levels in 4–5 week old male and female mice from the Dmd gRNA-1

group were determined. **P < 0.01, and ***P < 0.001. Statistical significance was determined using the two-tailed t-test. (E and F)

Analysis of human disease splice site mutations that may be modeled by ABE7.10 (E) and xCas9(3.7)-ABE7.10 (F).
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appeared to have used cryptic splice sites (Fig. S5C and
S5D). Consistent with the drastic reduction in properly
spliced mRNAs, the Dmd gene product (Dystrophin protein)
was also nearly depleted in edited mice as assayed by
immunostaining (Fig. 2B).

Dystrophin is necessary for muscle fiber strength, the
absence of which results in muscle weakness. In humans,
splicing defects in the DMD gene can cause Duchenne
muscular dystrophy with severe symptoms including muscle
fatigability and myocardial fibrosis (Birnkrant et al., 2018).
Similarly, we also observed significant decreases in the
forelimb grip strength of both male and female mutant mice
(Figs. 2C, S6 and Table S1). Creatine kinase (CK) activity is
a widely used marker in the investigation of skeletal muscle
diseases (Birnkrant et al., 2018). In line with their muscle
weakness, serum creatine kinase (CK) levels in these
mutant mice were substantially elevated as well compared
with WT controls, similar to muscular dystrophy phenotypes
observed in Dmd mouse models (Fig. 2D and Table S2).
When mated with WT mice, the A-to-G Dmd mutations in the
mutant mice could be stably passed down to their progenies
(Fig. S7). These data indicate that AI-MAST is suitable to
establishing mouse models for human diseases in one step.

Off-target effects are a well-known problem of canonical
CRISPR-Cas9 editing tools. To examine the rate of off-target
deamination in F0 mice, we selected 10 mutant mice from
each gRNA group for deep sequencing. For the top 5 pre-
dicted off-target sites of each gRNA (based on sequence
similarity), no off-target deamination was found (Tables S3–
5). Roughly 2/22 (9.1%) CBE-edited embryos and 3/57
(5.3%) CBE-edited F0 mice were found to contain alleles
with indels (Liang et al., 2017; Kim et al., 2017). In com-
parison, we did not find any indels in ABE-edited embryos
(33) or F0 mice (71). In addition, we found only A-to-G
conversions, but no A-to-C/T conversions, which is in
agreement with ABEs’ observed improved product purity in

human cells (Gaudelli et al., 2017). Taken together, our data
demonstrate that ABEs can efficiently and precisely convert
base A to G in mouse embryos and represent a high-fidelity
tool in generating point mutation mouse models.

Weestimate that ∼79.4%and87.3% respectively ofmouse
and human protein-coding genes may be targeted by the AI-
MASTstrategy (Fig. S8A, S8B and Tables S6–7), suggesting
broad applicability of AI-MAST in making gene deficiency
mouse models and human cell lines. The recently developed
xCas9 (3.7)-ABE7.10, an ABE variant with a broader PAM
preference (5′-NGN-3′, 5′-GAA-3′, 5′-GAT-3′ and 5′-CAA-3′)
(Hu et al., 2018) should further expand the target scope of
our AI-MAST strategy (Fig. S8C, S8D and Tables S8–9). In
humans, ∼10% of pathogenic mutations in all Mendelian dis-
eases comprise of splice sitemutations (Faustino andCooper,
2003), Our AI-MASTstrategy therefore should prove particu-
larly attractive in the generation of relevant animal models and
the investigation of human diseases caused by splice-site
defects. In-depth analysis revealed that 48.3% (517/1,039) of
the human pathogenic mutations at splice sites can be gen-
erated byABE7.10 (Fig. 2E andTableS10), and 95.6%canbe
generated by xCas9(3.7)-ABE7.10 (Fig. 2F and Table S11). In
addition, we also found some conserved splice site mutations
in humanandmouse that can be generated by either ABE7.10
(64) or xCas9 (3.7)-ABE7.10 (163) (Tables S12 and S13).
Workingwith human cell andmousemodels of thesemutation
sites has the best chance of probing disease biology and
developing possible new therapeutics.

While our manuscript was under review, two independent
groups reported using ABEs to generate mouse models and
repair disease mutations in adult mouse (Ryu et al., 2018;
Liu et al., 2018). Our study together with the others not only
highlight the fidelity and efficiency of ABEs in inducing A•T to
G•C conversion, but also demonstrate their potential ease
and versatility in generating disease models as well as cor-
recting disease mutations in animal and human embryos
(Liang et al., 2017).
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