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Abstract 

Background:  To reduce the risk of patient damage and complications during the 
cardiopulmonary resuscitation (CPR) process in emergency situations, it is necessary to 
monitor the status of the patient and the quality of CPR while CPR processing without 
additional bio-signal measurement devices. In this study, an algorithm is proposed to 
estimate the mechanical impedance (MI) between an actuator of the CPR machine 
and the chest of the patient, and to estimate the power delivered to the chest of the 
patient during the CPR process.

Methods:  Two sensors for force and depth measurement were embedded into a 
custom-made CPR machine and the algorithm for MI and power estimation was imple-
mented. The performance of the algorithm was evaluated by comparing the results 
from the kinetic model, the conventional discrete Fourier transform (DFT), and the 
proposed method.

Results:  The estimations of the proposed method showed similar increasing/decreas-
ing trends with the calculations from the kinetic model. In addition, the proposed 
method showed statistically equivalent performance in the MI estimation, and at the 
same time, showed statistically superior performance in the power estimation com-
pared with the calculations from the conventional DFT. Furthermore, the MI and power 
estimation could be performed almost in real-time during the CPR process without 
excessive hands-off periods, and the intensity of random noise contained in the input 
signals did not seriously affect the MI and power estimations of the proposed method.

Conclusion:  We expect that the proposed algorithm can reduce various CPR-related 
complications and improve patient safety.

Keywords:  Mechanical impedance, Cardiopulmonary resuscitation machine, Chest 
compression, Real-time frequency analysis, Chest model
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Background
When emergency situations occur that induce stopping of the heart (e.g., drowning or car-
diac arrest), it is important to perform the correct cardiopulmonary resuscitation (CPR) 
process as soon as possible to recover the autonomic beating of the native heart and prevent 
serious brain damage [1]. When such an emergency situation occurs in locations outside of 
a hospital due to accidents or disease, emergency services should be immediately contacted 
and manual CPR process needs to be performed repetitively until the arrival of the trained 
paramedics. The paramedics then consistently perform emergency rescue processes using 
an automated external defibrillator and a CPR machine while transporting the patient to 
the hospital [2, 3]. The CPR machine delivers repetitively short and strong pressing action 
to the patient’s chest via an actuator. However, when the power is too high, various injuries 
can occur such as ecchymosis in the tissues and organs, myocardial rupture, and laceration 
[4, 5]. In addition, when the CPR position is changed during the process due to the wobble 
or vibration of the ambulance while transporting, the efficacy of the CPR process deterio-
rates and additional harm to the patient can occur [6]. To reduce such risk of patient harm, 
it is necessary to consistently monitor the status of patient and the quality of CPR during 
the operation of the CPR machine [3].

The most representative method for this purpose, recommended by the American Heart 
Association (AHA), is capnography. Capnography measures the end-tidal carbon dioxide 
(ETCO2) through endotracheal intubation, which is closely related to myocardial blood 
flow [3, 7]; however, its application in emergency situations is limited due to the risk of the 
improper insertion of an intubation tube and accidental displacement of the tube during 
transport [8, 9]. Currently, some of the automated external defibrillators utilize the electro-
cardiogram (ECG) signals of the patient to determine the need for further electric shock. 
However, for recording and investigating the ECG signals, hands-off intervals without chest 
compression are required, which can reduce the return of spontaneous circulation (ROSC) 
rate [10, 11]. In other studies, various physiological signals, such as blood flow (BF), blood 
pressure (BP), and electroencephalogram (EEG), have also been utilized to assess the status 
of the patient and the quality of the CPR process [12–14]. However, such bio-signal-based 
methodologies have several limitations: (1) they are only applicable when the relevant sen-
sors and measurement devices have already been applied to the patient; (2) the variation 
in skin–electrode impedance affects the quality of the measured signals; and (3) bio-signal 
measurement is unavailable during the CPR process due to motion artifact. Until now, to 
the best of our knowledge, no studies have been performed that aim to consistently moni-
tor the status of the patient and the quality of CPR during the CPR process. Therefore, con-
sidering the importance of patient safety in emergency situations, a new technique for such 
purpose is required.

In this study, an algorithm was proposed to estimate the mechanical impedance (MI) 
between the actuator of the CPR machine and the chest of the patient, and at the same 
time, to estimate the power delivered to the chest of the patient during the CPR process.

Methods
Configuration of the utilized CPR machine

To measure the MI between the actuator and the chest, information about the mag-
nitude of the chest-compression force and the chest-compression depth during CPR 
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process is necessary. In this study, a load cell (CSB-200L; Curiotec Co. Ltd., Paju, Korea) 
and a potentiometer (SPL0170103ST; Spectra Symbol Corp., Salt Lake, USA) were 
embedded in a custom-made CPR machine (Fig. 1). The operation ranges of the utilized 
CPR machine were a compression depth of 3–5.5  cm, a compression rate of 80–110 
compressions per minute (cpm), and a maximal compression force of 60 Kgf by referring 
to the recommendations of the AHA (compression depth of 5 cm with above 100 cpm) 
[15–17]. The ratio between compression/decompression times was fixed to 40%, and the 
measured force and depth signals were digitized at a sampling rate of 100 Hz with a 10 
bit resolution.

Proposed algorithm to estimate the MI and power during the CPR process

To estimate the MI using the sensor measurements, the number of input data during one 
period of chest compression (N) was first obtained as the number of data between two 
adjacent peaks in the measurements of the chest-compression force. From the measure-
ments of the load cell and the potentiometer, the magnitude and the phase of the force 
(F) and the depth (D) for one chest-compression period were calculated using Eqs. (1)–
(5) based on the discrete Fourier transform (DFT) [18, 19].
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Fig. 1  CPR assist device utilized in this study. A potentiometer and a load cell were embedded in the device 
to measure the variations in force and depth during the CPR process
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where ω represents the angular frequency and fs represents the sampling frequency 
(fixed to 100 Hz). The magnitude of thoracic impedance is the ratio between the force 
of chest compression and the velocity of chest compression. When the variations in the 
depth of chest compression is represented as D(ω)·sin(ωt + ф), the velocity of chest com-
pression is calculated as dD(t)/dt = ω·D(ω)·cos(ωt + ф), the frequency component of the 
velocity of chest compression is calculated as ω·D(ω), and the phase moves 90°. There-
fore, the magnitude and the phase of the MI (Z) were calculated from Eqs. (6) and (7). 
The phases of F(ω) and D(ω) differ from the actual phases due to the time-delay from the 
peak detection process; however, because the phase of the MI can be obtained from the 
difference between F(ω) and D(ω), the time-delay from the peak detection process does 
not affect the phase of the MI, as shown in Eq. (7).

The power delivered to the patient’s chest by the CPR machine can be calculated as the 
multiplication of the force of chest compression and the velocity of chest compression. 
Therefore, the power of chest compression can be calculated as F(ω)·sin(ωt + θ)·ω·D(ω)·
cos(ωt + ф)=(ω·D(ω)·F(ω)/2)·(sin(2ωt + θ+ф)+ sin(θ − ф)), and finally, the magnitude of 
power delivered to the chest during the CPR process is calculated from Eq. (8).

where Pa represents the magnitude of apparent power delivered to the chest, which 
induces mandatory blood circulation while the native heart is in fibrillation state.

Evaluation of the performance of the proposed algorithm

In this study, we measured the magnitudes of the force of chest compression and the 
depth of chest compression during the CPR process using a commercialized dummy 
(Little Anne; Laerdal Medical AS, Stavanger, Norway) which contained internal springs 
that can reproduce the chest-compression force while general CPR conditions. Three 
springs with different spring constants that can be installed inside the dummy were uti-
lized, and the values of the calculated elastic modulus (ke) of the dummy were 680, 890, 
and 942 Kgf/m for each spring, respectively, by referring to the ke values in the study of 
Arbogast et al. [20].

First, to evaluate the accuracy of the proposed method, the actual values of the MI 
and the power during the CPR process should be measured using appropriate sensing 
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devices. Also, the measurements with the estimated values for the same operating con-
ditions need to be compared. However, we could not find appropriate real-time sensing 
devices for this purpose. As an alternative, we evaluated the accuracy of the proposed 
algorithm indirectly using a conventional DFT as follows. (1) The rate and the depth 
of the chest compression were fixed at 100  cpm and 5  cm, respectively. (2) The CPR 
machine was operated for 90  s and the measurements of the embedded sensors were 
then acquired (in the current implementation, one MI data and one power data are 
acquired per each compression period; i.e., 152 MI and 152 power data are acquired 
from the CPR machine test because the CPR machine compresses the chest 152 times 
during 90 s when the rate of chest compression is fixed at 100 cpm). (3) The impedance 
at 100 cpm was calculated using the DFT of the force and velocity per every 3  s, and 
the velocity was also calculated by multiplying the angular frequency ω and the DFT of 
the measured chest-compression depth. (4) The power was calculated by averaging the 
multiplication of the measured force and the calculated velocity for each compression 
period (one MI data and one power data are acquired per each DFT; i.e., 30 MI and 30 
power are acquired from the conventional DFT because each DFT process uses 3 s data) 
[18, 19]. (5) Steps 2–4 were repeated for each of the three springs. In addition, as a refer-
ence, a kinetic model of the chest-compression force [Force = elastic modulus * Depth] 
was utilized. Then, the statistical significance of the differences between the calcula-
tions from conventional DFT (steps 1–5 above) and the estimations from the proposed 
method [Eqs. (6) and (8)] was evaluated using the Levene’s test.

Second, to verify the effect of variations in the rate and the depth of chest compres-
sion during the CPR process on the MI and power estimation, the implemented CPR 
machine was installed on the dummy (Fig. 1), and the CPR machine test was performed 
as follows: (1) P1: the rate of chest compression was fixed at 100 cpm, the value of ke of 
the spring was fixed at 680 Kgf/m, and the depth of chest compression varied at 3, 4, and 
5 cm with 1 cm step. (2) P2: the depth of chest compression was fixed at 5 cm, the value 
of ke of the spring was fixed at 680 Kgf/m, and the rate of chest compression varied at 80, 
90, 100, and 110 cpm (Table 1). Then, the same patterns of chest compression (P1 and 
P2) were also applied to the kinetic model, and the results from the kinetic model inves-
tigation and the CPR machine test were compared with each other.

Third, to observe the effect of variations in the value of ke of the spring on the MI and 
power estimation, an additional CPR machine test was performed as follows: (3) P3: the 
rate of chest compression was fixed at 100  cpm, the depth of chest compression was 
fixed at 5 cm, and the value of ke of the spring inside the dummy varied at 680, 890, and 
942 Kgf/m. Then, the same patterns of chest compression (P3) were also applied to the 
kinetic model and the conventional DFT, and the results from the three methodologies 
were compared with each other.

Table 1  Parameter variations in the CPR machine test

Test pattern CPR machine test

P1 P2 P3

Depth of chest compression (cm) 5 3/4/5 5

Rate of chest compression (cpm) 100 100 80/90/100/110

Elastic modulus of spring (Kgf/m) 680/890/942 680 680
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During the CPR machine test (P1, P2 and P3), 152 MI data and 152 power data were 
acquired from the measurements for each test condition, and during the conventional 
DFT analysis, 30 MI data and 30 power data were acquired from the measurements for 
each test condition, respectively.

Fourth, to evaluate the effect of variations in the intensity of noises contained 
in the D(t) and F(t) signals on the MI and power estimation, two random noises, 
of which the variance is 16.7% (signal-to-noise ratio [SNR] = 6  dB) and 66.7% 
(SNR = 1.5  dB) of that of the D(t) and F(t) signals, were mixed with the clean D(t) 
and F(t) signals, and those noise-contaminated signals were applied to the proposed 
method (Fig. 2). The magnitude of the depth of the chest compression was fixed at 
5 cm, the rate of chest compression was fixed at 100 cpm, and the value of ke was set 
at 680, 890, and 942 Kgf/m.

Results
Figure 3 presents a comparison between the results from the kinetic model and those 
from the proposed method (i.e., CPR machine test). For the P1 condition, the magnitude 
of the MI was fixed at a constant value (64.9  Kgf  s/m) regardless of the variations in 
the depth of chest compression in the kinetic model, and was 68.1 ± 3.8, 70.4 ± 3.4, and 
64.8 ± 2.5 Kgf s/m when the depth of chest compression was 3, 4, and 5 cm, respectively, 
in the proposed method (Fig. 3a). The magnitude of the power increased as the depth of 
the chest compression increased in the kinetic model, and also increased to 7.65 ± 0.6, 
12.4 ± 0.8, and 18.4 ± 0.8 Kgf s/m when the depth of the chest compression was 3, 4, and 
5 cm, respectively, in the proposed method (Fig. 3b). For the P2 condition, the magni-
tude of the MI decreased as the rate of the chest compression increased in the kinetic 
model, and also decreased to 82.1 ± 3.2, 69.1 ± 3.0, 64.7 ± 2.5, and 55.6 ± 3.1  Kgf  s/m 
when the rate of the chest compression was 80, 90, 100, and 110 cpm, respectively, in 
the proposed method (Fig.  3c). The magnitude of the power increased as the rate of 
the chest compression increased in the kinetic model, and also increased to 13.4 ± 0.7, 
16.3 ± 0.9, 18.5 ± 0.8, and 19.7 ± 1.2 Kgf s/m when the rate of the chest compression was 
80, 90, 100, and 110 cpm, respectively, in the proposed method (Fig. 3d).

Figure  4 presents a comparison among the three applied methodologies—i.e., the 
kinetic model, the conventional DFP, and the proposed method—at P3 condition. 
When ke = 680 Kgf/m, the magnitude of MI was 64.9, 65.9 ± 1.3, and 64.7 ± 2.5 Kgf s/m 
in the kinetic model, the conventional DFT, and the proposed method; in addition, the 
magnitude of the power delivered to the chest was 21.8, 14.7 ± 0.4, and 18.5 ± 0.8  W 
in the same tests. When ke = 890  Kgf/m, the magnitude of MI was 85.0, 83.0 ± 1.5, 
and 80.5 ± 2.6  Kgf  s/m in the kinetic model, the conventional DFT, and the proposed 
method; in addition, the magnitude of the power delivered to the chest was 28.5, 
21.2 ± 2.6, and 27.9 ± 1.0 W in the same tests. When ke = 942 Kgf/m, the magnitude of 
MI was 90.0, 86.3 ± 2.9, and 83.6 ± 3.6 Kgf  s/m in the kinetic model, the conventional 
DFT, and the proposed method; in addition, the magnitude of the power delivered to the 
chest was 30.2, 21.7 ± 0.5, and 28.1 ± 1.0 W in the same tests. Absolute errors (and error-
rates) in the MI between the kinetic model and the conventional DFT were 1.0 Kgf s/m 
(1.5%), 2.0 Kgf s/m (2.4%), and 3.7 Kgf s/m (4.1%) on average when the value of ke was 
680, 890, and 942 Kgf/m, respectively; in contrast, those between the kinetic model 
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Fig. 2  Simulated depth (D) and force (F) signals that are mixed with random noise for the noise-tolerance 
test of the proposed method. a Clean D(t), b Clean F(t), c D(t) with 6 dB SNR d F(t) with 6 dB SNR e D(t) with 
1.5 dB SNR f F(t) with 1.5 dB SNR



Page 8 of 14Choi et al. BioMed Eng OnLine  (2018) 17:84 

and the proposed method were 0.2 Kgf s/m (0.3%), 4.5 Kgf s/m (5.3%), and 6.4 Kgf s/m 
(7.1%), respectively, on average. In addition, absolute errors (and error-rates) in the 
power between the kinetic model and the conventional DFT were 7.1 Kgf s/m (32.6%), 

Fig. 3  Results of the comparison between the kinetic model and the proposed method in P1/P2 conditions 
(N = 152 for each condition). Solid lines represent the results of the kinetic model investigation and 
dashed lines represent the results of the proposed method (linear regression). MI mechanical impedance. 
a Magnitude of the MI in P1 condition, b magnitude of the power delivered to the chest in P1 condition, c 
magnitude of the MI in P2 condition, and d magnitude of the power delivered to the chest in P2 condition
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7.3 Kgf s/m (25.6%), and 8.5 Kgf s/m (28.1%) on average when the value of ke was 680, 
890, and 942 Kgf/m, respectively; in contrast, those between the kinetic model and the 
proposed method were 3.3 Kgf s/m (15.1%), 0.6 Kgf s/m (2.1%), and 2.1 Kgf s/m (7.0%), 
respectively, on average. In Levene’s test, there was no significant difference in the MI 
between the values from the conventional DFT and the proposed method; in contrast, 
there was significant difference in the power delivered to the chest between the two 
methodologies, which demonstrates that the accuracy of the proposed method is supe-
rior to that of the conventional DFT in estimating the power delivered to the chest dur-
ing the CPR process.

Figure  5 shows the effects of the noise intensities on the force and depth signals 
on the estimation of MI and power in the proposed method with various ke values. 
When ke = 680  Kgf/m, the magnitudes of MI and power were 68.9 ± 0.1  Kgf  s/m and 
22.7 ± 1.1  W for clean signals, respectively, 64.6 ± 4.8  Kgf  s/m and 22.1 ± 2.0  W for 
noisy signals with 6 dB SNR, respectively, and 65.4 ± 10.5 Kgf s/m and 22.8 ± 3.9 W for 
noisy signals with 1.5  dB SNR, respectively. When ke = 890  Kgf/m, the magnitudes of 
MI and power were 83.6 ± 0.2 Kgf s/m and 29.7 ± 1.5 W for clean signals, respectively, 
84.0 ± 6.3 Kgf s/m and 29.4 ± 2.4 W for noisy signals with 6 dB SNR, respectively, and 
84.4 ± 13.6  Kgf  s/m and 28.6 ± 4.5  W for noisy signals with 1.5  dB SNR, respectively. 
When ke = 942  Kgf/m, the magnitudes of MI and power were 88.4 ± 0.1  Kgf  s/m and 
31.4 ± 1.6 W for clean signals, respectively, 88.5 ± 7.1 Kgf s/m and 31.2 ± 2.6 W for noisy 

Fig. 4  Results of the comparison among the three applied methodologies in P3 condition. N = 30 for the 
conventional DFT and N = 152 for the proposed method. a MI, b power delivered to the chest. MI mechanical 
impedance
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signals with 6 dB SNR, respectively, and 87.4 ± 13.1 Kgf s/m and 31.0 ± 5.8 W for noisy 
signals with 1.5 dB SNR, respectively.

Discussion
Maltese et al. proposed a lumped parameter model of the thoracic cavity based on the 
external power, compression depth, and compression velocity during the CPR process 
[21]. In their model, the MI could be calculated based on the elastic coefficient (ke) and 

the viscous coefficient (μ) as MI =
(µ× j ke

2π f
)

(µ+ j ke
2π f

)
 . In addition, Arbogast et al. compared tho-

racic compression response during CPR process between living and post-mortem 
human subjects using a load cell and an accelerometer, where data were modeled with a 
progressive spring in parallel with a viscous damper [20]; in their study, the ke value of 
the chest of post-mortem human subjects increased 182% compared to that of a living 
body, and the μ value decreased 60%, respectively. These results demonstrate that the 
measurements of MI (affected by ke and μ) can reflect the physiological status of a 
patient; e.g., dead or alive. However, in their study, measurements of ke and μ requested 
additional dedicated devices and the measured data were prone to noise-contaminated; 
therefore, the method is not appropriate for real-time CPR-assistance purpose. In con-
trast, in our proposed method, the MI can be calculated based only on the measure-
ments of CPR machine-embedded sensors in real-time, which is more suitable for 

Fig. 5  Results of the comparison test carried out to verify the effects of the noise intensities in force and 
depth signals on the estimation of MI in the proposed method with various ke values. MI mechanical 
impedance. a MI, b power delivered to the chest
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CPR-assistance purpose. In addition, when the patient’s heart is stopped, the power 
delivered to the chest by the CPR machine is the sole energy source that induces blood 
circulation in the body; therefore, the magnitude of the power delivered to the chest, as 
well as compression rate and compression depth, can be related to the quality of CPR, 
although more investigations are required to further verify the direct relationship 
between the two.

In Fig.  3, the estimations of the proposed method (dashed lines) showed similar 
increasing/decreasing trends with the calculations from the kinetic model (solid lines). 
In addition, in Fig. 4, the proposed method showed statistically equivalent performance 
(error rates of 2.4–4.2% at the conventional DFT and 0.9–6.8% at the proposed method) 
in the MI estimation, and at the same time, showed statistically superior performance 
(error rates of 13.8–28.2% at the conventional DFT and 2.1–10.1% at the proposed 
method) in the power estimation compared with the calculations from the conventional 
DFT, which demonstrates the validity of the proposed method. Furthermore, in Fig. 5, 
the intensity of random noise contained in the input signals did not seriously affect the 
estimations of MI and power values, regardless of the variations in elastic modulus. This 
noise-tolerance of the proposed method is based on the DFT utilized in the force and 
depth estimation; i.e., the magnitude of impulse noises reduces to 1/N of the original 
noise during the DFT for N data samples.

In most previous studies, the quality of CPR was evaluated using the measurements 
of various physiological signals (e.g., ECG, EEG, BP, and BF) that require complex and 
time-consuming installation processes such as electrode attachment and device set-
up as well as hands-off periods to evade motion artifacts. This can result in a reduced 
ROSC rate [10, 11]. Capnography, which is the official recommendation of the AHA, 
has an advantage of continuously monitoring the status of a patient during the CPR pro-
cess; however, complications related to the difficulty in tube insertion and tube-related 
accidents during patient transport have been consistently reported [8, 9, 22, 23]. In 
other reports, the authors insisted that capnography can only show trends, and cannot 
directly demonstrate the quality of CPR because it does not clearly change in accord-
ance with the variations in the depth and the rate of chest compression [7, 24, 25]. As 
described above, the estimations of the MI and the power from the proposed method 
can give additional information about the physiological status of patient and the qual-
ity of CPR [20, 21]. In addition, such estimation processes can be performed almost in 
real-time during the CPR process without excessive hands-off periods; more specifically, 
the time-delay between the signal input and the MI and power calculation is about 0.6 s 
at 100  cpm. Considering these benefits, application of the proposed method together 
with other bio-signal measurement devices, such as capnography or ECG, will further 
improve patient safety in emergency situations, although several practical techniques 
should also be implemented in future studies.

To reduce the number of complications from the use of the CPR machine, various 
practical functions for patient safety improvement should be included in the embed-
ded algorithm: (1) real-time detection of improper CPR position during CPR process 
(e.g., actuator slip to abdominal region by vibration or wobble while transporting) to 
prevent patient damage; (2) real-time detection of heart-beats during CPR operation to 
prevent excessive electric shocks; and (3) real-time detection of rib fracture during CPR 
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process to prevent secondary damage to tissues and organs. With these functions, the 
CPR machine will be able to monitor the status of the patient and the quality of CPR in 
real-time and automatically adjust the internal control parameters to deal with unex-
pected emergency situations. Such capabilities are not available in most of the currently 
commercialized CPR machines. For example, Lucas-II™ (Physio-Control Inc., Lund, 
Sweden) compresses the center of chest for CPR, but several reports commented side-
effects of the device when the position of compression is inappropriate [3, 6, 13, 26, 27]; 
and AutoPulse™ (Zoll Medical Corp., Chelmsford, USA) compresses overall chest area 
for CPR, but several reports commented the risk of damage in other organs during CPR 
process [2, 3, 7, 26, 27]. If the currently proposed real-time MI and power estimation 
algorithm is applied to the control of the CPR machine and more dedicated safety func-
tions, as described above, are realized later, complications related to the CPR machine 
can be reduced because the MI variations would reflect the variations in chest features 
such as thoracic skeleton, ligaments, and connected muscles, and the movements of the 
heart, lungs, and other organs during the CPR process. For example, if a rib fracture 
occurred or the actuator slipped into the abdomen region during the CPR process, the 
MI and power signals would rapidly show an abnormal pattern, within a short interval, 
that can be detected by the dedicated algorithm. In addition, we have a hypothesis that 
the mechanical properties of a blood-filled heart and an emptied heart would be differ-
ent and this difference may be detected by applying more advanced signal investigation 
techniques, such as independent component analysis and machine learning, to the MI 
and power signals, which can be utilized to detect the heart-beat detection function dur-
ing the CPR process; in fact, all of these exemplified safety functions are the topics of our 
subsequent study using animal experiments. Furthermore, from the implementation and 
evaluation of these protection algorithms in further studies, we expect it will be possible 
to develop a new CPR machine with closed-loop control scheme and enhanced patient 
safety.

The limitations of the current study are as following. (1) In this study, we selected the 
test conditions as 3–5 cm compression depth and 80–110 cpm compression rate to ease 
the data acquisition and processing. Although these ranges contain the representative 
recommendation of the AHA (5 cm with 100 cpm), in recent studies, higher compres-
sion rate (> 100 cpm) is generally emphasized for improved CPR efficiency; e.g., Alder-
man et al. recommended 120 cpm in their study [28]. (2) The kinetic model used in this 
study did not reflect the viscous coefficient of the real body, and so, calculations of the 
kinetic model did not reflect the actual cases accurately. To improve the accuracy of the 
model investigations, more realistic chest model reflecting both the elasticity and viscos-
ity should be implemented in future study.

Conclusion
The experimental results demonstrated the performance and noise-tolerance of the pro-
posed method. We expect that the proposed method can reduce various CPR-related 
complications and improve patient safety.
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