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Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap 
could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). 

Introduction
The metabolic properties of  circulating apolipoproteins have been intensely studied (1–3), especially since 
elevated levels of  LDL-cholesterol and VLDL-triglycerides, and low levels of  HDL-cholesterol, are associ-
ated with cardiovascular risk (4–6). Statin therapies have been largely successful at lowering LDL-choles-
terol and cardiovascular risk. On the other hand, HDL-cholesterol–raising trials have yielded confounding 
results that outweigh potential benefits to decreasing coronary events (7–9).

Recent studies into the metabolism of  HDL proteins in humans have employed endogenous labeling 
with stable isotope tracers, such as trideuterated leucine (D3-Leu) or dideuterated water (1, 10–12). Tracer 
detection in peptides has relied primarily on unit resolution triple-quadrupole platforms to perform multiple 
reaction monitoring (MRM) (1). However, the reliance on unit resolution readouts to measure low abundant 
2HM3 deuterium tracer has limited most studies to total HDL protein pools, such as total apolipoprotein 
A1 (APOA1), the major structural protein of  HDL. The majority of  HDL proteins are low abundant (>100-
fold less than APOA1) and are slowly metabolized, making tracer detection challenging for low-resolution 
instruments (1). In 2016 we demonstrated that parallel reaction monitoring (PRM) performed on the high 
resolution/accuracy mass (HR/AM) quadrupole Orbitrap (Q Exactive) could differentiate D3-Leu’s 2HM3 
ion from its natural M3 isotopolog and baseline ions for multiple HDL proteins, in up to 5 HDL sizes (13). 
Using the PRM approach, Andraski et al. demonstrated that dietary complex carbohydrates, when replacing 
dietary unsaturated fat, induced a hypermetabolic state of  several HDL proteins on specific HDL sizes (14). 
Due to the ability for HR/AM technology to detect low abundant tracer signals, the HDL protein-specific 
responses to a diet intervention were reported for the first time.

In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose 
abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid 
transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl 
transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing 
tracer enrichment compression, thereby providing consistent enrichment data across multiple 
HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted 
in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger 
sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 
and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL 
(alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT’s appearance on HDL is markedly delayed, 
indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL 
in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was 
possible due to advances in MS technologies.
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HDL is a complex population of lipoproteins that vary in lipid and protein content as well as in particle 
size and shape (14–16). HDL particle heterogeneity is in part regulated by the lipid transfer proteins lecithin- 
cholesterol acyl transferase (LCAT), phospholipid transfer protein (PLTP), and cholesterol ester transfer pro-
tein (CETP). LCAT regulates the size, shape, and lipid composition of HDL particles by esterifying free cho-
lesterol in very small discoidal prebeta and small spherical alpha3 particles, converting them to larger, spherical 
alpha2 and alpha1 HDL (17, 18). PLTP also regulates the lipid composition and increases the size of HDL 
particles by transferring phospholipid from APOB-lipoproteins to HDL (19), and by mediating phospholipid 
transfer between HDL particles, leading to HDL particle fusion and size expansion (20, 21). CETP regulates 
HDL lipid composition by exchanging cholesterol ester in large HDL with triglycerides from apolipoprotein 
B– lipoproteins (APOB-lipoproteins) (22). Given their critical roles in lipoprotein metabolism, these enzymes 
are valued as potential targets for the prevention of coronary heart disease (23, 24). To date, however, only inhi-
bition of CETP and activation of LCAT (via infusion of recombinant proteins) have made it to intervention tri-
als. CETP inhibitor trials aimed to reduce coronary events by promoting preferential flux of cholesterol esters 
away from proatherogenic APOB-lipoproteins and toward the HDL clearance pathway (24). Despite increases 
in HDL-cholesterol, CETP inhibitor trials have been complicated by the paradoxical small to no reduction in 
coronary events and by other unexpected outcomes, leading one to question the future of CETP drugs (9, 25). 
Early-phase LCAT therapy trials have been completed or are underway (26). Infusion of recombinant LCAT 
is expected to promote cholesterol esterification and clearance through the HDL clearance pathway (26). In 
addition, PLTP, CETP, and LCAT’s plasma concentrations or activities have been included as outcome mea-
sures in other intervention trials (e.g., ClinicalTrials.gov identifiers NCT03948295, NCT00240305), further 
underscoring their recognized value to elucidate mechanisms that can correct dyslipidemia.

Despite their critical roles in regulating HDL particle lipid composition, and pursuits to study these 
enzymes in a clinical setting, the evidence for the in vivo metabolism of PLTP, CETP, and LCAT on HDL 
in humans remains scant. However, recent studies of  HDL metabolism in humans, some of  which utilized 
PRM, determined the metabolism of APOA1, as well as several additional HDL proteins 100s-fold less abun-
dant than APOA1, on multiple HDL sizes (13, 14, 27). Compartmental modeling in these studies showed that 
size expansion pathways representing conversion of  small to larger HDL comprises only about 10%–12% of  
total APOA1 flux (13, 14). Instead, the majority of  APOA1 on each alpha HDL size is secreted into circu-
lation and in turn is cleared from that size (13, 14, 27). A similar metabolic structure was seen for the other 
HDL proteins monitored (13, 14). These findings suggest that size expansion is not a universal characteristic 
of  HDL particles but instead may only occur within specific protein or lipid-containing HDL subspecies. 
We speculate that these size expansion subspecies may interact with or contain PLTP, CETP, and/or LCAT. 
Despite efforts in our laboratory to monitor PLTP, CETP, and LCAT metabolism in these recent studies, their 
low abundances in plasma (>1000-fold less than APOA1 in plasma) made it difficult to measure tracer con-
sistently across individuals in multiple HDL sizes, even using the Q Exactive. To date, only the metabolism of  
immunoprecipitated CETP from plasma has been reported (28) but not the metabolism of CETP on specific 
HDL sizes. Additionally, LCAT metabolism on alpha3 HDL, where most LCAT resides (14, 29), was recent-
ly reported, but the metabolism of LCAT on additional HDL sizes remains undetermined. Finally, there are 
no reports on the metabolic properties, in humans, of  PLTP.

In this study, we evaluated the ability for a more recent HR/AM platform, the Orbitrap Lumos 
(released in 2015, compared to the Q Exactive released in 2011), to detect tracer enrichment in PLTP, 
CETP, and LCAT in multiple HDL size fractions. We predicted that the Lumos, with its higher resolving 
power, higher signal-to-noise, lower limit of  detection, and more advanced quadrupole, relative to the Q 
Exactive, would be able to accurately and consistently detect tracer in these low abundant proteins across 
multiple HDL sizes. To benchmark our methods, we first compared APOA1 and apolipoprotein E (APOE) 
enrichment data collected on both the Q Exactive and Lumos, primarily to identify sources of  tracer enrich-
ment variation that are more readily mitigated by the Lumos. We chose to monitor APOA1 and APOE 
for these interinstrument comparisons, as the metabolism of  these proteins across the HDL sizes are well 
established (13, 14, 30). Subsequent enrichment analysis performed on the Lumos of  HDL isolated from 
6 participants showed that the metabolism of  PLTP and CETP was associated with the middle to large 
HDL sizes (alpha2, alpha1, and alpha0) and LCAT associated with small to middle HDL sizes (prebeta, 
alpha3, and alpha2). Our findings demonstrate that each lipid transfer protein exhibited a unique metabolic 
structure, likely reflecting its distinct function(s) in vivo. Moreover, we provide technical considerations for 
future studies aiming to perform metabolic labeling of  these or other low abundant proteins.
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Results
PRM-enabled clinical metabolism studies. Our laboratories developed a PRM-based approach to monitor tracer 
enrichment in plasma HDL proteins to determine their metabolic properties (Figure 1A and refs. 13, 14, 
29). In our program, participants are administered an intravenous bolus injection of  D3-Leu that is taken 
up by the liver and other tissues and incorporated into newly translated proteins. We specifically study pro-
teins that circulate on 1 or more APOA1-HDL particle sizes (alpha0, alpha1, alpha2, alpha3, and prebeta). 
As the resolution of  the PRM scan increases, the ability to detect the D3-Leu tracer (2HM3 ion) increases, 
permitting reliable identification of  the tracer that can be 100s-fold to 1000s-fold less abundant than that of  
D0-Leu tracee (M0 ion) peak (29). The resulting enrichment curves are used as input data into compartmen-
tal modeling software (SAAM II) to calculate kinetic parameters such as the fractional catabolic rate (FCR) 
and production rate of  each protein per HDL size (Figure 1A). Studies using the Q Exactive demonstrated 
that bolus-administered tracer does not surpasses 1% peak enrichment in most HDL proteins studied to date 
(13, 14, 29). These studies, however, were limited to proteins whose abundances are 100s-fold less abundant 
than APOA1. In the following sections, we demonstrate the benefits of  transitioning to a more advanced MS 
platform, the Orbitrap Lumos, to determine tracer enrichment in proteins whose abundances are 1000s-fold 
less than that of  APOA1, specifically, PLTP, CETP and LCAT.

Tracer detection is challenging for low abundant, slowly metabolized proteins. To underscore the challenges 
associated with in vivo tracer enrichment studies, we first provide an overview of  the reliance on pro-
tein pool sizes and turnover rates on the ability to detect tracer. For instance, the total APOE pool size 
is approximately 20-fold lower than that of  total APOA1 (Figure 1, B and C; Supplemental Figure 1; 
and Supplemental Tables 1 and 2; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.143526DS1), yet due to its rapid metabolism relative to APOA1, APOE’s peak 
enrichment is approximately 10-fold higher (~7% compared with ~0.6% for APOA1; Figure 1C; and refs. 
13, 14). As a consequence, APOE’s tracer can be measured in the MS1 scan that has high interference, 
although with higher variability than with PRM (MS2 scan, ref. 13). On the other hand, the ability to 
detect APOA1’s low tracer is compensated by its abundant pool sizes (Figure 1C, Supplemental Figure 1, 
and Supplemental Table 1) and corresponding intense MS signal. Nonetheless, APOA1 enrichment must 
be detected in the MS2 scan because the high interference in MS1 results in significant enrichment curve 
compression that can thus lead to inaccurate kinetic parameter calculations (13, 31). Curve compression 
occurs when the majority of  the tracer (2HM3) peak intensity falls below background signal, resulting in 
a lower-than-expected peak measurement; whereas the tracee (M0) peak is high enough in intensity that 
signal loss owing to background effects is negligible (Figure 1D). Proteins, such as PLTP, CETP and LCAT, 
whose total HDL pool sizes are even lower than that of  APOE (Figure 1C) but that are slowly metabo-
lized like APOA1, are more vulnerable to curve compression and thus the most challenging to study. For 
instance, looking at the Lumos-generated PRM scans from HDL alpha2 (4 hours postbolus), CETP’s tracee 
(M0) intensity (8.5e3 counts) is approximately 7-fold less than that of  APOE’s tracee peak (5.6e4 counts) 
and considerably less than that of  APOA1’s tracer (2HM3) peak (4.0e4 counts). CETP’s tracer intensity 
is lower yet, at 73 (Figure 1, E–G). Despite the large dynamic ranges in peak intensities, these examples 
demonstrate that tracer is in theory detectable. To determine the metabolic parameters of  a protein, how-
ever, tracer detection must be reliable across the study period and across participants. A major source of  
technical variance that can compromise reliability is tracer enrichment compression (29, 32), to which low 
MS signals are particularly vulnerable. In the following section, we demonstrate the ability for the Lumos 
to mitigate sources of  enrichment compression.

The Lumos improves detection of  low tracer ions and alleviates enrichment compression. Before pursuing a full 
HDL enzyme metabolic profile for PLTP, CETP, and LCAT using the Lumos, we ran interinstrument com-
parisons using APOA1 and APOE. We evaluated the impact of  sample injection dilution and isolation 
window (varying the isolation mass range around precursor M0 and 2HM3 peaks for coisolation) on enrich-
ment variance. Sample injection must be considered carefully since overfilling the Orbitrap can result in 
peak coalescence (33) that in turn would affect enrichment calculations. We used the 0.5-hour time point 
because, as the lowest 2HM3 signal, it is most vulnerable to measurement error due to interference. We used 
HDL sizes alpha1 and alpha3 since their respective protein pool sizes for APOA1 and APOE vary in inten-
sity, providing us a biologically relevant dynamic range to test. We determined that neither sample dilution 
nor isolation window influenced the 0.5-hour enrichment data as much as the instrument platform itself  
(Supplemental Figure 2 and Supplemental Table 3). Specifically, APOA1 0.5-hour enrichment was slightly 
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higher on the Lumos (alpha1, 0.15%; alpha3, 0.07%) than on the Q Exactive (alpha1, 0.1%; alpha3, 0.04%) 
across the majority of  injection dilution and isolation windows (Supplemental Figure 2), likely reflecting 
the improved signal-to-noise capability of  the Lumos (34). In contrast, APOE 0.5-hour enrichment was 
similar between the 2 platforms (alpha1, 1.5%; alpha3, 2%; Supplemental Figure 2), which was also expect-
ed, owing to APOE’s rapid metabolism and >10-fold higher tracer peak signal (relative to APOA1) that is 
less vulnerable to noise (Supplemental Figure 2). Given that the APOA1 0.5-hour enrichment was slightly 
higher on the Lumos compared with the Q Exactive, we investigated whether this alleviation of  enrichment 
compression was unique to the early time point or representative of  all time points in the experiment. In the 
following section we analyzed the entirety of  the time course data for APOA1 and APOE to determine to 
what extent, if  any, enrichment compression alleviation may affect compartmental modeling.

APOA1 and APOE metabolic rates are similar for the Q Exactive– and Lumos-derived enrichment curve data. 
Using similar injection dilutions, but tailoring acquisitions optimal for each instrument platform (see Meth-
ods), we collected the enrichment profiles for APOA1 and APOE across the 5 HDL sizes for participant 
1. In line with the 0.5-hour APOA1 pilot data above, variance component analysis of  APOA1 enrichment 
across the 5 HDL sizes showed that the lowest intensity tracer ions were vulnerable to enrichment compres-
sion and that this vulnerability was more pronounced on the Q Exactive (Supplemental Figure 3, A and B). 
We also demonstrated that APOA1 enrichment variance for the multiple fragment ions in 14 time points 
across the HDL sizes was consistently lower on the Lumos than the Q Exactive (Supplemental Figure 3C).

Figure 1. D3-Leu tracer detection in HDL proteins by PRM. (A) Administration and detection of D3-Leu in HDL proteins. 
A 10-minute intravenous bolus injection of D3-Leu at 10 mg/kg per participant is the formulation for the bolus dose. 
Plasma HDL was isolated and fractionated into sizes using native gel electrophoresis. PRM is required to detect D3-Leu 
incorporation into HDL proteins. Kinetic parameters were determined by compartmental modeling. (B) Protein pool 
sizes per HDL size fractions calculated using stable isotope peptide standards and ELISA, for subsequent compart-
mental modeling (data points, n = 6 participants). (C) Total HDL protein pool sizes and enrichment curve schematics of 
their relative rapid versus slow turnover rates and the consequence for tracer detection. (D) Increasing signal-to-noise 
improves tracer (2HM3) detection with negligible effect on the tracee (M0). (E–G) Example MS2 isotope clusters that 
highlight the range in absolute signals between M0 and tracer 2HM3 peaks within and between peptide fragments. The 
time point is 4 hours postbolus. Resolution (R) = 240 K at m/z 200 on the Lumos. Intensity, normalized level counts.
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We next used the APOA1 and APOE enrichment data (median of the fragment ions) generated on the Q 
Exactive and Lumos (Supplemental Figure 4A), and their pool sizes (collected on the Lumos; Supplemental 
Table 1, participant 1), to calculate and compare metabolic parameters. Metabolic rates, FCR, and production 
rate of APOA1 and APOE on each HDL size were estimated using our previously established APOA1 and 
APOE compartmental models (13, 14). Each model contains an input, source, 4 (APOE) or 5 (APOA1) HDL 
size compartments, and pathways from the source into each HDL size (see Methods, Compartmental modeling; 
Supplemental Figure 4B). The APOA1 model also contains an extravascular delay compartment, a lipidated 
APOA1 compartment, as well as transfer pathways from alpha3 to alpha2 and prebeta and from prebeta to 
alpha2, alpha1, and alpha0 (Supplemental Figure 4B). The APOE model contains transfer pathways from alpha3 
to alpha0, alpha1, and alpha2 and from alpha2 to alpha0 and alpha1 (Supplemental Figure 4B). The enrichment 
and pool size data for each protein on each HDL size were uploaded to each HDL size compartment.

The same transfer pathways were detected using the Q Exactive and Lumos enrichment curves for 
each model: APOA1 transfer from prebeta to alpha0 and alpha1 and from alpha3 to prebeta and APOE 
transfer from alpha3 to alpha2 were detected (Supplemental Figure 4B). The APOA1 and APOE FCR and 
production rates, and their trends across the HDL sizes, were also similar between the Q Exactive– and 
Lumos-generated enrichment curves (Supplemental Figure 4, C and D). The FCR of  APOA1 was highest 
in alpha0 and prebeta, followed by alpha1, and then alpha2 and alpha3. The production rate of  APOA1 
was highest in alpha2, similar in alpha1 and alpha3, and lowest in prebeta and alpha0 (Supplemental Fig-
ure 4C). The APOE FCR and production rate in alpha2 were also highest on both platforms (Supplemental 
Figure 4C). The consistencies in metabolic rates between the platforms are not surprising given that both 
instruments and their corresponding compartmental modeling fits were able to detect the different enrich-
ment curve shapes across the HDL sizes. For example, the higher and earlier enrichment peaks of  APOA1 
alpha0 and alpha1 enrichment and the lower and later enrichment peak of  APOA1 alpha3 were consistent-
ly detected using both the Q Exactive and Lumos (Supplemental Figure 4A).

The only notable difference between the compartmental modeling results from the 2 instrument plat-
forms was that the spread of  the enrichment data points around the model fit tended to be smaller on the 
Lumos. We quantified the data point spread around the model fit by taking the sum of  squared residuals 
(SSR) for each protein across all HDL sizes and time points for the Q Exactive and the Lumos data. The 
SSR for APOA1 was 0.39 and 0.30 and for APOE was 23.2 and 8.5 for the Q Exactive and Lumos data, 
respectively (Supplemental Figure 4E).

The Lumos alleviates enrichment compression for PLTP and CETP. We next compared PLTP alpha1 and 
CETP alpha2 enrichment data acquired on the Q Exactive and Lumos. We did not perform this interinstru-
ment enrichment comparison for LCAT, as we previously reported the Q Exactive–generated enrichment 
and metabolism of  LCAT in alpha3 HDL, the size fraction in which the enzyme predominates (14, 29). 
PLTP and CETP mainly reside in alpha1 and alpha2 HDL with PLTP more so in alpha1 and CETP in 
alpha2 (Figure 1B and ref. 14). Their relative absolute quantities are 100s-fold (alpha1) to 1000s-fold (alpha2) 
less than that of  APOA1, as determined by stable isotope dilution quantification (Supplemental Figure 1).

To further illustrate the benefits of  using the Lumos for tracer detection in these low abundant and 
slowly metabolized proteins, we compared enrichment data collected on the Lumos and Q Exactive for 
PLTP and CETP. Using samples from participant 2, we diluted alpha1 and alpha2 peptide stocks to an 
estimated 114 attomoles of  PLTP (alpha1) and 128 attomoles of  CETP (alpha2) on column. It is important 
to note that the peptides used for absolute quantification of  PLTP and CETP were distinct from those that 
were used for enrichment because the latter did not meet criteria for absolute quantification (see Methods, 
Absolute quantification of  peptides). We monitored enrichment in the same 3 Leu fragments for each enzyme, 
including the y6 and y7 ions for CETP (m/z 657.4292 and m/z 788.4697, Figure 2A) that fall outside of  the 
recommended mass range (m/z < 600) for enrichment analysis on the Q Exactive (13). Both instruments 
captured the unique enrichment curve representing each enzyme. For instance, both Lumos and Q Exac-
tive enrichment curves depicted 2 peaks for PLTP in alpha1; the first at 6 hours and the second at 20 hours; 
however, the peaks’ enrichments were slightly higher in the Lumos curves — 0.8% for the Lumos versus 
0.6%–0.7% for the Q Exactive (Figure 2B).

For CETP in alpha2, a single enrichment peak defined this enzyme; however, its enrichment of 1.6% 
spanned 8 to 12 hours in the Q Exactive curve, whereas it was slightly higher (1.8%) and distinct at 8 hours for 
the Lumos curve (Figure 2B). While the general curve shapes were the same between the instruments, overall 
enrichment was higher on the Lumos (Figure 2C). Enrichment data variance was comparable between the 2 
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instruments for CETP but lower on the Lumos for PLTP (Figure 2C). A closer look at CETP’s enrichment data 
shows that while variance was similar between the 2 instruments, the cause of the variance was distinct (Figure 
2B). On the Q Exactive, all 3 ions were randomly scattered around the regression curve (Figure 2B); on the 
other hand, on the Lumos, each ion exhibited a similar curve shape, but the y5 curve (m/z 544.3453) was lower 
than those of the y6 (m/z 657.4294) and y7 (m/z 788.5699) ions.

PLTP, but not CETP, transfer occurs among the large HDL sizes. We next used the Lumos-generated PLTP and 
CETP enrichment values from 6 participants to create compartmental models that describe the metabolism 

Figure 2. An interinstrument platform comparison of PLTP and CETP tracer enrichment data. (A) PRM scans of the 
same CETP peptide from the Q Exactive and the Lumos. The relative peak intensities of the fragment ions are conserved 
between the 2 instruments. The y7 2HM3 (tracer) peak environment is zoomed in. R = 120 K for the Q Exactive and 240 
K for the Lumos. (B) Loess regression plots showing that the standard error (gray) of the fitted curves is lower on the 
Lumos. PLTP data are from alpha1 and CETP from alpha2. Legend: the PRM ions’ m/z values. (C) Box plots depicting the 
distribution of the enrichment data in B. Each data point is the average enrichment (n = 3 PRM ions’ measurements) per 
time point. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the 
median. The length of the box represents the interquartile range. The gray lines indicate the relative shift in enrichment 
value per given time point. Variance was calculated using individual PRM ion enrichment data in B, not the averages.
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of each enzyme on alpha1 and alpha2 HDL. Because PLTP tracer was detected in alpha0 for all participants, 
we also modeled PLTP in alpha0. PLTP enrichment curves differed across the HDL sizes: PLTP on alpha2 
showed a single enrichment peak between 2 and 12 hours (0.9%–1.6% enrichment), while PLTP on alpha0 
and alpha1 showed 2 enrichment peaks, the first between 1.5 and 12 hours (0.4%–0.9% enrichment) and the 
second between 12 and 22 hours (0.4%–1.1% enrichment, Supplemental Figure 5A). The appearance of  the 
second peak in alpha0 and alpha1, which appeared later than the single peak in alpha2, suggested that PLTP 
on alpha2 may transfer to the larger alpha1 and alpha0 HDL sizes. The PLTP model contained an input and 
source compartment; 3 HDL size compartments representing PLTP on alpha0, alpha1, and alpha2 HDL; 
direct secretion pathways from the source into each HDL size; and transfer pathways from alpha2 to alpha0 
and alpha1 (Figure 3, A and B). On the other hand, CETP enrichment curves tended to look similar between 
the alpha1 and alpha2 HDL sizes, with no indication of  transfer pathways. For instance, the enrichment 
curves for both sizes peaked between 4 and 12 hours with peak enrichments of  1% to 3% (Supplemental 
Figure 5A). Additionally, the CETP enrichment curves were highly variable across the 6 participants (Sup-
plemental Figure 5A). The CETP model thus contained an input and source compartment (Methods, Com-
partmental modeling), 2 HDL size compartments representing CETP on alpha1 and alpha2 HDL, and direct 
secretion pathways from the source into each HDL size (Figure 3, A and B).

Over half  of  PLTP flux into alpha1 originates from alpha2, while all CETP flux originates from the source. The 
PLTP alpha2 to alpha0 transfer pathway was detected in 3 participants and from alpha2 to alpha1 in all 6 
participants (Supplemental Figure 5B). Sixty-nine percent of  total PLTP flux into alpha0 originated from the 
source, while 31% originated from alpha2; 45% of total PLTP flux into alpha1 originated from the source, 
with 55% from alpha2 (Supplemental Figure 5B). On average, the majority of  PLTP on alpha2 was trans-
ferred to alpha1 (64%), with smaller amounts transferred to alpha0 (11%) and removed out of  the model 
system (25%, Supplemental Figure 5C). The average PLTP FCR on alpha0, alpha1, and alpha2, was 0.73, 
0.85, and 0.88 pool/d, respectively (Figure 3C and Supplemental Table 4), and the average production rate 
was 0.0047, 0.023, and 0.018 mg/kg/d, respectively (Figure 3C and Supplemental Table 4). In contrast, all 
CETP flux into alpha1 and alpha2 HDL originated from the source and was subsequently removed from that 
same size; CETP transfer from alpha1 to alpha2 and from alpha2 to alpha1 was not detected (Figure 3A). The 
average CETP FCR on alpha1 and alpha2 was 0.97 and 1.15 pools/d, respectively, and the average produc-
tion rate was 0.012 and 0.044 mg/kg/d, respectively (Figure 3C and Supplemental Table 4).

Figure 3. Compartmental models and kinetics parameters for PLTP and CETP in the larger alpha HDL size fractions. 
(A) Compartmental model for PLTP and CETP (the average of n = 6 participants). PLTP flux into alpha1 is approximately 
45% from the source (0.010 mg/kg/d) and 55% from the smaller alpha2 (0.012 mg/kg/d). Approximately 75% of PLTP 
on alpha2 is transferred to alpha0 and alpha1 (0.10 and 0.59 pool/d, respectively) while the remaining 25% is removed 
from the model system (0.20 pool/d). CETP appears on alpha1 and alpha2 via direct secretion. (B) Enrichment curve fits 
generated from the models in A, participant 1. (C) FCR and production rate (PR) for PLTP and CETP. Bar graphs represent 
the mean value for n = 6 participants, error bars represent SD, and open circles represent values per participant.
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LCAT appearance in circulation is delayed on the small HDL sizes. Most HDL-associated LCAT is found in 
alpha3, but small amounts are detectable in all sizes, most notably, alpha2 and prebeta (Figure 1B and refs. 
13, 14). Potentially unique to this study, using the Lumos, tracer was detected not only in alpha3 but also 
in alpha2 and prebeta in all 6 participants (Supplemental Figure 6). Interestingly, the appearance of  LCAT 
tracer in each HDL size was delayed and did not appear in circulation until 1 to 6 hours postinfusion (Sup-
plemental Figure 6), unlike PLTP and CETP, which showed more rapid appearance, by 30 minutes and 1 
hour, respectively (Supplemental Figure 5A). Additionally, in 4 of  6 participants, LCAT on prebeta tended 
to appear in circulation between 3 and 6 hours, later than LCAT on alpha3 at 1 to 4 hours. The overall 
LCAT enrichment curve shapes tended to look similar across the HDL sizes: the enrichment curves for all 
sizes peaked between 6 and 22 hours with peak enrichment of  0.30% to 0.86% (Supplemental Figure 6).

The resulting LCAT model contained an input and source; 3 delay compartments that accounted for 
the delayed appearance of  LCAT on each HDL size; 3 HDL size compartments representing LCAT on 
alpha2, alpha3, and prebeta; and direct secretion of  LCAT on each size from the source, through the delay, 
and into each HDL size (Figure 4, A and B). Transfer pathways among the size fractions were tested. Preb-
eta to alpha2 and alpha3 to prebeta transfers were detected but only in a single participant for each transfer 
pathway (participants 4 and 3, respectively). Since these transfer pathways were not detected in 2 or more 
participants, they did not meet our criteria for being included in the final LCAT kinetic model (Methods, 
Compartmental modeling, Figure 4A). All LCAT flux into alpha2, alpha3, and prebeta originated from the 
source via a delay and was subsequently removed from that size (Figure 4A). The average FCR of  LCAT 
on alpha2, alpha3, and prebeta was 0.52, 0.69, and 0.57 pool/d, respectively, and the average production 
rate was 0.0093, 0.062, and 0.0055 mg/kg/d, respectively (Figure 4C and Supplemental Table 4).

Discussion
In this study, we leveraged recent advances in HR/AM–mass spectrometry to detect tracer enrichment in 
multiple HDL sizes of  low abundant, slowly metabolized enzymes: PLTP, CETP, and LCAT. Each enzyme 
exhibits unique metabolic properties — PLTP transfers from alpha2 HDL to larger alpha1 and alpha0 
HDL; CETP associates with primarily alpha1 and alpha2 and stays on these particles until it is cleared; and 
LCAT mainly resides in alpha2, alpha3, and prebeta, but its appearance in these sizes is markedly delayed, 
when compared with PLTP and CETP. These findings are consistent with accumulating evidence that pro-
teins on HDL have unique metabolic properties that may in part modulate HDL function (35).

To date, HR/AM PRM has determined the metabolism of 10 HDL proteins (13, 14). This current study 
underscores the continued reliance on developing mass spectrometry technologies to conduct stable-isotope 
tracer studies. We previously demonstrated the advantages of  HR/AM PRM on the Q Exactive quadrupole 
Orbitrap over unit resolution MRM on triple quadrupoles for detecting HDL proteins 100s-fold less abundant 
than APOA1 (1, 13). In this study, however, we emphasize that continuing developments in HR/AM–mass 
spectrometry itself, as provided by the Orbitrap Fusion Lumos, increase further the capability to detect tracer 
enrichment in proteins, such as PLTP, CETP, and LCAT, that are 1000s-fold less abundant than APOA1.

Figure 4. Compartmental model and kinetics parameters for LCAT in the smaller alpha and prebeta HDL. (A) Compartmental model for LCAT (the aver-
age of n = 6 participants). (B) Enrichment curve fits generated from the model in A, participant 1. (C) FCR and PR for LCAT. Bar graphs represent the mean 
value for n = 6 participants, error bars represent mean ± SD, and open circles represent values per participant.
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Both Q Exactive and Lumos perform PRM with a similar HR/AM dynamic range of  5000. The 
Lumos, however, is a recent generation instrument with a higher resolving power, a higher signal-to-noise, 
a lower limit of  detection, and an advanced quadrupole that is more efficient and uniform at coisolating 
tracer and tracee peaks (36). A higher resolving power can increase the m/z limit for candidate frag-
ment ions to measure tracer; a higher signal-to-noise reduces ratio compression by lowering background 
interference; and improved isolation efficiency can allow for smaller isolation windows around the tar-
get tracer and tracee peaks, also reducing interference. Although the Q Exactive could detect tracer in 
PLTP, CETP, and LCAT, those measurements were limited to only the HDL size in which most of  each 
enzyme resides (alpha1, alpha2, and alpha3, respectively). Q Exactive enrichment data on PLTP or CETP 
were more variable and slightly compressed when compared with data acquired by the Lumos (Figure 2). 
Similarly, APOA1 enrichment variance decreased on the Lumos compared with the Q Exactive, but the 
relative differences in enrichment curves and resulting model fits were conserved between the 2 instru-
ments’ data (Supplemental Figure 4). This conservation is not unexpected since in previous studies using 
the Q Exactive tracer detection methods had been carefully optimized (13, 29). On the other hand, the 
increase in sensitivity and precision in mass spectrometric measurements that are required to study, for 
example, PLTP, CETP, and LCAT metabolism, is why next-generation quadrupole HR/AM instruments, 
such as the Lumos, are continually being designed (36). Moreover, HR/AM PRM can also be performed 
on ever-evolving quadrupole time-of-flight mass spectrometers (37), which provide similar advantages to 
the quadrupole Orbitrap over low-resolution triple quadrupoles (38). Future in vivo metabolism studies 
should therefore leverage the availability of  the combined build of  a quadrupole filter with an HR/AM 
mass analyzer to perform similar in vivo metabolism research.

Leveraging the ability of  the Lumos to expand tracer detection to relatively low protein pool sizes, we 
were able to monitor the metabolism of  PLTP in multiple HDL sizes. PLTP alters the size of  HDL particles 
by mediating particle fusion, as shown in vitro, which in turn leads to the generation of  larger alpha HDL 
(20, 21). We identified an average of  5 mg (2.55, SD) of  PLTP on HDL, the majority of  which (~50%) 
was on alpha1, with smaller amounts on alpha2 (~36%) and alpha0 (~10%, Figure 1B and Supplemental 
Table 1). Interestingly, we found that the majority of  PLTP on alpha2 (75%) was transferred to larger sizes, 
alpha1 and alpha0 HDL (Figure 3 and Supplemental Figure 5). We did not detect PLTP transfer between 
alpha1 and alpha0, suggesting that the majority of  PLTP activity may be confined to alpha2 HDL. This 
finding is consistent with that of  previous reports showing that, despite the lower mass of  PLTP in alpha2 
relative to alpha1, PLTP’s phospholipid transfer activity is localized to alpha2, while PLTP on larger alpha1 
is inactive (30, 39). Thus, the PLTP transfer we detect from alpha2 to alpha1 and alpha0 likely represents 
HDL particle size expansion from alpha2 to larger alpha1 and alpha0 HDL via PLTP, potentially via parti-
cle fusion. It also suggests that PLTP remains on the particle as it expands in size.

If  the transfer of PLTP on alpha2 to alpha1 and alpha0 is representative of alpha2 particle fusion and size 
expansion to form alpha1 and alpha0 particles in vivo, we would also expect to see size expansion of alpha2 to 
alpha1 and alpha0 in our APOA1 model. However, we only detected APOA1-HDL particle expansion from 
prebeta to alpha0, alpha1, and alpha2, and from alpha3 to alpha2, but not from alpha2 to alpha1 and alpha0 
(Supplemental Figure 4B and refs. 13, 14). This interesting discrepancy may suggest that only a minor popu-
lation or a subspecies of alpha2 HDL undergoes PLTP-mediated particle fusion and size expansion, and the 
number of alpha2 HDL particles expanding in size may be too low to detect in the APOA1 tracer data. Based 
on our pool size data, and the assumption that alpha2 contains 4 molecules of APOA1 (40), only 1 molecule 
of PLTP is present for every 500 particles of alpha2 HDL. If  PLTP binds irreversibly to HDL, only approxi-
mately 0.2% alpha2 HDL would increase in size. In addition to isolating APOA1-HDL, enrichment of PLTP- 
containing HDL particles may be necessary to detect APOA1 transfer from alpha2 to alpha1 and alpha0. It is 
also possible that PLTP’s primary function on HDL in plasma is not its phospholipid transfer activity, which 
is localized to its minor alpha2 size (30, 39), but instead a currently unidentified function in alpha0 and alpha1 
(41). Alpha0 and alpha1 contain the majority of PLTP mass on HDL (60%) and a higher ratio of PLTP per 
particle (1 molecule of PLTP for every 20 and 50 particles of alpha0 and alpha1, respectively), compared with 
alpha2 (36% of total PLTP mass on HDL, 1 molecule of PLTP for every 500 alpha2 particles). PLTP on these 
large HDLs, although inactive in phospholipid transfer, may instead play a role in the immune response: PLTP 
binds to lipopolysaccharide on gram-negative bacteria, neutralizing its inflammatory effects (42); PLTP defi-
ciency increases mortality after lipopolysaccharide injection in mice (43); and other proteins known to play a 
role in immunity (complement factors, immunoglobulins, and apoL1) are enriched in alpha0 and alpha1 (14).
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Similar to PLTP, CETP was enriched in the large HDL sizes, 20% in alpha1 and 70% in alpha2 HDL, 
and 1 molecule of CETP was present for every 100 alpha1 and for every 250 alpha2 particles (Figure 1). Since 
CETP’s primary function is to exchange cholesterol ester in HDL for triglyceride in APOB-lipoproteins, it is 
not surprising that CETP dominates in large HDL, as these large particles have higher amounts of cholesterol 
ester compared with small HDL (16). The cholesterol ester in these large particles is likely derived from the liver 
during HDL particle synthesis, as suggested by the direct secretion pathways into alpha1 and alpha2 HDL in 
our APOA1 model (Supplemental Figure 4B), and from the esterification of free cholesterol by LCAT, which 
converts small prebeta and alpha3 to larger CETP-residing alpha2 and alpha1 (17, 18, 44) (see LCAT paragraph 
below for further LCAT discussion). Unlike PLTP, we did not detect CETP transfer between alpha1 and alpha2. 
Instead, all CETP on alpha1 and alpha2 originated directly from the source compartment, likely representative 
of the liver; followed by removal from each of these sizes out of the model system (Figure 3). These findings 
suggest that CETP-mediated exchange of cholesterol ester for triglyceride may not alter the size of the HDL par-
ticle in humans in vivo. These findings are consistent with in vitro data showing that CETP-mediated cholesterol 
ester and triglyceride transfer between spheroidal reconstituted HDL and VLDL does not change HDL size (45). 
However, other in vitro studies using reconstituted HDL and intralipid have shown that CETP reduces the size 
of the HDL particle (46), while studies using ultracentrifugation-isolated human HDL have shown that CETP 
converts HDL3 (8.7 nm particle diameter) to larger (9–10 nm) and smaller (7.8 nm) HDL particles (47). The 
discrepancy in findings across studies may be due to varying protein and lipid compositions across the HDL par-
ticles. The reconstituted HDL in some of these studies only contained APOA1, while   the HDL that binds CETP 
in vivo likely contained additional proteins. Moreover, ultracentrifugation-isolated human HDL contained less 
than half the number of proteins compared with HDL isolated by other methods, such as APOA1-immunoaf-
finity purification used in our study (48). We speculate that the additional proteins on CETP-containing HDL 
in vivo may regulate the amount of lipid that can enter and exit the HDL core, maintaining its size. Isolat-
ing CETP-containing HDL particles by immunoaffinity purification or other ultracentrifugation-independent 
methods (49) may therefore provide candidate proteins that regulate lipid transfer and HDL size in humans in 
vivo. The proposed mechanism(s) of CETP-mediated lipid exchange between lipoproteins also vary. Structural 
studies provide evidence for ternary (HDL-CETP-LDL/VLDL, refs. 50, 51) and nonternary (52) lipid trans-
fer mechanisms. Despite the different findings of each study, they both confirm a stable HDL-CETP complex 
that is mediated by burial of CETP’s N-terminal tip into HDL. Ongoing or future dyslipidemia trials involving 
CETP inhibition would therefore benefit from studying its HDL-bound metabolic properties. Altogether, these 
findings and ours advocate for the isolation and metabolic profiling of CETP in complex with HDL, when try-
ing to understand the mechanisms of action of ongoing or future CETP inhibitors.

LCAT is primarily localized to smaller HDL, most notably the alpha3 size (Figure 1). Since LCAT esteri-
fies free cholesterol and alters the shape (discoidal to spherical) and increases the size of HDL (17, 18, 44), we 
expected to detect LCAT transfer from small to large HDL. However, despite our efforts to monitor tracer in 
LCAT on large alpha0 and alpha1, LCAT abundance and turnover were both too low to acquire reliable tracer 
data in these sizes (Figure 1B and Figure 4). We were able, however, to determine the metabolism of LCAT on 
prebeta, alpha3, and alpha2 but did not observe an appreciable amount of LCAT transfer between these sizes. 
Although we did not observe LCAT transfer, this does not mean LCAT is not active in size expansion. It just 
suggests that LCAT itself  may not remain on the HDL particle as it grows in size. In our APOA1 kinetic model, 
we observe conversion of APOA1 on small prebeta and alpha3 to larger alpha0, alpha1, and alpha2 HDL (Sup-
plemental Figure 4C) and speculate that LCAT activity likely accounts at least partially for these conversions.

Additionally, unlike PLTP and CETP, which appeared on HDL in circulation by 30 minutes and 1 
hour, respectively, LCAT appearance on HDL in plasma was markedly delayed and did not occur until 
1 to 6 hours postinfusion. The early appearance of  proteins, such as PLTP, CETP, and APOA1 and the 
majority of  other HDL proteins, suggests that these proteins may be directly secreted and enter circu-
lation on an HDL particle (13, 14). However, there are several potential mechanisms that may account 
for the delayed appearance of  LCAT on circulating HDL. First, the delayed appearance of  LCAT may 
be due to mechanisms controlling protein synthesis, processing, and secretion from the hepatocyte (its 
main site of  synthesis, ref. 53), that may be slower relative to other HDL proteins. Second, LCAT may 
be secreted at a similar rate to other HDL proteins, but spends time outside of  the systemic circulation, 
such as in the space of  Disse, hepatic sinusoids, interstitial space, or lymphatic vessels, before attaching 
to circulating HDL (27, 54, 55). It is also possible that LCAT activity in the space of  Disse and sinusoids 
interact with newly synthesized HDL, altering their size and shape before they enter circulation (54, 56). 
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Third, LCAT may be secreted unattached to an HDL particle (57) and enter circulation, where it may 
interact with other HDL particles, changing their size, before attaching to a circulating HDL particle. 
In our kinetic modeling system, we only monitor LCAT on circulating HDL. If  before attaching to this 
HDL, LCAT is present in the hepatocyte or an extravascular compartment for an extended period, or in 
a free form, we cannot directly measure it. However, the presence of  these additional LCAT compart-
ments is plausible given the 3 delay compartments unique to the LCAT model. Our findings therefore 
suggest that future studies into LCAT secretion or metabolism consider additional compartments such as 
extravascular LCAT and lipoprotein-free LCAT to further delineate the mechanisms underlying LCAT 
metabolism, function, and contribution of  each to HDL heterogeneity.

In summary, our study demonstrates that it is possible to monitor the metabolism of  PLTP, CETP, 
and LCAT in multiple HDL sizes in humans. In addition, we posit that clinical studies addressing parti-
cle remodeling or potential protein transfer across HDL subspecies are increasingly feasible with support 
of  evolving HR/AM technologies such as Orbitrap.

Methods

Clinical study and samples
We recruited 6 participants with low HDL-C (≤55 mg/dL for females, ≤45 mg/dL for males) and who were 
overweight or obese (BMI > 25 kg/m2) (Supplemental Table 5). Plasma samples from these same participants 
were also analyzed in our recently published study (14). Exclusion criteria included high LDL-cholesterol 
(>190 mg/dL); very low HDL-cholesterol (<20 mg/dL); very high fasting triglycerides (>500 mg/dL); APOE 
genotypes E2E2, E2E4, or E4E4; use of  medications or therapies that can alter lipid levels; and second-
ary hyperlipidemia (14). The participants consumed a controlled diet (20% fat [8% monounsaturated, 7% 
polyunsaturated, 5% saturated], 65% carbohydrate, 15% protein, 90 mg cholesterol) for 4 weeks prior to the 
kinetics study. The controlled diet adhered to the Institute of  Medicine Dietary Reference Intake guidelines 
for healthy nutrient intake (http://ods.od.nih.gov/Health_Information/Dietary_Reference_Intake.aspx) and 
was formulated by Brigham and Women’s Hospital Center for Clinical Investigation (CCI) nutrition research 
unit. All food and beverages were provided for the duration of  the study. Alcoholic beverages were not part 
of  the study diet and intake was not permitted. Participants visited the CCI every Monday, Wednesday, and 
Friday, where they picked up food, completed a food diary, and had their body weight measured. Calories 
were adjusted to compensate for any complaints of  hunger or satiety or changes in body weight.

Tracer infusion protocol
On the morning of  day 28 of  the controlled diet, participants were admitted to Brigham and Women’s 
Hospital CCI, where they received an intravenous bolus injection of  the stable isotope tracer D3-Leu at 
a concentration of  10 mg/kg over 10 minutes. Blood was sampled immediately before the bolus injection 
(time 0 hour) and at up to 70 hours postinfusion. After the 22-hour sample was collected, participants were 
discharged. The 46- and 70-hour postinfusion blood samples were collected at the ambulatory CCI. Total 
plasma leucine (D3-Leu labeled and endogenous) was isolated from 0.2 mL of  plasma from time points 0, 
1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 22, 46, and 70 hours postinfusion using an AG 50W-X8 cation exchange 
resin (Bio-Rad). The isolated amino acids were then dried under nitrogen, derivatized to heptafluorobutyric 
acid esters, and measured using gas chromatography–mass spectrometry (Agilent 6890 GC, 5973 MS). The 
total plasma tracer (D3-Leu) enrichment was quantified by taking the area under the curve of  the tracer 
divided by the area under the curve of  total plasma leucine (D3-Leu tracer + Leu tracee).

HDL isolation, size fractionation, and proteolysis
HDL sample preparation has been reported in great detail previously (13, 14, 29), but the salient steps are 
outlined here. For each participant, HDL was isolated from 8 to 14 time points after D3-Leu infusion: the 
specific time points (listed in Supplemental Table 5) were chosen before data analysis and varied across 
participants due to sample availability (samples from this same clinical study were analyzed in previous 
publications, refs. 1, 14, 29). Additionally, our previous work illustrated that the 8 time points chosen for 
participants 4, 5, and 6 (Supplemental Table 5) were sufficient to detect the unique enrichment curves of  
APOA1, APOE, LCAT, and several other HDL proteins (1, 14, 29), and we predicted they would be suffi-
cient for PLTP and CETP enrichment as well.
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HDL was purified from 1 mL of  plasma by overnight incubation with anti-APOA1 immunoglob-
ulin (Academy Biomedical) bound to sepharose 4B resin (Academy Biomedical). The unbound, non–
APOA1-containing fraction was collected by gravity flow, and the bound, APOA1-containing fraction 
was eluted using 3 M NaSCN (MilliporeSigma). Immediately after isolation, APOA1-HDL was sepa-
rated by size using nondenaturing polyacrylamide gel electrophoresis on a 4%–30% gradient gel (Jule, 
Inc.) run at 15 mA for 16 hours. A molecular weight standard from the GE/Amersham calibration kit 
(catalog 17-0445-01) was run alongside the samples. After completion of  the run, the gel was stained for 
1 to 2 hours in Coomassie Brilliant Blue (Invitrogen, Thermo Fisher Scientific) and destained in dou-
ble-distilled H2O until the gel background was mostly clear. Using the molecular weight standard as a 
guide, portions of  the gel corresponding to each HDL size were excised: above 12.2 nm, alpha0; between 
12.2 nm and 9.5 nm, alpha1; between 9.5 nm and 8.2 nm, alpha2; between 8.2 and 7.2 nm, alpha3; and 
the band at 7.1 nm, prebeta. The excised gel pieces were proteolyzed using trypsin for 4 hours at 37°C 
using a standard protocol, with the exception that the alkylation step was omitted to increase throughput 
of  sample preparation (13). Peptide samples were resuspended in 5% acetonitrile and 0.5% formic acid 
dissolved in mass spectrometry–grade water.

Mass spectrometry
The aim of  this study was to understand sources of  technical variation and limitation on the acquisition 
and fidelity of  low abundant tracer in vivo, not to match or compare the performance of  the Q Exactive 
with the technically more advanced Lumos platform, per se. Thus, differences in each platform’s constitu-
tion (including peripheral devices, such as the column type and temperature) are expected to affect the data 
quality. However, these differences are minor compared with, for instance, the differences in the ion inlet 
and optics guiding the eluted peptides into the mass spectrometer (https://planetorbitrap.com, ref. 36). 
As a consequence, we do not expect that differences in the columns affect the differences in data quality 
described in this study. Both Q Exactive (quadrupole + Orbitrap) and Orbitrap Fusion Lumos (quadrupole 
+ linear ion trap + Orbitrap) instruments were coupled to an Easy-nLC1000 HPLC pump (Thermo Fisher 
Scientific). The Lumos was fronted with an EASY-Spray ion source and the Q Exactive with a Nanospray 
FLEX ion source (Thermo Fisher Scientific).

Lumos. Peptides were separated using a dual-column setup: an Acclaim PepMap RSLC C18 trap col-
umn, 75 μm × 20 mm; and a heated EASY-Spray column (45°C), 75 μm × 250 mm (purchased from Ther-
mo Fisher Scientific). The gradient flow rate was 300 nL/min from 8% to 25 % solvent B (acetonitrile/0.1 
% formic acid) for 10 minutes, 25% to 95 % solvent B for 2 minutes, followed by an additional 5 minutes 
of  95 % solvent B. Solvent A was 0.1 % formic acid. Data-dependent acquisitions (DDAs) on the Lumos 
provided retention times of  target HDL proteins. The instrument was set to 120 K resolution, and the top 
N precursor ions in a 3-second cycle time (within a scan range of  375–1500 m/z) were subjected to higher 
energy dissociation (HCD, collision energy 30%) for peptide sequencing using a 30 K resolution setting. 
The parallelization feature was enabled (automatic gain control/AGC target, 1.0e5; maximum injection 
time, 54 ms). PRM was performed using the “targeted MS2 scan” module, in scheduled mode (Supple-
mental Table 3) when collecting enrichment data for modeling. Dissociation was set to 30% HCD collision 
energy, and the PRM scans (150–1000 m/z) were set to 240 K resolution (AGC target 2.0e5; maximum 
injection time, 502 ms). PRM data used for modeling were acquired with a 4 Da isolation window on the 
average of  the M0 and 2HM3 (or 2HM6 for peptides with 2 leucines) (Supplemental Table 3).

Q exactive. Peptides were separated using an Acclaim PepMap RSLC C18 trap column, 75 μm × 20 
mm; and an Acclaim PepMap RSLC C18 analytical column 75 μm × 250 mm (Thermo Fisher Scientific). 
PRM was performed using the “DIA” module (these settings can be applied to other tMS2 modules such 
as “PRM” if  available) and in schedule mode, with retention time windows adjusted for the Q Exactive’s 
chromatography, accordingly. Dissociation was set to 25% HCD collision energy, and the PRM scans (fixed 
first mass, 100 m/z) were set to 140 K resolution (AGC target 1.0e6; maximum injection time, automated). 
PRM data used for modeling were acquired with a 4 Da isolation window on the average of  the M0 and 
2HM3 (or 2HM6 for peptides with 2 leucines) (Supplemental Table 3).

For tracer enrichment studies, peptide stocks (Supplemental Figure 1) were diluted as follows: 1/50 for 
alpha0 and alpha1, 1/100 to 1/200 for alpha2 and alpha3, and 1/10 for prebeta, with injection volumes 
ranging from 2 to 6 μL until tracer could be detected at the earliest time point. The same dilution and injec-
tion volumes were used for each time point per fraction.
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Spectral processing and PRM library
The DDA spectra were queried against the Human UniProt database (downloaded August 1, 2014) using 
the HT-SEQUEST search algorithm, via the Proteome Discoverer (PD) Package (version 2.1, Thermo 
Scientific), using a 10 ppm tolerance window in the MS1 search space and a 0.02 Da fragment tolerance 
window for HCD data. Methionine oxidation was set as a variable modification. The peptide false discov-
ery rate of  1% was calculated using Percolator provided by PD. Peptides assigned to a given protein group, 
and not present in any other protein group, were considered unique. For the PRM spectral library, 1 to 3 
leucine-containing peptides per protein were used to monitor D3-Leu enrichment. APOE, APOA1, and 
LCAT peptides were chosen based on their consistency across our previous studies (13, 14, 29); and the 1 
peptide for each CETP and PLTP (2 were evaluated per protein) was chosen based on consistent enrich-
ment across 3 participants (Supplemental Table 3).

Peptide enrichment quantification
We employed our published software, XPI (v.1.3) (29), for the quantification of  APOA1 and APOE PRM 
ions. The mass difference of  deuterated leucine labeling was 3.01883025 Da (Supplemental Table 3). The 
mass tolerance window in XPI for the identification of  PRM ions was 0.01 Da. Given the very low tracer 
signals for the newly reported PLTP, CETP, and LCAT data, we manually quantified PRM ions using the 
extracted ion chromatogram method (XCalibur Software, Thermo Fisher Scientific). We considered only 
the 2HM3 ions for tracer even if  2 leucines were in a given fragment since the probability of  observing in 
2 leucines is less than in 1. We calculated the tracer enrichment as M3 / (M0+M3), reporting it as percent-
age enrichment for the enrichment plots.

Absolute quantification of peptides
Cell-free synthesized peptide standards were used to quantify the pool size of  APOA1, APOE, LCAT, 
CETP, and PLTP across the 5 HDL sizes and in total HDL (sum of  5 HDL sizes) in the 6 participants. Each 
protein was quantified using the following peptide standards: APOA1 (THLAPYSDEL[R-labeled]), APOE 
(LGPLVEQG[R-labeled]), LCAT (SSGLVSNAPGVQI[R-labeled]), CETP (ASYPDITGE[K-labeled]),  
and PLTP (AVEPQLQEEE[R-labeled]) (New England Peptides, NEP, Supplemental Table 2). The pep-
tides were quantified by the absolute amino acid method (NEP). Arginines were labeled with 13C8,15N2 
and lysines with 13C6,15N2. Peptide standards were chosen based on the following: 1) fully cleaved, 2) 
devoid of  methionines and cysteines, 3) highest ionization/signal intensity relative to the other observed 
peptides passing criteria 1 and 2, and 4) not reported to be posttranslationally modified (https://www.uni-
prot.org). As a consequence of  these criteria, the peptides used to monitor enrichment in CETP and PLTP 
were not used for absolute quantification.

We established the appropriate spike-in amount for the peptides by determining the linear range of  
ionization (AUC of  M0) for both the standard and sample-derived peptides. Due to the large dynamic 
range of  the sample peptides, we used 2 spiking mixtures. The first mixture contained a final on-column 
amount of  100 fmol of  APOA1 peptide, 10 fmol of  APOE peptide, and 1 fmol of  LCAT, CETP, and 
PLTP peptides. The second mixture contained the same peptides at a 10-fold lower on-column concen-
tration. Peptide abundance was quantified from 2 injection replicates of  the 2- and 4-hour time points 
(diluted 1/100 from the alpha and 1/50 from the prebeta peptide stocks) for the 2 spiking mixtures (8 total 
quantification replicates per sample). The peptide mixtures were analyzed using the Lumos, using an MS1 
scan alone, scan range from 420 to 720 m/z at a resolution of  240 K, that was sufficient to capture all sam-
ple and standard-derived peptide pairs (Supplemental Table 2). Skyline (https://skyline.gs.washington.
edu, ref. 58) was used for quantification of  the AUCs.

HDL protein pool sizes
The pool size (total milligrams of  protein in plasma) of  APOA1, APOE, CETP, PLTP, and LCAT on the 5 
HDL sizes was determined by first converting the fmol on-column (average of  8 replicates) of  each protein 
per size fraction to milligrams of  protein per 1 mL of  plasma (13, 14). To determine the amount of  sample 
loss during preparation, the mg/mL of  APOA1 per size fraction were summed to get an estimated total 
APOA1 concentration. This estimated total APOA1 concentration was then compared to the total plas-
ma APOA1 concentration (average of  2- and 4-hour time points, Supplemental Table 1), as determined by 
enzyme-linked immunosorbent assay (ELISA) using anti-APOA1 antibodies (Academy Biomedical catalog 
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11A-G2b for coating antibody, catalog 11B-G2b for detection antibody). The sample loss correction factor 
was calculated by dividing the ELISA total APOA1 concentration by the estimated total APOA1 concen-
tration and determined to be 41 (±5). Assuming that sample loss was similar for all size fractions, the mg/
mL estimated protein concentrations for each size fraction were then multiplied by the correction factor to 
determine the mg/mL concentration of  each protein in each HDL size fraction. The mg/mL protein con-
centrations per size were then multiplied by the total plasma volume to determine the protein pool size per 
HDL size fraction. Plasma volume for each participant was calculated by the following formula (59): plasma 
volume (dL) = (ideal body weight in kg × 0.44) + (excess body weight in kg × 0.1).

Variance component analysis and compartmental modeling
Both are detailed in the Supplemental Methods.

Statistics
All statistical analyses independent of SAAM II were done in R or Microsoft Excel. Scatter plots were used 
for plotting tracer enrichment. The geometric smoothing function using the local regression (loess) method (R) 
was applied to PLTP and CETP plots (Figure 2B). The variances reported for PLTP and CETP (Figure 2C) are 
from all enrichment data points plotted in Figure 2B. The variances of enrichment for APOA1 were calculated 
from 6 APOA1 fragment ions at each time point. The average was then taken across all time points per HDL 
fraction. The P values calculated from a 1-sided Student’s t test assuming unequal variance verified that the 
sample variance of the Q Exactive was greater than the sample variance of the Lumos for alpha3 and prebeta 
(Supplemental Figure 3C, less than 0.05). The difference in the average of variance between the Q Exactive and 
Lumos ranged from –1.04E-06 to –5.79E-07. Box-and-whisker plots were used to display the interquartile and 
overall range of enrichment data detected by each instrument at each time point. Using the data generated by 
compartmental modeling, residual plots for each enrichment time point for each HDL size was calculated by: 
residual = enrichment data point – enrichment model fit. Results are presented as median or mean (SD) unless 
otherwise specified. Figures were compiled in Microsoft PowerPoint or Adobe Photoshop.
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