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Abstract
Aims: 5- Methoxy- N,N- diisopropyltryptamine (5- MeO- DIPT) is a synthetic orally 
active hallucinogenic tryptamine analogue. The present study examined whether 
the effects of 5- MeO- DIPT involve the serotonin transporter (SERT) and serotonin 
5- hydroxytryptamine- 1A (5- HT1A) receptor in the striatum and prefrontal cortex 
(PFC).
Methods: We investigated the effects of 5- MeO- DIPT on extracellular 5- HT (5- HTex) 
and dopamine (DAex) levels in the striatum and PFC in wildtype and SERT knockout 
(KO) mice using in vivo microdialysis, and for comparison the effects of the 5- HT1A 
receptor antagonist WAY100635 and the 5- HT1A receptor agonist 8- OH- DPAT on 
5- HTex.
Results: 5- MeO- DIPT decreased 5- HTex levels in the striatum, but not PFC. In SERT- KO 
mice, 5- MeO- DIPT did not affect 5- HTex levels in the striatum or PFC. In the pres-
ence of WAY100635, 5- MeO- DIPT substantially increased 5- HTex levels, suggesting 
that 5- MeO- DIPT acts on SERT and these effects are masked by its 5- HT1A actions 
in the absence of WAY100635. 8- OH- DPAT decreased 5- HTex levels in the striatum 
and PFC in wildtype mice. WAY100635 antagonized the 8- OH- DPAT- induced de-
crease in 5- HTex levels. In SERT- KO mice, 8- OH- DPAT did not decrease 5- HTex levels 
in the striatum and PFC. 5- MeO- DIPT dose- dependently increased DAex levels in the 
PFC, but not striatum, in wildtype and SERT- KO mice. The increase in DAex levels that 
was induced by 5- MeO- DIPT was not antagonized by WAY100635.
Conclusion: 5- MeO- DIPT influences both 5- HTex and DAex levels in the striatum and 
PFC. 5- MeO- DIPT dually acts on SERT and 5- HT1A receptors so that elevations in 
5- HTex levels produced by reuptake inhibition are limited by actions of the drug on 
5- HT1A receptors.
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1  | INTRODUC TON

5- Methoxy- N,N- diisopropyltryptamine (5- MeO- DIPT) is a synthetic 
tryptaminergic hallucinogen that is known as a designer drug, with 
the street name “foxy” or “foxy methoxy.” 5- MeO- DIPT has been 
controlled as a schedule I substance under the Controlled Substances 
Act in the US.1,2 In Japan, 5- MeO- DIPT has been controlled as a 
Narcotic since 2005. 5- MeO- DIPT users exhibit euphoria, disinhi-
bition, visual and auditory hallucinations, amnesia, catalepsy, mydri-
asis, tachypnea, hypertension, and tachycardia.3– 5 5- MeO- DIPT use 
has been associated with hallucinogen- persisting perception disor-
der and was proposed to play a role in the development of prolonged 
delusions.6,7

Many tryptamines are serotonergic hallucinogens.8– 10 
5- MeO- DIPT appears to interact with the serotonergic system.11– 15 
5- MeO- DIPT has high affinity for serotonin 5- hydroxytryptamine- 2A 
(5- HT2A) and 5- HT2C receptors, and an even higher affinity for 5- 
HT1A receptors.11 5- MeO- DIPT has been shown to bind to the 5- HT 
transporter (SERT) and block 5- HT reuptake.12– 14 Surprisingly, given 
these last findings, 5- MeO- DIPT reportedly does not stimulate the 
release of 5- HT in vitro.13– 15

Despite this discrepancy between in vivo and in vitro find-
ings on 5- HT release, several pharmacological studies suggest 
that 5- MeO- DIPT stimulates serotonin function in some manner. 
Previous behavioral studies demonstrated that 5- MeO- DIPT in-
duces the head- twitch response in mice, characteristic of 5- HT ac-
tivation, and these effects are antagonized by 5- HT2A antagonist 
M100907, despite its additional action at the 5- HT1A receptor in 
vitro.11 5- MeO- DIPT was also shown to potentiate forepaw tread-
ing that was induced by the 5- HT1A receptor agonist 8- OH- DPAT.16 
Animals treated with 5- MeO- DIPT also show hypoactivity.17 
Additional behavioral studies demonstrated that 5- MeO- DIPT given 
repeatedly to adolescent rats produced deleterious effects on learn-
ing and memory in adulthood.18,19 These pharmacological results 
suggest that 5- MeO- DIPT stimulates not only serotonin function 
but also dopamine function.

To examine the action of 5- MeO- DIPT on the SERT and 5- HT1A 
receptors, we investigated the effects of 5- MeO- DIPT on extracel-
lular levels of 5- HT (5- HTex), as well as effects on extracellular DA 
levels (DAex), in the striatum and prefrontal cortex (PFC) in wildtype 
and SERT knockout (KO) mice using in vivo microdialysis. We also 
examined the role of 5- HT1A receptors in the effects of 5- MeO- DIPT 
using the prototypical 5- HT1A receptor agonist 8- OH- DPAT.

2  | METHODS

2.1 | Animals

Serotonin transporter KO mice and their wildtype littermates that 
were used in these experiments were from a line that was maintained 
on a C57BL/6J genetic background. The late Dr Dennis Murphy 
(National Institute of Mental Health, Bethesda, MD, USA) provided 

the founder mice. The experimental procedures and housing con-
ditions were approved by the Animal Use and Care Committee of 
the Tokyo Metropolitan Institute of Medical Science. All of the mice 
were treated humanely in accordance with our institutional animal 
experimentation guidelines. Naive adult mice were housed in an 
animal facility at 23°C ± 1°C and 55% ± 5% relative humidity under 
a 12- hour/12- hour light/dark cycle (lights on at 8:00 am and off at 
8:00 pm). Food and water were available ad libitum. Male and female 
mice, 10- 24 weeks old, were used.

2.2 | Surgery

The mice were anesthetized with sodium pentobarbital (50 mg/
kg, intraperitoneally) and stereotaxically implanted with microdi-
alysis probes in the striatum (anterior/posterior, +0.6 mm; medial/
lateral, +1.8 mm; dorsal/ventral, −4.0 mm from bregma) or PFC 
(anterior/posterior, +2.0 mm; medial/lateral, +0.5 mm; dorsal/ven-
tral, −3.0 mm from bregma) according to the atlas of Franklin and 
Paxinos.20 The probe tips had a regenerated cellulose membrane 
(50 kDa molecular weight cut- off, 0.22 mm outer diameter and 2 mm 
membrane length; Eicom, Kyoto, Japan). The dialysis probe place-
ments were verified histologically at the end of the experiments.

2.3 | Microdialysis and analytical procedure

Twenty- four hours after probe implantation, the dialysis experi-
ments were performed in freely moving animals. Ringer's solution 
(145 mmol/L NaCl, 3 mmol/L KCl, 1.26 mmol/L CaCl2, and 1 mmol/L 
MgCl2, pH 6.5) was perfused at a constant flow rate of 1 μL/min. 
Perfusates were directly injected in the high- performance liquid 
chromatography system every 10 minutes using an autoinjector 
(EAS- 20; Eicom). Serotonin and DA in the dialysate were separated 
using a reverse- phase ODS column (PP- ODS, Eicom) and detected 
with a graphite electrode (HTEC- 500, Eicom). The mobile phase 
consisted of 0.1 mol/L phosphate buffer (pH 5.5) that contained so-
dium decanesulfonate (500 mg/L), ethylenediaminetetraacetic acid 
(50 mg/L), and 1% methanol. Perfusion was initiated 180 minutes 
before collecting baseline samples. Basal levels of DAex and 5- HTex 
were calculated as average concentrations of three consecutive 
samples when they were stable.

2.4 | Drugs

5- MeO- DIPT was synthesized by Dr T. Iwamura (Gifu Pharmaceutical 
University). R (+)- 8- hydroxy- DPAT (8- OH- DPAT; Sigma- Aldrich, St. 
Louis, MO, USA) and WAY100635 (Sigma- Aldrich) were dissolved in 
saline and administered subcutaneously (s.c.) in a volume of 10 mL/
kg. 5- MeO- DIPT (10 or 20 mg/kg) or 8- OH- DPAT (0.1 or 1 mg/kg) 
was administered after a stable baseline was established, and the 
dialysate was continuously collected for 120 minutes. In separate 



     |  93HAGINO et Al.

F I G U R E  1   Effects of 5- MeO- DIPT on 5- HTex and DAex levels in the striatum in wildtype (A), SERT- KO (B), and wildtype (C) mice. The 
arrows indicate the drug injection times. The data are expressed as the mean ± SEM (n = 7- 12/group) of the percentage of 5- HTex and DAex 
baselines. (A) **P < .01, vs saline group. (C) +P < .05, +++P < .001, vs WAY100635/saline group. ##P < .01, ###P < .001, vs saline/5- MeO- DIPT 
group (repeated- measures ANOVA followed by Fisher's PLSD post hoc test)

(A)

(B)

(C)
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experiments, the mice were pretreated with WAY100635 (1 mg/kg) 
30 minutes before 5- MeO- DIPT (10 mg/kg) or 8- OH- DPAT (0.1 mg/
kg) administration.

2.5 | Statistical analysis

5- HTex and DAex responses to drug treatment are expressed as 
a percentage of basal levels. The statistical analyses were per-
formed using one-  or two- way repeated- measures analysis 
of variance (ANOVA). Individual post hoc comparisons among 
groups were performed using Fisher's Protected Least Significant 
Difference (PLSD) test. Values of P < .05 were considered statisti-
cally significant.

3  | RESULTS

3.1 | Basal 5- HTex and DAex levels in the striatum 
and PFC

Basal levels of 5- HTex and DAex in striatal dialysates from each test 
group were as follows: wildtype (5- HTex: 1.20 ± 0.12 fmol/10 μL; 
DAex: 42.49 ± 4.82 fmol/10 μL, n = 28), SERT- KO (5- HTex: 
9.63 ± 1.27 fmol/10 μL; DAex: 52.40 ± 7.59 fmol/10 μL, n = 21). 
Basal levels of 5- HTex and DAex in dialysates from the PFC 
were as follows: wildtype (5- HTex: 1.36 ± 0.08 fmol/10 μL; 
DAex: 0.73 ± 0.05 fmol/10 μL, n = 32, n = 32), SERT- KO (5- HTex: 
11.19 ± 0.73 fmol/10 μL; DAex: 0.70 ± 0.07 fmol/10 μL, n = 30, 
n = 30). As previously reported,21 basal levels of 5- HTex were sig-
nificantly higher in SERT- KO mice than in wildtype mice in both 
the striatum (F1,47 = 64.851, P < .001) and PFC (F1,60 = 191.006, 
P < .001). Basal levels of DAex were not different between wildtype 
and SERT- KO mice in either the striatum (F1,47 = 1.451, P = .234) or 
PFC (F1,60 = 0.0953, P = .7587).

3.2 | Effects of 5- MeO- DIPT on 5- HTex and DAex 
levels in the striatum and PFC

5- MeO- DIPT (10 and 20 mg/kg) dose- dependently decreased 
5- HTex levels in the striatum, without altering DAex levels in the 
striatum in wildtype mice (Figure 1A). The two- way ANOVA of 5- 
HTex levels revealed significant effects of treatment (F2,20 = 6.870, 
P < .01) and time (F11,220 = 5.114, P < .001) and a significant treat-
ment × time interaction (F22,220 = 5.572, P < .001). 5- MeO- DIPT (10 
and 20 mg/kg) did not affect 5- HTex or DAex levels in the striatum in 
SERT- KO mice (Figure 1B).

To investigate the role of 5- HT1A receptor activation in the effect 
of 5- MeO- DIPT on 5- HTex and DAex levels, mice were pretreated with 
the selective 5- HT1A antagonist WAY100635 (1 mg/kg) 30 minutes 
before 10 mg/kg 5- MeO- DIPT administration. WAY100635 (1 mg/

kg) administered alone slightly increased DAex levels but not 5- HTex 
levels. In the presence of WAY100635, 5- MeO- DIPT (10 mg/kg) sig-
nificantly increased 5- HTex and DAex levels (Figure 1C). The two- way 
ANOVA of 5- HTex levels revealed significant effects of treatment 
(F3,33 = 40.298, P < .001) and time (F11,363 = 28.221, P < .001) and a 
significant treatment × time interaction (F33,363 = 17.632, P < .001). 
The two- way ANOVA of DAex levels revealed significant effects of 
treatment (F3,33 = 4.299, P < .05) and time (F11,363 = 22.173, P < .001) 
and a significant treatment × time interaction (F33,363 = 11.437, 
P < .001).

5- MeO- DIPT (10 and 20 mg/kg) did not decrease 5- HTex lev-
els in the PFC in wildtype mice (Figure 2A). 5- MeO- DIPT (10 and 
20 mg/kg) dose- dependently increased DAex levels in wildtype mice 
in the PFC (Figure 2A). The two- way ANOVA of DAex levels revealed 
significant effects of treatment (F2,15 = 16.967, P < .001) and time 
(F11,165 = 16.153, P < .001) and a significant treatment × time in-
teraction (F22,165 = 6.519, P < .001). 5- MeO- DIPT (10 and 20 mg/
kg) dose- dependently increased DAex levels in the PFC in SERT- KO 
mice (Figure 2B). The two- way ANOVA of DAex levels revealed 
significant effects of treatment (F2,16 = 4.993, P < .05) and time 
(F11,176 = 6.382, P < .001) and a significant treatment × time interac-
tion (F22,176 = 1.832, P < .05).

To investigate the role of 5- HT1A receptor activation in the ef-
fects of 5- MeO- DIPT on 5- HTex and DAex levels, mice were pre-
treated with the selective 5- HT1A antagonist WAY100635 (1 mg/kg) 
30 minutes before 10 mg/kg 5- MeO- DIPT or 0.1 mg/kg 8- OH- DPAT 
administration. WAY100635 (1 mg/kg) alone did not affect 5- HTex 
and DAex levels. In the presence of WAY100635, the influence of 
5- MeO- DIPT (10 mg/kg) on 5- HTex levels, but not DAex levels, was 
markedly enhanced in the PFC (Figure 2C). The two- way ANOVA of 5- 
HTex levels revealed significant effects of treatment (F3,33 = 12.679, 
P < .001) and time (F11,352 = 18.469, P < .001), and a significant 
treatment × time interaction (F33,352 = 10.005, P < .001). The two- 
way ANOVA of DAex levels revealed significant effects of treatment 
(F3,33 = 4.839, P < .01) and time (F11,352 = 11.926, P < .001), and a 
significant treatment × time interaction (F33,352 = 3.846, P < .001).

3.3 | Effects of 8- OH- DPAT on 5- HTex and DAex 
levels in the striatum and PFC

8- OH- DPAT (0.1 mg/kg) decreased 5- HTex levels in the striatum in 
wildtype mice but not in SERT- KO mice (Figure 3A,B). 8- OH- DPAT 
(0.1 mg/kg) did not affect DAex levels in the striatum in wildtype or 
SERT- KO mice (Figure 3A,B). The two- way ANOVA of 5- HTex levels 
revealed a significant effect of treatment (F1, 10 = 14.048, P < .01) and 
a significant treatment × time interaction (F11, 110 = 5.433, P < .001). 
WAY100635 blocked the effects of 8- OH- DPAT on 5- HTex levels in 
the striatum (Figure 3C). The two- way ANOVA of 5- HTex levels re-
vealed significant effects of treatment (F3,33 = 3.623, P < .05) and 
time (F11,308 = 6.137, P < .001), and a significant treatment × time 
interaction (F33,308 = 4.270, P < .001).
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F I G U R E  2   Effects of 5- MeO- DIPT on 5- HTex and DAex levels in the PFC in wildtype (A), SERT- KO (B), and wildtype (C) mice. The 
arrows indicate the drug injection times. The data are expressed as the mean ± SEM (n = 6- 11/group) of the percentage of 5- HTex and DAex 
baselines. (A, B) **P < .01, ***P < .001, vs saline group. (C) *P < .05, **P < .01, vs saline/saline group; +P < .05, +++P < .001, vs WAY100635/
saline group; ##P < .01, vs saline/5- MeO- DIPT group (repeated- measures ANOVA followed by Fisher's PLSD post hoc test)

(A)

(B)

(C)
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F I G U R E  3   Effects of 8- OH- DPAT on 5- HTex and DAex levels in the striatum in wildtype (A), SERT- KO (B), and wildtype (C) mice. The 
arrows indicate the drug injection times. The data are expressed as the mean ± SEM (n = 5- 11/group) of the percentage of 5- HTex and DAex 
baselines. (A) **P < .01, vs saline group. (C) **P < .01, vs saline/saline group; #P < .05, ##P < .01, vs saline/8- OH- DPAT group (repeated- 
measures ANOVA followed by Fisher's PLSD post hoc test)

(A)

(B)

(C)
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F I G U R E  4   Effects of 8- OH- DPAT on 5- HTex and DAex levels in the PFC in wildtype (A), SERT- KO (B), and wildtype (C) mice. The arrows 
indicate the drug injection times. The data are expressed as the mean ± SEM (n = 6- 11/group) of the percentage of 5- HTex and DAex 
baselines. (A) ***P < .001, vs saline group. (C) ***P < .001, vs saline/saline group; ##P < .01, vs saline/8- OH- DPAT group (repeated- measures 
ANOVA followed by Fisher's PLSD post hoc test)

(A)

(B)

(C)
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8- OH- DPAT (0.1 and 1 mg/kg) dose- dependently decreased 
5- HTex levels in the PFC in wildtype mice (Figure 4A). 8- OH- DPAT 
(0.1 and 1 mg/kg) induced a nonsignificant increase in DAex levels 
in the PFC in wildtype mice (Figure 4A). The two- way ANOVA of 5- 
HTex levels revealed significant effects of treatment (F2, 17 = 10.302, 
P < .01) and time (F11, 187 = 4.153, P < .001), and a significant 
treatment × time interaction (F22, 187 = 3.812, P < .001). The two- 
way ANOVA of DAex levels revealed a significant effect of time 
(F11,187 = 6.764, P < .001) and a significant treatment × time interac-
tion (F22,187 = 4.544, P < .001), but no significant main effect of treat-
ment (F2,17 = 2.482, P = .1133). 8- OH- DPAT (0.1 and 1 mg/kg) did not 
affect 5- HTex or DAex levels in the PFC in SERT- KO mice (Figure 4B). 
WAY100635 blocked the effects of 8- OH- DPAT on 5- HTex and DAex 
levels in the PFC (Figure 4C). The two- way ANOVA of 5- HTex levels 
revealed a significant effect of time (F11, 308 = 8.594, P < .001) and 
a treatment × time interaction (F33, 308 = 1.251, P = .1687), but no 
significant main effect of treatment (F3, 33 = 1.240, P = .3137). The 
two- way ANOVA of DAex levels revealed significant effects of treat-
ment (F3,33 = 7.295, P < .001) and time (F11,308 = 6.122, P < .001), and 
a significant treatment × time interaction (F33,308 = 1.879, P < .01).

4  | DISCUSSION

The present study demonstrated that 5- MeO- DIPT decreased 5- 
HTex levels in the striatum, but not PFC, and increased DAex levels 
in the PFC, but not striatum. These regionally specific effects are 
likely the result of a balance of actions of 5- MeO- DIPT on SERT and 
serotonin receptors that subsequently also influence dopamine re-
lease. This was revealed by subsequent pharmacologic experiments 
and comparisons in SERT KO mice. The most revealing effects are 
summarized in Figure 5. These effects are consistent with many of 
the known actions of 5- MeO- DIPT, which has been shown to inhibit 
SERT12– 14 and to act on 5- HT1A, 5- HT2A and 5- HT2C receptors.11

Pronounced dopaminergic actions of 5- MeO- DIPT were ob-
served in the PFC, but not the striatum. These effects were not 
affected by SERT KO, so likely involve other mechanisms. Serotonin- 
containing cell bodies of the raphe nuclei send projections to dopa-
minergic cells in both the ventral tegmental area and the substantia 
nigra, and to their terminal fields in the nucleus accumbens, PFC, 
and striatum.22– 25 The serotonergic system modulates the activity 
of dopaminergic neurons in both the nigrostriatal pathway and the 

F I G U R E  5   Schematic illustration of the 
effects of 5- MeO- DIPT and 8- OH- DPAT 
on 5- HTex levels. Serotonin neurons are 
regulated by 5- HT1A and 5- HT1B receptors 
and the SERT (A). 5- MeO- DIPT activates 
5- HT1A receptors and inhibits the SERT 
(B). WAY100635 antagonizes the actions 
of 5- MeO- DIPT on 5- HT1A receptors (C). 
8- OH- DPAT activates 5- HT1A receptors 
(D). WAY100635 antagonizes the actions 
of 8- OH- DPAT at 5- HT1A receptors (E)

5-HTex

SERT

5-MeO-DIPT 5-MeO-DIPT

5-HT

5-HTex

SERT

5-MeO-DIPT 5-MeO-DIPT

5-HT

5-HTex

SERT

8-OH-DPAT

5-HT

5-HTex

SERT

WAY100635 / 8-OH-DPAT

5-HT

WAY100635 /

5-HTex

SERT5-HT1A

5-HT

5-HT1A

5-HT1A

5-HT1A

5-HT1A

(A)

(B)

(C)

(D)

(E)

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

5-HT1B

(Striatum)

(Striatum, PFC)

(Striatum, PFC)

(Striatum, PFC)

(PFC)



     |  99HAGINO et Al.

mesolimbic pathway.26 Serotonin neurotransmission is regulated 
by SERT and serotonin autoreceptors through negative feedback 
inhibition at the somatodendritic level (5- HT1A receptors) and axo-
nal level (5- HT1B receptors; Figure 5A).27,28 5- MeO- DIPT decreased 
5- HTex levels in the striatum, but not PFC. Although 5- MeO- DIPT 
acts on SERT, it also activates somatodendritic 5- HT1A receptors 
(Figure 5B). The mechanism underlying the regional differences in 
5- HTex levels after 5- MeO- DIPT treatment is not known, but likely 
involves the relative balance of these effects. In SERT- KO mice, 
5- MeO- DIPT did not affect 5- HTex levels in the striatum and PFC, 
probably because 5- HT1A autoreceptors are strongly desensitized 
and their expression down- regulated in SERT- KO mice.29– 31 In the 
presence of WAY100635, 5- MeO- DIPT increased 5- HTex levels, 
suggesting that 5- MeO- DIPT acts on SERT, but these effects are 
masked by its 5- HT1A actions (Figure 5C). Previous studies have 
shown that 5- HT1A receptor agonists reduce 5- HTex levels in the 
striatum and frontal cortex.32– 36 In the present study, 8- OH- DPAT 
also decreased 5- HTex levels in the striatum and PFC in wildtype 
mice (Figure 5D). The 5- HT1A receptor antagonist WAY100635 an-
tagonized the 8- OH- DPAT- induced decrease in 5- HTex levels in the 
striatum and PFC (Figure 5E). In SERT- KO mice, 8- OH- DPAT did not 
decrease 5- HTex levels in the striatum and PFC. SERT- KO mice have 
reduced density and function of presynaptic 5- HT1A autoreceptors, 
neural firing, and neuroendocrine and temperature responses to 
8- OH- DPAT are reduced.29– 31,37– 40

The 5- HT1A receptor agonist 8- OH- DPAT increased DAex 
levels in the PFC but not in the striatum. The 5- HT1A receptor 
antagonist WAY100635 antagonized the 8- OH- DPAT- induced 
increase in DAex levels in the PFC. This is consistent with the 
finding that the selective 5- HT1A receptor agonist 8- OH- DPAT 
increased DAex levels in the PFC, without affecting striatal DAex 
levels.41,42 5- HT1A receptor agonists increase DAex levels in a brain 
region- specific manner via postsynaptic 5- HT1A receptor activa-
tion.36,41,43 5- MeO- DIPT dose- dependently increased DAex lev-
els in the PFC, but not striatum, in wildtype and SERT- KO mice. 
The increase in DAex levels that was induced by 5- MeO- DIPT was 
not antagonized by the 5- HT1A receptor antagonist WAY100635. 
The dose of WAY100635 that was tested in the present study has 
been shown to completely antagonize the 8- OH- DPAT- induced 
increase in DAex levels. The increase in DAex levels induced 
5- MeO- DIPT in the PFC is substantially 5- HT1A receptor indepen-
dent. 5- MeO- DIPT has an affinity for 5- HT2A and 5- HT2C in ad-
dition to 5- HT1A receptors,11 so these receptors may be involved 
in these effects. The 5- HT2 receptor agonist 1- (2,5- dimethoxy- 4- 
iodophenyl)- 2- aminopropane (DOI) has been reported to increase 
DAex but not 5- HTex levels. This action was abolished by the 5- 
HT2A receptor antagonist M100907.44,45 5- MeO- DIPT- induced 
head- twitch responses have been used as a behavioral correlate 
to assess 5- HT2A receptor agonist activity.11,16 Furthermore, the 
head- twitch response that was induced by 5- MeO- DIPT was 
blocked by the 5- HT2A receptor antagonist M100907.11 Therefore, 
the augmenting effect of 5- MeO- DIPT on DAex levels may be me-
diated by 5- HT2A receptors. 5- MeO- DIPT was shown to inhibit 

the reuptake of norepinephrine, whereas its inhibitory effects on 
DA transporter were weak.13,14 Norepinephrine transporter inhib-
itors were reported to increase DAex levels in the PFC.46,47 Thus, 
5- MeO- DIPT may also act at the norepinephrine transporter to 
increase DAex levels in the PFC. Although the mechanism of the 
augmenting effect of 5- MeO- DIPT on DAex levels is not clear and 
needs further study, differential effects of 5- MeO- DIPT on DAex 
levels in the striatum and PFC may underlie some of the character-
istic behaviors induced by 5- MeO- DIPT.

In conclusion, 5- MeO- DIPT influenced both 5- HTex and DAex 
levels in the striatum and PFC. 5- MeO- DIPT dually acts on SERT 
and 5- HT1A receptors, and the balance of actions at these targets 
determines the effect of 5- MeO- DIPT on 5- HTex in a regionally de-
pendent manner. This would also suggest that other factors that 
inhibit 5- HT1A receptor functions might lead to greater effects of 
5- MeO- DIPT on 5- HTex.
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