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Abstract: Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) mediate anti-viral response
through mitochondria. In addition, RLR activation induces anti-tumor effects on various cancers. We
previously reported that the RLR agonist Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensi-
tivity and that cotreatment with Poly(I:C) and ionizing radiation (IR) more than additively increased
cell death in lung adenocarcinoma cells, indicating that Poly(I:C) modulates the cellular radiation
response. However, it remains unclear how mitochondria are involved in the modulation of this
response. Here, we investigated the involvement of mitochondrial dynamics and mitochondrial
ribosome protein death-associated protein 3 (DAP3) in the modulation of cellular radiation response
by Poly(I:C) in A549 and H1299 human lung adenocarcinoma cell lines. Western blotting revealed
that Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins and DAP3. In
addition, siRNA experiments showed that DAP3, and not mitochondrial dynamics, is involved in
the resistance of lung adenocarcinoma cells to IR-induced cell death. Finally, we revealed that a
more-than-additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted
by DAP3-knockdown because of an increase in cell death induced by IR alone. Together, our findings
suggest that RLR agonist Poly(I:C) modulates the cellular radiation response of lung adenocarcinoma
cells by downregulating DAP3 expression.

Keywords: retinoic acid-inducible gene-I-like receptor; ionizing radiation; radiosensitivity; mito-
chondria; death-associated protein 3; lung adenocarcinoma

1. Introduction

Mitochondria are essential organelles for regulating cellular functions, such as oxida-
tive phosphorylation, cell death, and immune responses [1,2]. Mitochondria are highly
dynamic organelles that undergo fusion and fission, referred to as mitochondrial dynam-
ics [3]. These processes are regulated by several proteins [3], e.g., mitochondrial fusion is
mainly regulated by mitofusin-1/2 (Mfn1/2) and optic atrophy protein 1 (OPA1), with
the former involved in outer membrane fusion and the latter in inner membrane fusion,
whereas dynamin-related protein 1 (Drp1) is the main protein that initiates mitochondrial
fission. In addition, the mitochondria contain their own DNA and ribosomes that synthe-
size mitochondrial DNA (mtDNA)-encoded proteins [4]. These characteristics have been
reported to be important in self-maintenance of mitochondrial functions in response to
various stress conditions such as viral infection [5–7].

Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition
receptors that recognize pathogen-associated molecular patterns in the cytosolic fraction.
RLRs detect viral RNA and elicit anti-viral responses, such as the induction of type I
interferons (IFNs) through the adaptor molecule mitochondrial anti-viral signaling protein
located in the mitochondrial membrane [8,9]. Furthermore, recent studies have shown
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that RLR activation induces anti-tumor effects, including anti-tumor immunity and cell
death in various cancer types, such as lung cancer [10–12]. Therefore, strategies for cancer
therapy focusing on RLR activation have been studied [12–14].

Our previous report showed that the RLR agonist synthetic double-stranded RNA
Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) enhanced radiosensitivity and that cotreatment with
Poly(I:C) and ionizing radiation (IR) exerted a more-than-additive effect for each treatment
alone in inducing cell death in human lung adenocarcinoma cells [15]. These results indicate
that Poly(I:C) modulates cellular radiation responses. However, it remains unknown how
mitochondria are involved in the modulation of cellular radiation responses by Poly(I:C) in
human lung adenocarcinoma cells.

Growing evidence has demonstrated that mitochondrial dynamics and mitochondrial
ribosome proteins are involved in cellular responses to various stresses, including radi-
ation and viral infection [5,16–19]. For example, it has been reported that mitochondrial
fission-related proteins are involved in the radiosensitivity of EMT6 murine breast cancer
cells [16]. In addition, mitochondrial dynamics are reported to regulate RLRs-mediated
antiviral immune response [5]. Moreover, Kim et al. reported that Hepatitis C virus causes
mitochondrial fission, which leads to evasion of apoptosis in huh-7 human hepatocellular
carcinoma cells [17]. Among mitochondrial ribosome proteins, death-associated protein 3
(DAP3; mitochondrial ribosome protein S29) is known as a GTP-binding protein and a ma-
jor positive mediator of cell death [18]. Conversely, Henning reported that overexpression
of DAP3 conferred radioresistance to ataxia telangiectasia cells exhibiting high radiosen-
sitivity [19]. Considering these findings, we hypothesized that the RLR agonist Poly(I:C)
modulates the cellular radiation response by regulating mitochondrial dynamics or the
mitochondrial ribosome protein DAP3. To address this hypothesis, we investigated the
relationship between mitochondrial dynamics, DAP3, and the modulation of the cellular
radiation response by Poly(I:C) in human lung adenocarcinoma cells.

The major findings of this study were as follows: (i) Poly(I:C) decreased the ex-
pression of mitochondrial dynamics-related proteins and DAP3 in human lung adeno-
carcinoma cells; (ii) DAP3 was involved in the resistance of lung adenocarcinoma cells
to IR-induced cell death, whereas mitochondrial dynamics were not; (iii) a more-than-
additive effect of cotreatment with Poly(I:C) and IR on increasing cell death was diluted by
DAP3-knockdown because of an increase in cell death induced by IR alone. These find-
ings suggest that the RLR agonist Poly(I:C) modulates cellular radiation response of lung
adenocarcinoma cells by downregulating DAP3 protein expression.

2. Results
2.1. Expression of Mitochondrial Dynamics-Related Proteins and Mitochondrial Morphology in
A549 Cells Treated with Poly(I:C) and/or IR

As shown in Figure S1A, the cell death in Poly(I:C)-treated A549 cells was increased
with time. In addition, the effect of Poly(I:C) to increase IR-induced cell death occurred
at around 48 h after cotreatment with Poly(I:C), and it was clearly observed at 72 h
(Figure S1B). Therefore, to clarify the mechanisms by which Poly(I:C) modulates cellu-
lar radiation response, analyses were mainly performed at 48 or 72 h after the treatment
with Poly(I:C) and/or IR in this study.

We initially analyzed the expression of mitochondrial dynamics-related proteins in
A549 cells treated with Poly(I:C), IR, or both. As shown in Figure 1A,B, the expression of
the mitochondria fission-related protein Drp1 was significantly lower in the cells treated
with Poly(I:C) at 48 h and 72 h. Similarly, Poly(I:C) or cotreatment with Poly(I:C) and IR
decreased the expression of mitochondrial fusion-related protein Mfn1 or fusion-competent
long isoform OPA1 (L-OPA1), not short isoform OPA1 [20], at 72 h after the treatment,
whereas this was not observed at 48 h after the treatment (Figure 1A,B).

As Poly(I:C) decreased the expression of mitochondrial dynamics-related proteins, we
analyzed the mitochondrial morphology of A549 cells treated with Poly(I:C). As shown in
Figure 1C, A549 cells treated with Poly(I:C) had elongated mitochondria when compared
with the control cells. This morphology was similar to that of Drp1-knockdown A549
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cells wherein Drp1 protein expression was decreased by transfection with siRNA-targeting
Drp1 (Figures 1D and 2A) but not to Mfn1-knockdown cells whose mitochondria were
fragmented (Figure 1D and Figure S2A).
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Figure 1. Effect of Poly(I:C)-HMW/LyoVec™ (Poly(I:C)) and/or ionizing radiation (IR) on mitochondrial dynamics in A549
cells. (A,B) A549 cells were incubated with Poly(I:C). After incubation for 1 h, the cells were irradiated with 4 Gy. After
culturing for 48 or 72 h, the cells were harvested for western blotting. (A) Representative images of immunoblots are shown.
Actin was used as a loading control. (B) The relative values of Mfn1/actin, L-OPA1/actin and Drp1/actin ratio are presented
as mean ± SD of three independent experiments. For the Drp1 proteins, both bands were quantified together. One sample
t-test was performed using the GraphPad QuickCalcs. * p < 0.05, ** p < 0.01 versus control. (C) A549 cells cultured for
72 h in the presence of Poly(I:C) were harvested for mitochondrial morphology analysis using the MitoTrackerTM Green
FM. (D) A549 cells transfected with control, Drp1, or Mfn1 siRNA were cultured for 72 h and harvested for mitochondrial
morphology analysis. Scale bar = 20 µm.
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Figure 2. Effects of Drp1-knockdown on IR-induced cell death in A549 cells. (A) A549 cells transfected
with control or Drp1 siRNA were harvested, and the Drp1 protein expression was analyzed by
western blotting. Representative images of immunoblots are shown. Actin was used as a loading
control. The relative values of Drp1/actin ratio are presented. For the Drp1 proteins, both bands
were quantified together. (B) Drp1-knockdown A549 cells were treated with 4 Gy. After culturing for
72 h, the cells were harvested for cell death analysis using annexin V-FITC/propidium iodide (PI)
staining. Representative cytograms of annexin V/PI staining are shown. The inset numbers indicate
the fractions of annexin V+/PI− or annexin V+/PI+ cells.

2.2. Effect of Drp1-Knockdown on IR-Induced Cell Death in A549 Cells

As Poly(I:C) decreased Drp1 expression prior to Mfn1 and L-OPA1 downregulation
and as Poly(I:C)-treated A549 cells exhibited elongated mitochondria similar to that in
Drp1-knockdown cells, we focused on Drp1. To investigate whether Drp1 is involved in
IR-induced cell death, Drp1-knockdown A549 cells (Figure 2A) were irradiated with X-ray,
followed by cell death analysis. Analysis of cell death using annexin V-FITC and propidium
iodide (PI) staining revealed that there was no significant difference in relative cell death
(sum of annexin V+/PI− and annexin V+/PI+ cells) between control and Drp1-knockdown
cells after IR (Figure 2B).

2.3. Downregulation of DAP3 Protein Expression by Poly(I:C) in Human Lung
Adenocarcinoma Cells

We then investigated DAP3 expression in A549 and H1299 human lung adenocarci-
noma cells treated with Poly(I:C) and/or IR. As shown in Figure 3A, Poly(I:C) or cotreat-
ment with Poly(I:C) and IR decreased DAP3 protein expression, and a significant decrease
in DAP3 protein expression was observed in the Poly(I:C)-treated group as compared with
the control group (Figure 3B).

2.4. Involvement of DAP3 in Radioresistance of Human Lung Adenocarcinoma Cells

We next examined the role of DAP3 in the radiation response of human lung adeno-
carcinoma cells using DAP3-knockdown cells (Figure 4A). Relative cell death in DAP3-
knockdown cells following IR was higher than that in control cells (Figure 4B). Moreover,
DAP3-knockdown markedly decreased the survival fraction in irradiated A549 and H1299
cells (Figure 4C). The radiation dose at which 10% of cells survived (D10) was reduced
from 4.38 Gy in control cells to 2.59 Gy in DAP3-knockdown A549 cells. In H1299 cells,
the D10 was reduced from 5.00 Gy in control cells to 3.81 Gy in DAP3-knockdown cells.
Collectively, these results indicate that DAP3 is involved in radioresistance of human lung
adenocarcinoma cells.
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Figure 3. Death-associated protein 3 (DAP3) expression in human lung adenocarcinoma cells treated
with Poly(I:C) and/or IR. (A,B) A549 and H1299 cells were incubated with Poly(I:C). After incubation
for 1 h, the cells were irradiated with 4 Gy. After culturing for 72 h, the cells were harvested for
western blotting. (A) Representative images of immunoblots are shown. Actin was used as a loading
control. (B) The relative values of DAP3/actin ratio are presented as mean± SD of three independent
experiments. One sample t-test was performed using the GraphPad QuickCalcs. * p < 0.05, ** p < 0.01
versus control.
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Figure 4. Effects of DAP3-knockdown on IR-induced cell death and radiosensitivity of human lung adenocarcinoma cells.
(A) A549 and H1299 cells transfected with control or DAP3 siRNA were harvested, and DAP3 protein expression was
analyzed by western blotting. Representative images of immunoblots are shown. Actin was used as a loading control. The
relative values of DAP3/actin ratio are presented. (B) DAP3-knockdown A549 and H1299 cells were irradiated with 4 Gy.
After culturing for 72 h, the cells were harvested for cell death analysis using annexin V-FITC/PI staining. Representative
cytograms of annexin V/PI staining are shown. The inset numbers indicate the fractions of annexin V+/PI− or annexin
V+/PI+ cells. (C) DAP3-knockdown A549 and H1299 cells were irradiated with X-rays. After a 20-h incubation, the cells
were harvested and seeded in fresh media and further cultured until noticeable growth. The surviving fraction of A549 and
H1299 cells is shown. Data are presented as mean ± SD of three independent experiments. ** p < 0.01 versus control siRNA.
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2.5. Involvement of DAP3 in the More-Than-Additive Effect of Cotreatment with Poly(I:C) and IR
on Cell Death in Human Lung Adenocarcinoma Cells

We investigated whether DAP3 is involved in the more-than-additive increase in the
death of human lung adenocarcinoma cells caused by cotreatment with Poly(I:C) and
IR. In line with our recent report [15], the percentage of annexin V+ cells was higher
in cotreated cells than in cells treated with IR or Poly(I:C) alone (Figure 5A(left)). The
net increase in annexin V+ fraction was about 17% higher with cotreatment than the
sum of fractions induced by IR and Poly(I:C) individually. Interestingly, the sum of
annexin V+ fractions induced by IR and Poly(I:C) individually was increased by DAP3-
knockdown, whereas no significant difference in the annexin V+ fraction of cotreated cells
was observed between the control and DAP3-knockdown cells (Figure 5A(right)). As a
result, the difference between that sum and the fraction of annexin V+ cells induced by
cotreatment with Poly(I:C) and IR was significantly decreased to approximately 8% upon
DAP3-knockdown (Figure 5A(right)). Similar to results in A549 cells, DAP3-knockdown
significantly increased IR-induced cell death in H1299 cells, which diluted the more-than-
additive effect of cotreatment on cell death from 8.5% to 4.2% (Figure 5B).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 15 
 

 
Figure 5. DAP3 is involved in the more-than-additive effect of cotreatment with Poly(I:C) and IR on 
induction of cell death. DAP3-knockdown A549 (A) and H1299 cells (B) were incubated with 
Poly(I:C). After incubation for 1 h, the cells were irradiated with 4 Gy. After culturing for 72 h, the 
cells were harvested for cell death assay using annexin V/PI staining. (left) Representative cyto-
grams of annexin V/PI staining are shown. The inset numbers indicate the fractions of annexin 
V+/PI− or annexin V+/PI+ cells. (right) The results are presented as the net increase in the fraction of 
annexin V+ cells (the sum of annexin V+/PI− cells and annexin V+/PI+ cells). Data are presented as 
mean ± SD of three independent experiments. * p < 0.05 versus control siRNA. 

2.6. Post-Transcriptional Downregulation of DAP3 Expression by Poly(I:C) in A549 Cells 
We finally explored the mechanism of Poly(I:C)-induced decrease in DAP3 protein 

expression of A549 cells. When the expression of DAP3 mRNA in A549 cells was analyzed 
using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), no signif-
icant difference was noted in the DAP3 mRNA expression between the control cells and 
Poly(I:C)-treated cells (Figure 6A), suggesting that Poly(I:C) decreases DAP3 protein ex-
pression in a transcription-independent manner. It has been reported that double-
stranded RNA induces the phosphorylation of eukaryotic initiation factor-2α (eIF-2α), 
which inhibits the translation of mRNA [21]. Therefore, we analyzed the effect of Poly(I:C) 
on the expression of phosphorylated eIF-2α (p-eIF-2α). As shown in Figure 6B,C, Poly(I:C) 
increased p-eIF-2α expression, followed by the downregulation of DAP3 protein expres-
sion. 

[A]

0

10

20

30

40

50

 4 Gy
 Poly(I:C)
 Poly(I:C)+4 Gy

A549

siRNA DAP3Control

8.6±2.4*

*

16.9±3.4

N
et

 in
cr

ea
se

 in
 A

nn
ex

in
V

+

ce
lls

 (%
)

0

10

20

30

40

50
 4 Gy
 Poly(I:C)
 Poly(I:C)+4 Gy

*

H1299

siRNA DAP3Control

*

8.5±1.2 4.2±1.2

N
et

 in
cr

ea
se

 in
 A

nn
ex

in
V

+

ce
lls

 (%
)

[B]

Annexin-V FITC

PI

0 Gy

Control
siRNA

DAP3
siRNA

1.2%

1.2%

9.1%

2.2%

3.5%

1.2%

17.8%

2.7%

4 GyH1299

11.5%

5.7%

23.4%

11.0%

15.3%

5.1%

30.3%

9.1%

Poly(I:C) Poly(I:C)+ 4 Gy

100 101 102 103 100 101 102 103 100 101 102 103 100 101 102 103

100 101 102 103 100 101 102 103 100 101 102 103 100 101 102 103
103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

Annexin-V FITC

PI

0 Gy

Control
siRNA

DAP3
siRNA

1.0%

0.5%

4.7%

1.8%

2.1%

0.7%

13.4%

2.6%

4 GyA549

10.5%

7.7%

22.1%

17.0%

13.2%

6.9%

25.2%

14.1%

Poly(I:C) Poly(I:C)+ 4 Gy

100 101 102 103 100 101 102 103 100 101 102 103
100 101 102 103

100 101 102 103 100 101 102 103 100 101 102 103 100 101 102 103
103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

103

102

101

100

Figure 5. DAP3 is involved in the more-than-additive effect of cotreatment with Poly(I:C) and IR
on induction of cell death. DAP3-knockdown A549 (A) and H1299 cells (B) were incubated with
Poly(I:C). After incubation for 1 h, the cells were irradiated with 4 Gy. After culturing for 72 h, the
cells were harvested for cell death assay using annexin V/PI staining. (left) Representative cytograms
of annexin V/PI staining are shown. The inset numbers indicate the fractions of annexin V+/PI− or
annexin V+/PI+ cells. (right) The results are presented as the net increase in the fraction of annexin
V+ cells (the sum of annexin V+/PI− cells and annexin V+/PI+ cells). Data are presented as mean ±
SD of three independent experiments. * p < 0.05 versus control siRNA.

2.6. Post-Transcriptional Downregulation of DAP3 Expression by Poly(I:C) in A549 Cells

We finally explored the mechanism of Poly(I:C)-induced decrease in DAP3 protein
expression of A549 cells. When the expression of DAP3 mRNA in A549 cells was analyzed
using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), no signifi-
cant difference was noted in the DAP3 mRNA expression between the control cells and
Poly(I:C)-treated cells (Figure 6A), suggesting that Poly(I:C) decreases DAP3 protein ex-
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pression in a transcription-independent manner. It has been reported that double-stranded
RNA induces the phosphorylation of eukaryotic initiation factor-2α (eIF-2α), which inhibits
the translation of mRNA [21]. Therefore, we analyzed the effect of Poly(I:C) on the expres-
sion of phosphorylated eIF-2α (p-eIF-2α). As shown in Figure 6B,C, Poly(I:C) increased
p-eIF-2α expression, followed by the downregulation of DAP3 protein expression.
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Figure 6. Effects of Poly(I:C) on the DAP3 mRNA expression and p-eIF-2α protein expression in
A549 cells. (A) A549 cells were cultured with Poly(I:C) for 24–72 h and harvested for qRT-PCR.
Data are presented as mean ± SD of three independent experiments. (B,C) A549 cells treated with
Poly(I:C) were cultured for 24–72 h and harvested for western blotting. (B) Representative images
of immunoblots are shown. Actin was used as the loading control. (C) The relative values of
phosphorylated eukaryotic initiation factor-2α (p-eIF-2α)/eIF-2α and DAP3/actin ratio are presented
as mean ± SD of three independent experiments. One sample t-test was performed using the
GraphPad QuickCalcs. * p < 0.05, ** p < 0.01 versus control.

3. Discussion

RLRs elicit immune responses against viruses and tumors through the mitochon-
dria [22,23]. We previously reported that the RLR agonist Poly(I:C) enhanced radiosen-
sitivity and that cotreatment with Poly(I:C) and IR more than additively increased cell
death in human lung adenocarcinoma cells [15]. However, it remains unknown how
Poly(I:C) modulates the cellular radiation response in human lung adenocarcinoma cells.
Here we investigated the involvement of mitochondrial dynamics and the mitochondrial
ribosome protein DAP3 in the modulation of the cellular radiation response by Poly(I:C).
The present results demonstrate that Poly(I:C) decreased mitochondrial dynamics-related
proteins and DAP3 protein expression. However, siRNA experiments revealed that DAP3,
but not mitochondrial dynamics, regulates radioresistance and is involved in the more-
than-additive effect of cotreatment with Poly(I:C) and IR on cell death in human lung
adenocarcinoma cells.

Several studies have reported the relationship between mitochondrial dynamics and
viral infection or RLR-mediated antiviral pathway [5,24–26]. For example, it has been
reported that RLR activation induces the elongation of mitochondria [5]. In addition,
dengue and human immunodeficiency viruses, which are detected by RLR [27,28], pro-
mote mitochondrial fusion by decreasing Drp1 expression [25,26]. These findings support
our observations that Poly(I:C) reduces the Drp1 expression and induces mitochondrial
elongation. Intriguingly, we observed a decrease in Mfn1 and L-OPA1 expressions follow-
ing the downregulation of the Drp1 expression (Figure 1A,B). Saita et al. reported that the
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knockdown of Drp1 promotes the degradation of Mfn1 and L-OPA1 protein expression via
the ubiquitin–proteosome systems and proteolytic cleavage, respectively [29]. Therefore,
it is likely that the decrease in Mfn1 and L-OPA1 protein expressions resulted from the
downregulation of Drp1 expression by Poly(I:C).

Although some reports indicate the involvement of Drp1 in cell death [16,30–32], this
was not observed in A549 cells in this study. For example, Kobashigawa et al. reported
that normal human fibroblast cells with Drp1-knockdown were resistant to gamma ir-
radiation [30]. Similarly, Xu et al. showed that arenobufagin- or staurosporine-induced
cell death was decreased by Drp1-knockdown in HCT116 human colon cancer cells [31].
These reports indicate that Drp1 mediates cell death. Conversely, the protective effects
of Drp1 on cell death have also been reported [33–35]. For example, depletion of Drp1
is known to increase apoptosis in human colon cancer cells [33]. In addition, Chen et al.
reported that silencing of Drp1 increased radiosensitivity of UM87MG and T98G human
glioblastoma cells [34]. Furthermore, Akita et al. demonstrated that Drp1-knockdown
sensitized A375 cells (a human malignant melanoma) and A549 to tumor necrosis factor-
related apoptosis-inducing ligand, although Drp1-knockdown by itself did not increase the
rate of apoptosis [35]. Therefore, taken together, it is likely that the involvement of Drp1 in
cell death depends on the types of cell and stimulus-inducing cell death.

A pro-apoptotic effect of DAP3 has been reported [36–38]. DAP3 was originally
identified as a mediator of IFN-gamma-induced cell death by functional gene cloning [36].
In addition, Miyazaki et al. showed that DAP3 expression was required for inducting
anoikis, which is programmed cell death caused by loss of adhesion [37]. In contrast to these
reports, Henning [19] and the current study suggest that DAP3 is related to radioresistance.
Therefore, the role of DAP3 in cell death may depend on the type of stimulus inducing
cell death.

Although this study depicted the involvement of DAP3 in radioresistance of hu-
man lung adenocarcinoma cells, the mechanism by which DAP3 regulates radioresistance
remains unclear. DAP3 is known to control the mitochondria dynamics as well as the
mitochondrial function. Xiao et al. reported that the knockdown of DAP3 increased
the fragmentation in mitochondria [39]. We also observed fragmented mitochondria in
DAP3-knockdown A549 cells (Figure S3). Since several reports have demonstrated an
association between mitochondria fission and cell death [16,30–32,40,41], we assumed
that mitochondrial fragmentation contributes to the increase in IR-induced cell death via
DAP3-knockdown. However, Mfn1-knockdown leading to mitochondrial fragmentation
did not affect the IR-induced cell death in A549 cells (Figure 1D and Figure S2). There-
fore, it is likely that DAP3 controls the radioresistance of lung adenocarcinoma cells in
a mitochondria fission-independent manner. Mitochondrial functions, such as energy
metabolism, are closely related to the radioresistance of most cancers, including lung can-
cer [42,43]. Since DAP3 is essential for maintaining mitochondrial functions, including ATP
production [39], it is possible that DAP3-knockdown causes radiosensitization through
impairment of mitochondrial functions, such as energy metabolism. Further studies fo-
cusing on mitochondrial function are needed to clarify DAP3-mediated radioresistance
mechanisms.

As mentioned earlier, the fragmentation of mitochondria was observed in DAP3-
knockdown A549 cells (Figure S3). Interestingly, Poly(I:C) treatment induced mitochondrial
elongation despite the downregulation of DAP3 protein expression (Figure 1C). Xiao et al.
reported that DAP3-knockdown increased the fragmentation of mitochondrial through
phosphorylation of Drp1 [39]. Considering that Poly(I:C) reduces not only DAP3 but also
Drp1 protein expression and that the mitochondria morphology of Poly(I:C)-treated cells
is similar to that of Drp1-knockdown cells, it seems that the mitochondrial morphology
of Poly(I:C)-treated A549 cells is predominantly regulated by the downregulation of the
Drp1 expression.

Here, we showed that DAP3-knockdown increased cell death after IR (Figure 4).
Notably, DAP3-knockdown did not affect the cell death induced by cotreatment with



Int. J. Mol. Sci. 2021, 22, 420 9 of 13

Poly(I:C) and IR (Figure 5). These results suggest that the effect of Poly(I:C) to increase
IR-induced cell death is related to DAP3, because if the effect is independent of DAP3,
DAP3-knockdown should further increase cell death induced by cotreatment with Poly(I:C)
and IR. Since Poly(I:C) decreased DAP3 protein expression, it is believed that Poly(I:C)
increases IR-induced cell death through the downregulation of DAP3 expression.

The present results suggest that downregulation of DAP3 protein expression by
Poly(I:C) participated in the more-than-additive effect of cotreatment on cell death. To the
best of our knowledge, this is the first study to suggest that an RLR agonist negatively
regulates DAP3 protein expression. Interestingly, Poly(I:C) post-transcriptionally decreased
DAP3 protein expression (Figure 6). Since Poly(I:C) increased the p-eIF-2α expression
followed by the downregulation of DAP3 protein expression, it is believed that Poly(I:C) de-
creased DAP3 protein expression through inhibition of translation of DAP3 mRNA. Indeed,
we could not exclude the possibility that mtDNA was involved in the post-transcriptional
regulation of DAP3 expression by Poly(I:C). A previous report suggests that the amount of
mtDNA controls DAP3 protein expression [44] and that infection with human immunode-
ficiency virus 1, which is detected by RLR [27], decreases mtDNA [45]. Further study of
mtDNA will be required to investigate this possibility.

In conclusion, we show that the downregulation of DAP3 protein expression by
Poly(I:C) contributes to the more-than-additive effect of cotreatment with Poly(I:C) and
IR on cell death in human lung adenocarcinoma cells. In addition, the present results
highlighting the importance of DAP3 in the cellular radiation response of human lung
adenocarcinoma cells improve our understanding of DAP3-mediated radioresistance mech-
anisms and have implications on the efficacy of radiation therapy for lung adenocarcinoma.

4. Materials and Methods
4.1. Reagents

Calcium- and magnesium-free phosphate-buffered saline was purchased from Wako
Pure Chemical Industries, Ltd. (Osaka, Japan). PI was purchased from Sigma-Aldrich
(Merck KGaA, Darmstadt, Germany). Poly(I:C)-HMW/LyoVec™ (Poly(I:C)), which is a
complex of the synthetic double-stranded RNA analog poly(I:C) and a transfection reagent
(LyoVec™), were purchased from InvivoGen (San Diego, CA, USA). Annexin V-FITC was
purchased from BioLegend, Inc. (San Diego, CA, USA). Anti-rabbit horseradish peroxidase
(HRP)-conjugated IgG and anti-mouse HRP-conjugated IgG secondary antibodies, anti-
Mfn1 (cat. no. 14739), anti-OPA1 (cat. no. 80471), anti-Drp1 (cat. no. 5391), anti-eIF-2α
(cat. no. 9722), anti-phospho-eIF-2α (cat. no. 3597), anti-β-actin (cat. no. 4967) monoclonal
antibodies, and SignalSilence® Mfn1 (cat. no. 13303) siRNA were purchased from Cell
Signaling Technology Inc. (Danvers, MA, USA). Anti-DAP3 (cat. no. 610662) monoclonal
primary antibody was purchased from BD Biosciences (Franklin Lakes, NJ, USA). Ambion
Silencer® Select Pre-designed siRNA against the gene-encoding Drp1 (cat. no. s19560),
the gene-encoding DAP3 (cat. no. s1506), and Silencer® Select Negative #1 Control
(cat. no. AM4611) siRNAs were purchased from Thermo Fisher Scientific, Inc. (Waltham,
MA, USA).

4.2. Cell Culture and Treatment

Human lung adenocarcinoma cells A549 and H1299 were purchased from Riken Bio-
Resource Center (Tsukuba, Japan) and American Type Culture Collection (ATCC, Manassas,
VA, USA), respectively. A549 cells were maintained in Dulbecco’s modified Eagle’s medium
(Sigma-Aldrich) supplemented with 1% penicillin/streptomycin (Wako Pure Chemical
Industries, Ltd.) and 10% heat-inactivated fetal bovine serum (Sigma-Aldrich) at 37 ◦C in a
humidified atmosphere of 5% CO2. H1299 cells were maintained in RPMI1640 medium
(Gibco®; Invitrogen/Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 1%
penicillin/streptomycin and 10% heat-inactivated FBS at 37 ◦C in a humidified atmosphere
of 5% CO2.
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Cells were seeded onto 35-mm culture dishes (6.0 × 104 cells) or 60-mm culture dishes
(1.2 × 105 cells) (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) and were cultured for 6 h to
allow adherence. After incubation, the RLR agonist Poly(I:C) (250 ng/mL) was added to
the culture medium for the indicated time periods. Next, the cells were harvested using
0.1% trypsin-ethylenediaminetetraacetic acid (Wako Pure Chemical Industries, Ltd.) for
subsequent analysis. In some experiments, X-ray irradiation was performed 1 h after
Poly(I:C) administration, and the treated cells were cultured.

4.3. In Vitro X-ray Irradiation

Cells were irradiated (150 kVp; 20 mA; 0.5-mm Al filter and 0.3-mm Cu filter) using
an X-ray generator (MBR-1520R-3; Hitachi, Ltd., Tokyo, Japan) at a distance of 45 cm from
the focus and a dose rate of 0.99–1.02 Gy/min.

4.4. SDS-PAGE and Western Blotting

SDS-PAGE and western blot analysis were performed as previously reported [46]. The
following primary antibodies were used: anti-Mfn1 (1:3000), anti-OPA1 (1:3000), anti-Drp1
(1:3000), anti-DAP3 (1:3000), and anti-β-actin (1:4000). The following secondary antibodies
were used: HRP-conjugated anti-rabbit IgG (1:10,000) and HRP-conjugated anti-rabbit
IgG (1:10,000). The antigens were visualized using the ClarityTM Western ECL Substrate
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). Blot stripping was performed using
Stripping Solution (Wako Pure Chemical Industries, Ltd.). Quantification of the bands was
performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

4.5. Mitochondrial Morphology

Cells were seeded onto 35-mm glass bottomed dishes (6.0 × 104 cells) and cultured
for 3 days. In an experiment, the cells were cultured in the presence of 250 ng/ml Poly(I:C).
After culturing for 3 days, the cells were stained with 100 nM MitoTrackerTM Green FM
(Invitrogen; Thermo Fisher Scientific, Inc.) for 30 min at 37 ◦C in a humidified atmosphere
of 5% CO2. After washing with medium, fresh growth medium was supplied. Fluorescence
images were obtained using Olympus IX71 fluorescent microscope (Tokyo, Japan) and
DP2-BSWsoftware (Olympus).

4.6. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA extraction and synthesis of complementary DNA templates were per-
formed as previously described [47]. The synthesis of complementary DNA templates was
performed using an iScript cDNA synthesis kit (Bio-Rad Laboratories, Inc.) according to
the manufacturer’s instructions. Quantitative RT-PCR was performed using Power SYBR®

Green Master Mix (Applied Biosystems Inc., Carlsbad, CA, USA) in a Step One Plus™
system (Applied Biosystems Inc.). Differences in gene expression relative to unirradiated
controls were determined using ∆Ct values after normalization to the housekeeping gene
β-actin. β-actin primer sequences are reported elsewhere [48]. Primer sequences for DAP3
were 5′-AGGAGTTGCTGGGAAAGGA-3′ (sense) and 5′-TGGAAACCAGGATGGGAATA-
3′ (antisense).

4.7. siRNA Transfection

Cells were transfected with siRNA targeting Drp1, Mfn1 or Control siRNA using
Lipofectamine® RNAiMAX (Invitrogen; Thermo Fisher Scientific, Inc.) according to the
manufacturer’s protocol. Following incubation for 48 h, Drp1 and Mfn1 siRNA transfected
cells were harvested and used for subsequent analyses. Transfections of siRNA targeting
either DAP3 or Control siRNA were performed twice. In brief, cells transfected for 48 h were
harvested, transfected again, and cultured for another 48 h. After the second transfection,
the cells were harvested and used for subsequent analyses. The final concentration of all
siRNAs was 10 nM.
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4.8. Detection of Cell Death

Cell death was analyzed by annexin V-FITC and PI staining as previously reported [49].
In brief, treated cells were harvested, washed, and suspended in annexin V Binding Buffer
(BioLegend). Annexin V-FITC (2.5 µg/mL) and PI (50 µg/mL) solutions were added to cell
suspensions and incubated for 15 min at room temperature in the dark. The cells were then
analyzed using flow cytometry (Cytomics FC500; Beckman–Coulter, Fullerton, CA, USA).

4.9. Clonogenic Survival Assay

DAP3-knockdown cells were seeded onto 35-mm culture dishes (6.0 × 104 cells) and
incubated for 6 h to allow them to adhere to the dish. After incubation, the cells were
exposed to X-rays and cultured for about 20 h. The cultured cells were harvested using
0.1% trypsin-ethylenediaminetetraacetic acid and seeded onto 60-mm culture dishes. The
cells were incubated for 7–12 days, fixed with methanol, and stained with Giemsa solution
(Wako Pure Chemical Industries, Ltd.). Experiments were performed in triplicate. Colonies
containing > 50 cells were counted. The surviving fraction at each radiation dose was
calculated as previously reported [15].

4.10. Statistical Analysis

Data are presented as the mean ± standard deviation of three independent experi-
ments. Comparisons between the control and experimental groups were performed using
the two-sided Student’s t-test or Mann–Whitney U-test depending on data distribution.
p values < 0.05 were used to indicate statistically significant differences. Excel 2016 soft-
ware (Microsoft, Washington, DC, USA) along with the add-in software Statcel 4 (The
Publisher OMS Ltd., Tokyo, Japan) was used to perform statistical analyses. When control
group is considered as 100%, one sample t test was performed using GraphPad QuickCalcs
(see “URLs”).

4.11. URLs

GraphPad QuickCalcs, https://www.graphpad.com/quickcalcs/.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/1/420/s1.
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DAP3 Death-associated protein 3
Drp1 Dynamin-related protein 1
eIF-2α eukaryotic initiation factor-2α
HRP Horseradish peroxidase
IFNs Interferons
IR Ionizing radiation
L-OPA1 long isoform OPA1
mtDNA Mitochondrial DNA
Mfn1/2 Mitofusin-1/2
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OPA1 Optic atrophy 1
p-eIF-2α Phosphorylated eIF-2α
Poly(I:C) Poly(I:C)-HMW/LyoVec™
PI Propidium iodide
qRT-PCR Quantitative reverse transcription polymerase chain reaction
RIG-I Retinoic acid-inducible gene-I
RLRs RIG-I-like receptors
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