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Abstract

Motivation: Cancer dependencies provide potential drug targets. Unfortunately, dependencies differ among cancers
and even individuals. To this end, visible neural networks (VNNs) are promising due to robust performance and the
interpretability required for the biomedical field.

Results: We design Biological visible neural network (BioVNN) using pathway knowledge to predict cancer depend-
encies. Despite having fewer parameters, BioVNN marginally outperforms traditional neural networks (NNs) and
converges faster. BioVNN also outperforms an NN based on randomized pathways. More importantly, dependency
predictions can be explained by correlating with the neuron output states of relevant pathways, which suggest de-
pendency mechanisms. In feature importance analysis, BioVNN recapitulates known reaction partners and proposes
new ones. Such robust and interpretable VNNs may facilitate the understanding of cancer dependency and the de-
velopment of targeted therapies.

Availability and implementation: Code and data are available at https://github.com/LichtargeLab/BioVNN

Contact: lichtarge@bcm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision medicine aims to improve therapy based on individual pa-
tient and disease variations. In cancer, a promising approach is to
target treatment on specific genetic vulnerabilities, which encode
mechanisms essential to the survival and proliferation of cancer
cells. Genetic dependencies differ among cancers and individuals,
unfortunately, requiring resource-intensive experimental approaches
[e.g. CRISPR screening (Dempster et al., 2019b; Meyers et al.,
2017)] to map them. As these experiments are impractical to con-
duct on every patient, algorithmic methods to pinpoint dependencies
may accelerate a general approach to discover cancer essential genes
for personalized therapeutic targeting.

One possible approach is deep learning (i.e. neural networks;
NNs). It has been useful in biological applications, such as to predict
sequence specificities of DNA- and RNA-binding proteins
(Alipanahi et al., 2015) and to classify clinical images (Esteva et al.,
2017). Despite robust performance, however, these models are like
black boxes. Their parameters are difficult to interpret due to their
complex and nonlinear relationship with the output (Eraslan et al.,
2019). While model interpretability is not uniformly crucial, it is

highly desired in biomedical applications, to guide both clinicians
and patients to make well-reasoned medical decisions.

To improve interpretability, recent studies sought to encode bio-
logical knowledge directly into the architecture of the NN. This led
to parameters and output states that represent biological entities or
subsystems (Eraslan et al., 2019; Yu et al., 2018). These models
were named visible neural networks (VNNs; Ma et al., 2018) as
opposed to the traditional, black box NN whose parameters are not
interpretable. For example, Ma et al. (2018) used Gene Ontology
(The Gene Ontology Consortium, 2017) and Clique-eXtracted
Ontology (Kramer et al., 2014) to design the architecture of an NN
model, DCell, for predicting yeast cell growth given gene deletion
genotypes. The same group further extended the model to predict
drug responses and synergy (Kuenzi et al., 2020). Lin et al. (2017)
and Peng et al. (2019) embedded protein–protein interactions, pro-
tein–DNA interactions and Gene Ontology into VNNs that reduce
the dimensions of single-cell RNA-seq data. Eetemadi and
Tagkopoulos (2019) used the transcriptional regulatory network to
build the architecture of the genetic NN to predict gene expression.
These examples suggest that VNNs perform as well or better than
traditional NNs and other non-NN methods while providing
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interpretable models/predictions. However, signaling pathway infor-
mation has not yet been used to design VNN.

Pathways [e.g. Reactome (Fabregat et al., 2018)] summarize
how some biological components work together to relay upstream
signals downstream and biochemically transform molecules through
orchestrated series of reactions. Such pathways (Fig. 1A) can be
viewed as a hierarchy of interconnected modules that integrate sig-
nals and process responses, not unlike an NN architecture (Fig. 1B).
Therefore, such pathway information may naturally fit well to build
VNNs models that better reflect biological and cellular systems.

As a test, VNNs might help deconvolute cancer dependencies
where, besides their performance, they could advance the under-
standing of the internal states of biological systems by linking pre-
dictions to underlying mechanisms represented by pathways (Yu
et al., 2018). However, to our knowledge, VNNs have not been uti-
lized to predict cancer dependencies to improve the model interpret-
ability and accelerate precision medicine.

To that end, we develop here Biological Visible Neural Network
(BioVNN), an interpretable model, to predict the dependencies of poten-
tially druggable genes for cancer cells with RNA expression features.
Crucially, the architecture design of BioVNN reflects domain expert-
curated signaling pathways, Reactome (Fabregat et al., 2018). Just as con-
volutional layers combine pixel information of spatial relationships,
BioVNN integrates modular information on gene pathways; the neuron
units are sparsely connected by following the pathway knowledge
(Fig. 1B). We compare BioVNN to a matched random gene group model
and to a fully connected network (FCN), and find that even with fewer
training cycles, it significantly outperforms the former and slightly outper-
forms the latter, which has 193 times more parameters in five-fold cross-
validation. In a time-stamp experiment, BioVNN outperforms random
group model when predicting future observations from prior data.
Besides this robust performance, BioVNN predictions can also be
explained by the neuron states of specific pathways. The pathway states
are different between dependent and nondependent cells and such differ-
ence specifically exists only when the gene of target variable is in the path-
ways. On closer examination, strikingly, BioVNN learns to overweight
the feature genes in the same reactions as the genes of target variable,
even though such reaction information is never explicitly provided in
training data or model. In addition, greater feature weights may suggest
novel reaction components. In summary, BioVNN embeds Reactome
pathways to predict gene dependency in cancer cells and also provide in-
terpretable neuron states that suggest a rationale for the predictions. By
improve our understanding of cancer dependency, this robust and inter-
pretable model is a step toward faster development of precision medicine.

2 Materials and methods

2.1 Data collection and preprocessing
2.1.1 Pathway data

To design BioVNN from pathway information, the pathways gene
set file (*.gmt), pathway hierarchy relationship file, and reaction file
were downloaded from Reactome (Fabregat et al., 2018) (https://
reactome.org) on May 29, 2019. To ensure that the pathway infor-
mation was useful, we selected just those 1,425 pathways (including
the root) with at least five genes which are feature genes (which ex-
pression profiles are used as the model input) and/or genes in the tar-
get variable (which dependency predicted in the model output).
They consist of total 9,501 genes. The reaction file provides more
detailed gene–gene relationship information within a pathway, e.g.
binding, activation, translocation, degradation and biochemical
events. We test whether the trained models could recapitulate these
reaction relationships as validation.

2.1.2 RNA expression features and dependency target variables

We downloaded CCLE RNA expression data of cancer cell lines
(Ghandi et al., 2019) and CRISPR data of cancer cell lines
(Dempster et al., 2019b; Meyers et al., 2017) of 19Q3 and 20Q2
versions from DepMap (https://depmap.org). In total, 609 cell lines
in 19Q3 and 142 different cell lines newly added in 20Q2, which
have both expression and CRISPR data, were used.

The expression data are RNA sequencing (RNA-seq) log2-
transformed TPM (transcripts per million) values, using a pseudo-
count of 1. To select feature genes, we first only considered those
with values greater than 1 in at least 1% of the cell lines (i.e. 7 cell
lines). Then, we further narrowed our choice to genes present in
Reactome. This yielded 9488 genes as RNA expression features.

The CRISPR screening measures the knockout effects of around
18,000 genes on cancer cell growth and the more significant effects
represent higher dependencies. The dependency probabilities (be-
tween 0 and 1) were used to set up a classification problem of
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Fig. 1. An illustration of the BioVNN for predicting gene dependency. (A) A toy ex-

ample of signaling pathway hierarchy. G, gene; P, pathway. P1 contains G1, G2, G3

and G7; P2 contains G4 and G5; P3 contains G3 and G6; P4 contains G3 and G7;

P7 is the parent pathway of P1 and P2; P6 is the parent pathway of P3 and P4. (B) A

BioVNN designed based on pathway information in (A). The information from

nodes in previous layers is integrated in a node of the next layer only if two nodes

are connected. The input layer nodes (genes) are connected to the hidden layer nodes

(pathways) only when the gene is in that pathway. The input consists of RNA fea-

tures and deletion status (see Section 2). Lower-level pathways are further connected

to higher-level pathways for integrating information toward the prediction of gene

dependency. BioVNN is sparsely connected opposed to (C) traditional fully con-

nected feedforward network
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interests, i.e. a gene has a significant effect on a cell line, as suggested
on the DepMap webpage: samples with dependency �0.5 were
defined as the positive class (target variable¼1) and the samples
with dependency <0.5 were defined as the negative class (target
variable¼0).

To choose genes as target variables (which dependencies were
predicted in the model output) we first selected genes that exist in
both Reactome and CRISPR data. Then, to focus on genes with suf-
ficient data for training and potential druggabilities, we further
restricted our choice to a final set of 683 genes with (i) at least six
positive samples; (ii) at least six negative samples; (iii) at least one
druggable gene category and at least one chemical interaction in
DGIdb (which records drug–gene interactions and potentially drug-
gable genes) (Cotto et al., 2018) (v3.0.2). Note also that we
excluded genes which were either nearly all dependent or nearly all
nondependent across cell lines as they could lead to overestimates
and inaccurate performance evaluation.

2.2 BioVNN design
Like the convolutional layers combining pixel information based on
spatial relationship and forming higher-level abstraction in deeper
layers, BioVNN layers integrate information based on gene–path-
way and pathway–pathway relationships and simulate the represen-
tations of higher-level pathways in deeper layers. We hypothesize
that NNs only need to integrate the information of the genes/path-
ways which are functionally related to predict dependency. In other
words, we specifically look for the correlation among RNA expres-
sion and deletion status of all genes in the same pathway and the
correlation among pathways having the same parents. Hence, the
first hidden layer of lowest-level pathways selectively connects those
input genes in the same pathways to the same neuron units, which
look for the combinatory effects of expressed and knocked-out genes
on cell growth/death. Then, it sends the integrated information to
the neurons of corresponding parent pathways until reaching the
root. These are important distinctions between BioVNN and FCNs.
BioVNN selectively integrates the input based on pathway know-
ledge, whereas FCNs integrate all information from the previous
layer (Fig. 1). Code and data are available at https://github.com/
LichtargeLab/BioVNN.

The input of BioVNN consists of two parts (Fig. 1B). The first
part is the RNA gene expression profile of the cell line. The second
part is the deletion status that specifies which gene is ‘knocked-out’
to simulate its effect on the cell line, inspired by DCell (Ma et al.,
2018). With the architecture mimicking the 13-level hierarchy of
1,425 Reactome pathways, BioVNN predicts the dependency of the
gene in the cell line specified in the input. Conceptually, BioVNN
could be viewed as a sparsely connected feedforward network of 13
hidden layers (Fig. 1B).

Mathematically, we denote the dataset as

D ¼ xi;j; yi;jð Þjxi;j 2 R
kþn; yi;j 2 0; 1f g; i 2 1;m½ �; j 2 1;n½ �

n o
, where

k is the number of RNA expression genes, m is the number of cell
lines and n is the number of genes in the deletion status. The data
used to compare the output prediction of the model, yi;j is the de-
pendency of the gene j in cell line i. Input xi;j is a concatenated vector

of �c i;j 2 R
k and gj 2 R

n. To reduce the curse of dimensionality and

to focus on biologically relevant genes based on pathway know-
ledge, while predicting dependency of gene j, we mask the RNA ex-

pression vector ci 2 R
k of cell line i as �c i;j; �c i;j ¼ ci8uj, where

uj 2 R
k is a binary vector like a filter to keep genes in the same path-

ways as gene j (1¼ same pathway; 0 otherwise). The genes in uj are
selected from the smallest pathways to largest pathways until reach-
ing 100 genes because smaller pathways represent stronger relation-
ship than larger pathways.

We denote the deletion status as gj, a one-hot encoding vector
of n genes (1¼knocked-out; 0 otherwise). gj assigns the gene for
predicting dependency and directs model’s attention to that gene.
In this way, we formulate the problem as a single-label binary
classification (i.e. agnostic to which genes) instead of a multilabel
classification (i.e. treating different genes as separate labels and

adding more neurons in the output layers). The model could bene-
fit from more samples (i.e. m� n samples instead of m samples),
and the dependency prediction for different genes uses the same
set of weights, which assumes the signal integration process
through pathway hierarchy is the same for predicting dependency
of different genes.

We denote the output neuron state o
tð Þ

i;j of pathway t with input q
tð Þ

i;j as

o
tð Þ

i;j ¼ Dropout BatchNorm Mish Linear q
tð Þ

i;j

� �� �� �� �
: (1)

More concretely, when the lowest pathway t is at the beginning
of hierarchy, input q

ðtÞ
i;j is the concatenated vector of its gene member

input selected from xi;j; when pathway t has children pathways, q
ðtÞ
i;j

is the concatenated vector of the output neuron states of its children
pathways.

The Linear transformation in Equation (1) is defined as:

Linear q
ðtÞ
i;j

� �
¼W tð Þq

tð Þ
i;j þ b tð Þ. The weight matrix W tð Þ with dimen-

sion of s tð Þ
o � s tð Þ

q and bias vector b tð Þ with length of s tð Þ
o are the

parameters to learn the representation of pathway t. The length of

o
ðtÞ
i;j vector, s tð Þ

o ¼ max 10; 0:3�number of genes in pathway td eð Þ
and the length of q

ðtÞ
i;j vector is s tð Þ

q . Because the representation of

pathways with more gene members may be harder to learn, we set

s tð Þ
o proportionally to the size of pathway t, and 10 is the minimum

of s tð Þ
o for pathways with less than 34 genes.
Mish is the smooth, nonmonotonic and nonlinear activation

function, which has been shown to outperform ReLU, Swish and
others (Misra, 2019). Mish xð Þ ¼ x � tanhðsoftplusðxÞÞ.

BatchNorm is the normalization of mini-batch during training to
reduce the internal covariate shift, which has been shown to achieve
higher training rate and reduce overfitting (Ioffe and Szegedy,
2015).

Dropout is a technique to randomly drop neuron units during
training, which has shown to reduce overfitting (Srivastava et al.,
2014). The Dropout probability is set as 0.5 (Srivastava et al.,
2014).

The objective function consists of three parts: (i) the loss of the
final output from the root of hierarchy, (ii) the loss of the outputs
from other individual pathways and (iii) regularization. The func-
tion to be optimized is

1

mn

Xm

i¼1

Xn

j¼1
Loss Sigmoid Linear o

rð Þ
i;j

� �� �
; yi;j

� �

þ a
X

t 6¼r
LossðSigmoid Linear o

tð Þ
i;j

� �� �
; yi;jÞ þ k Wj jj j2 : (2)

Here, r is the root, the highest level of pathway hierarchy after
integrating information over other pathway t. Loss is the binary en-
tropy loss function and the negative class was weighted as the ratio
of positive sample number to negative sample number in training

set. The output prediction is Sigmoid Linear o
rð Þ

i;j

� �� �
2 0; 1f g. The

Linear function in Equation (2) transforms the vector oi;j to a scalar.

Sigmoid is an exponential function to convert the output scalar to
probability.

We include the loss term to compare the output scalar value of
each pathway against the yi;j, so that every pathway could be auxil-
iary classifiers to predict dependency on its own and could be opti-
mized as features for parent pathways; a is set as 0.3 to adjust the
contribution of the term as previously in GoogLeNet (Szegedy et al.,
2014) and DCell (Ma et al., 2018). k is the L2 regularization factor
and set as 1.

2.3 Training procedure
We initialize the weights by Kaiming initialization (He et al., 2015).
The model is trained with mini-batch (n¼2000) by an optimizer
combining Rectified Adam (Liu et al., 2019) and Lookahead (Zhang
et al., 2019) with learning rate 1E�03, implemented in https://
github.com/lessw2020/Ranger-Deep-Learning-Optimizer.

The data [D ¼ xi;j; yi;jð Þ
� �

, where xi;j is a concatenated vector of
RNA expression vector and deletion status; yi;j is the dependency of
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the gene specified in deletion status in the cell line] is split into five
folds with balanced classes and tissue types by cell lines. In each fold
of the experiment, data are split into training, validation and test
sets by the ratio, 3.2:0.8:1, so that the ratio of training set to valid-
ation set and the ratio of training set and validation set to test set are
the equal at 4:1. The training set was used for training. The valid-
ation set was used to determine the early stopping criterion, which
was if the loss did not improve for two epochs. The test set is used to
assess model performance. The RNA expression values of all three
sets are converted to z-scores for each gene by using the mean and
standard deviation of the training set.

We focus on testing the NN architecture based on biological sig-
naling pathways to increase model interpretability so the space of
hyperparameters is not fully searched. We implemented BioVNN
using the PyTorch 1.2 on GTX1080 and RTX2080Ti GPUs.

2.4 Time-stamped experiment
To test performance in the most realistic context, we ran time-
stamped experiments. We used the models trained on data from
DepMap 19Q3. Then we applied these models to predict the de-
pendency for 142 cell lines that were added in 20Q2. To be noted,
some cell lines have data in both releases. Even if using 20Q2 data
for both training and testing could potentially reduce batch effects
affecting the performance, we used the data solely from 19Q3 for
training and the data solely from 20Q2 for testing. In this case, it
tests the robustness of the model to handle variations from different
data versions. One gene, FCGR1A, only exists in 19Q3 but not in
20Q2 dependency data. So only 682 target variable genes were
tested in this experiment. The Pearson’s correlation of dependency
between 19Q3 and 20Q2 is 0.996 in 609 overlapping cell lines and
682 overlapping genes. The Pearson’s correlation of RNA expres-
sion between 19Q3 and 20Q2 is 1.0 in 609 overlapping cell lines
and 9488 overlapping genes. It shows slight variations between two
data versions.

2.5 Performance evaluation
We used area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC) as
metrics. In five-fold cross-validation, the test set predictions from
each fold of the five-fold cross-validation were combined to calcu-
late the overall AUROC and AUPRC.

3 Results

3.1 BioVNN predicts cancer dependencies in potentially

druggable genes
Because we aimed to predict drug targets, we trained the model to pre-
dict cancer dependencies for potentially druggable genes in five-fold
cross-validation (see Methods). As a baseline, we first calculated the
performance while making prediction based on the expression values
because the expression levels have been shown to be correlated with
the dependency (Dempster et al., 2019a). However, our results showed
that at least for these druggable genes we selected, the correlation is
low (Pearson correlation coefficient ¼ 0.32; Supplementary Fig. 1) and
the performance is almost random (AUROC ¼ 0.527; AUPRC ¼
0.256). For model comparison, we used the matched fully connected
network (Fig. 1C) which has the same number of neurons in each hid-
den layer and the same depth as BioVNN. To examine whether the
Reactome-based architecture is useful for predicting gene dependency,
we generated the matched random gene group model by shuffling the
gene-pathway and pathway-pathway relationship as a control (see
Supplementary Methods). In the five-fold cross-validation, Figure 2A
and 2B showed that overall BioVNN (AUROC ¼ 0.883; AUPRC ¼
0.754) marginally outperforms the FCN (AUROC ¼ 0.879; AUPRC ¼
0.740) but, significantly, converges with one third fewer training cycles
(i.e., epochs; Fig. 2C; Mann–Whitney–Wilcoxon (MWW) test two-
sided P < 5.9E�03) and 193 times fewer trainable parameters (Fig.
2D). In addition, BioVNN also outperforms the random gene group
model (AUROC ¼ 0.845; AUPRC ¼ 0.688) with 21% fewer epochs

(Fig. 2C; MWW test two-sided P < 5.9E�03). Interestingly, in the
experiments of gradually increasing randomized network connections,
we found that AUPRC decays faster than AUROC (Supplementary Fig.
2). Thus, random sparsity may lead to worse performance. Overall,
these data suggest that Reactome pathways provide non-random gene
group information which facilitates the training of neural networks and
the prediction of cancer dependencies.

Because the FCN has similar performance despite much more
parameters, we suspected whether those additional model weights
converged to zeroes after training. First, we compared the model
weights of first layer to BioVNN and found that FCN has a distribu-
tion significantly more enriched at zeroes comparing to BioVNN
(Kolmogorov–Smirnov test P<1E�16; Supplementary Fig. 2),
which suggests that BioVNN uses much fewer parameters but with
higher averaged absolute values of weights (�0.03) to retain similar
amount of information in the data. Next, we asked whether those
parameters in FCN connect the feature genes of the same pathway
to the same computing neuron, which may rediscover the pathways.
Because those neurons in FCN cannot be mapped to pathways dir-
ectly, we formulated gene groups by applying k-means clustering
(k¼826, the number of the pathways in the first layer of BioVNN)
to the PCA-compressed model weights. We found that, surprisingly,
353 out of 826 (42.7%) of gene groups overlapped significantly
[hypergeometric test adjusted P<0.1 using BH method (Benjamini
and Hochberg, 1995)] with at least one Reactome pathways. We
further generated random gene groups matching the sizes of gene

Fig. 3. BioVNN predicts the cancer dependency in unseen cell lines of newer data re-

lease. Models trained by 19Q3 data were used to predict dependency of cell lines in

20Q2 data. (A) AUROC and (B) AUPRC showed higher performance in BioVNN

and the FCN than the random group model. Each dot is a model trained in one of

the five-fold cross-validation

Fig. 2. BioVNN predicts the dependency for genes with potential druggability. (A)

The receiver operating characteristic (ROC) curve and (B) precision–recall (PR)

curve of BioVNN based on Reactome pathways, the FCN and the matched random-

ized NN which matches the architecture but with shuffled gene–pathway relation-

ship (random gene groups). The AUROC and the AUPRC were used as the

performance metrics (see Section 2). (C) The number of training cycles (i.e. epochs)

required for the three networks to converge. (D) The relative number of trainable

parameters of three networks
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group generated based on FCN in 1,600 simulations and found the
probability to reach 353 overlapping groups is less than 1E�200
given the simulated exponential distribution (Supplement Fig. 3).
The results suggest that the parameters of FCN integrate the gene
group information that is similar to Reactome pathways used by
BioVNN. In addition, FCN also used other ways of integrating gene
information, which may imply new gene groups that are also im-
portant for predicting cancer dependency.

3.2 BioVNN predicts dependencies in newer data release
To test predictions prospectively, we setup time-stamped experi-
ments using the training/test dataset from different data releases. We
trained the BioVNN on data from DepMap as of 19Q3 (August
2019) and then evaluated its performance over 142 new cell lines
that were added later, in the 20Q2 version (May 2020). To be clear,
no data from 20Q2 were used for training and 20Q2 data were used
for testing. This tests whether the model is robust across data ver-
sions given potential batch effects and variations.

Figure 3 shows that, as before, BioVNN marginally gains on the
FCN (MWW test two-sided P>0.09) and outperforms the random
gene group model for both AUROC and AUPRC (MWW test two-
sided P<8.0E�03). Again, the results suggest that the pathway
knowledge embedded in the BioVNN is helpful to predict cancer de-
pendency. More importantly, by validating the ability of BioVNN
to predict dependency prospectively, these data show that BioVNN
is generalizable to future data releases.

3.3 The neuron states of BioVNN simulate pathway states
Besides performance, interpretability is an essential characteristic of
BioVNN. By encoding the Reactome hierarchy, the hidden layers of
BioVNN can represent actual signaling pathways whereas tradition-
al NNs or random group models cannot. To determine whether
BioVNN’s hidden layers, representing pathways, make predictions
more interpretable, we aimed to study why the model made a pre-
diction. More specifically, we investigated three hypotheses. (1)
Because the gene dependency is supposed to be affected by its path-
way, we hypothesize that when one group of cell lines is dependent
and another one is not dependent on the same gene, the output neu-
ron states (o

tð Þ
i;j ) of the pathways including the same gene from two

groups are different. (2) Because other pathways do not include the
gene to predict dependency, we hypothesize that we can only find
such state difference in only the specific pathways. (3) When one cell
line is predicted to be dependent and another one is predicted to be
not dependent on the same gene, we hypothesize that the pathway
states can suggest key pathways leading to the dependency
difference.

To test the first hypothesis, we took the gene, ITGAV, which is a
potential drug target for cancers (Cheuk et al., 2020; van der Horst
et al., 2014), as an example. We compared the ITGAV-involved path-
way states of ITGAV-dependent cell lines (which have dependency of
ITGAV�0.5) and nondependent cell lines (which have dependency
of ITGAV<0.5). For visualization, we compressed the neuron
states of ITGAV-involved pathways by principal component analysis
and plotted the first two components with kernel density estimation
(Fig. 4A). As an example, the states of the pathway, ‘Neutrophil
degranulation’ (R-HSA-6798695), showed significantly different distri-
butions between two classes (i.e. ITGAV-dependent and non-ITGAV-
dependent cell lines) (Fig. 4A; combined MWW test two-sided
P<4.7E�17; see Supplementary Methods). We found that 26 out of
27 ITGAV-involved pathways show significantly different neuron states
between the two classes [combined MWW test two-sided adjusted
P<0.1 using Benjamini–Hochberg (BH) method (Benjamini and
Hochberg, 1995)]. As a result, the difference of ITGAV dependency
could be explained by the state difference of ITGAV-involved pathways.

To test the second hypothesis, we examined whether such class
differences are observable in all pathways, i.e. nonspecific, or only
in related pathways, which contain the target variable gene
(ITGAV). We found that such class separation [as measured by the
�log10(P) value] is significantly larger in related pathways than un-
related pathways (i.e. which do not contain the target variable gene)
(Fig. 4C; MWW test one-sided P<6.6E�06). We further expanded
the analysis to other genes, and found that in total 74.3% (396 out
of 533 target variable genes involved in at least six pathways) have
such significant class separation in related pathways [MWW test
one-sided adjusted P<0.1 using BH method (Benjamini and
Hochberg, 1995)]. That is to say, the dependency differences of the
target variable gene between cell lines may be explained by the dif-
ferences of the neuron states of pathways that contain that target
variable gene but not others. Hence, these results suggest that these
neuron states could specifically simulate the internal states of path-
ways in cells and provide explanations for dependency predictions.

To test the third hypothesis and further explain the dependency
prediction, we examined the neuron states from lower-level to
higher-level pathways (Fig. 5A and B). Taking two cell lines, e.g.
DKMG (glioma) was predicted to be ITGAV-dependent (Fig. 5A);
BL70 (Burkitt lymphoma) was predicted not to be ITGAV-
dependent (Fig. 5B). Given their RNA profiles and the ITGAV dele-
tion vectors as input, the neuron states of their ITGAV-involved
pathways look distinct (Fig. 5A and B), which explains their oppos-
ite predictions. In addition, we further clustered them with other cell
lines by the PC1 of their neuron states. We found that predicted
ITGAV dependency could be explained by the low neuron states of
pathways, which include mostly those under Immune System in the
Reactome hierarchy, e.g. Neutrophil degranulation, Innate Immune
System and Adaptive Immune System, while non-ITGAV depend-
ency could be explained by high neuron states in these pathways.
Hence, these data showed that to predict ITGAV dependency,
BioVNN simulated ITGAV deletion and pathway states in the
model. The different predictions could be interpreted and explained
by the differences in Immune System pathways. It also implies that
Immune System pathways may play key roles in ITGAV dependency
in cancer cells. These results demonstrate that BioVNN’s predictions
are interpretable by inspecting the simulated pathway neuron states.

3.4 BioVNN recovers reaction knowledge and suggests

new reaction components
Finally, we investigated which features are important for the depend-
ency prediction in BioVNN. We utilized the reaction information from
Reactome, which was not used in designing models nor training, to val-
idate whether BioVNN found important features that fit biological
knowledge. Reaction information groups genes that are involved in a
common process, e.g. binding, activation, translocation, degradation
and biochemical events. One gene can be involved in multiple reac-
tions, which are typically smaller gene groups than pathways. A path-
way thus often consists of multiple reactions to achieve its function.
Two genes involved in the same reaction are in the same pathway but

Fig. 4. Dependent and nondependent cells have distinct neuron states in related

pathways. (A) The neuron states of one ITGAV-involved pathway, ‘Neutrophil de-

granulation’, compressed by principal component analysis to two dimensions and

plotted as Gaussian kernel density estimation. PC1 and PC2 are the first and the se-

cond principal components. Red and black lines represent significantly different dis-

tributions between ITGAV-dependent and non-ITGAV-dependent cell lines (MWW

test two-sided P<4.7E�17). (B) The class separation of neuron states grouped by

whether they consist ITGAV or not. The class separation was measured by how dif-

ferent the PC1 and PC2 of pathway neuron states are between ITGAV-dependent

and non-ITGAV-dependent cell lines (see Supplementary Methods). Twenty-seven

ITGAV-involved pathways have significantly higher class separation than 1398

other pathways. ***, MWW test one-sided P<6.6E�06
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not necessarily vice versa. Such reaction relationships between two
genes are stronger than pathway relationships. Should one gene be
deleted, its reaction partners are more likely to be affected than path-
way partners. Therefore, we hypothesized that even in the same path-
way, genes involved in the same reaction as the target variable gene
would have higher importance than others.

Taking NFKB1 as an example, we hypothesized that those genes
in the same reactions as NFKB1 have higher feature importance in
predicting NFKB1 dependency than other genes in the same path-
way. NFKB1 is involved in a total of 53 Reactome reactions, which
consist of 333 genes that are NFKB1 reaction partners. One
NFKB1-involved pathway at the bottom of the hierarchy is a 78-
component pathway, ‘Senescence-Associated Secretory Phenotype
(SASP)’ (R-HSA-2559582), consisting of 28 NFKB1 reaction part-
ners. We found that surprisingly, those 28 genes and NFKB1 have
significantly higher importance (as measured by feature weights; see
Supplementary Methods) than the 49 other genes in the same path-
way (MWW test one-sided P<2.9E�06; Fig. 6A). Taking EP300 as
another example, EP300 and the 52 genes that are reaction partners
with EP300 also have significantly higher feature importance than
the other genes in the 88-gene pathway, ‘Activation of anterior
HOX genes in hindbrain development during early embryogenesis’
(R-HSA-5617472) (MWW test one-sided P<5.0E�04; Fig. 6B).
Furthermore, we expanded the analysis to other target variable
genes, and found that 132 out of 1618 gene–pathway pairs

(corresponding to 95 of 426 unique genes; see Supplementary
Methods) had significantly higher features importance for those
genes involved in the same reactions as the target variable gene
[MWW test one-sided adjusted P<0.1 using BH method (Benjamini
and Hochberg, 1995)]. These results demonstrated that the high-
importance features in BioVNN are not random and are in agree-
ment with the biological knowledge of reactions. Of note, only path-
way information but not reaction information was used to build the
BioVNN architecture. These data suggest that BioVNN recovers the
reaction knowledge from the training data on its own even if such
knowledge is not provided during model construction or training.

During the analysis above, we found outliers in groups of ‘Other
genes’, that were not involved in the same reactions as the target vari-
able gene, that also have high feature importance. In other words,
BioVNN regards those genes to be as useful in predicting dependency
for the target variable genes as the reaction partner genes. Taking the
NFKB1 and SASP pathway as an example (Fig. 6A), the gene of second
highest weight in ‘Other genes’ is CDK2, which could suggest a new re-
action component with NFKB1. Indeed, a previous study showed that
NF-jB bound to the promoter of CDK2, turned on its transcription
and upregulated the protein level of CDK2 (Liu et al., 2011). In the ex-
ample of EP300 (Fig. 6B), the gene of highest weight in ‘Other genes’ is
HOXD4, which we propose as a reaction component with EP300. In
fact, the protein interaction between HOXD4 and p300 has already
been reported (Shen et al., 2001) but is not yet documented in the
Reactome database. These findings suggest that genes with high feature
importance, that are not reaction partners with the target variable
gene, could be candidate reaction components, which have either not
been discovered nor added in Reactome database.

4 Discussion

Robust and interpretable models are crucial for biomedicine, so we
aimed to investigate how pathway knowledge can design VNNs for
predicting and interpreting cancer dependency. We have demon-
strated the ability of BioVNN to successfully predict cancer gene
dependencies and provide interpretable predictions. While converg-
ing faster, BioVNN not only significantly outperforms matched ran-
dom group model but also marginally outperforms the FCN that has
193 times more parameters. BioVNN is also generalizable to predict

Fig. 5. BioVNN explains the dependency by simulated pathway states. (A) ITGAV-dependent cell line, DKMG, and (B) non-ITGAV-dependent cell line, BL70, showed distinct

neuron states of 27 ITGAV-involved pathways in the hierarchy, which explains their reversed predictions. (C) The clustered heatmap of neuron states of ITGAV-involved path-

ways and cell lines. The neuron state colors represent the PC1 of neuron states converted to a z-score across cell lines

Fig. 6. The feature importance of BioVNN recovers the reaction knowledge. (A)

The feature importance for predicting NFKB1 dependency in the pathway, ‘SASP’

(R-HSA-2559582). (B) The feature importance for predicting EP300 dependency in

the pathway, ‘Activation of anterior HOX genes in hindbrain development during

early embryogenesis’ (R-HSA-5617472). ***, MWW test one-sided P<2.9E�06;

**, P< 5.0E�04.
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dependency for cell lines in future releases of the DepMap dataset.
By examining the case of ITGAV and overall analysis, we showed
that only related pathways have distinct neuron states between de-
pendent and nondependent cell lines whereas most other pathways
do not. Specifically, ITGAV dependency could be explained by the
low states of pathways related to immune system.

This work illustrates how biological knowledge of signaling path-
ways can be integrated into an NN architecture. Not only does it
solve the issues of designing NN architectures, but also it provides a
mechanistic explanation of predictions. For future applications of this
work to precision medicine, the RNA-seq expression data of patients
could be used to predict personalized cancer dependent genes.

The novel application of signaling pathways to design VNNs was pro-
ven to be useful for the first time. In addition, BioVNN uniquely utilizes
the pathway-guided feature masks and deletion status vectors to achieve
two innovations: (1) training based on bulk RNA-seq data from only hun-
dreds of human cell lines and (2) dependency prediction of hundreds of
genes in single model. Given these innovations, a future direction would
be to apply VNNs to other cell line data to predict and explain important
questions like synthetic lethality and drug responses. The in silico states of
VNNs could further explain the in vitro observations of cell line screen-
ings to synergistically accelerate the development of precision medicine.
With more development and validation in the future, these VNNs could
be used to predict personalized drug targets and drugs in vivo for each pa-
tient with interpretable models to explain the predictions and guide their
therapies providing better understanding of treatment mechanism.

This study could be expanded in a few ways. First, other bio-
logical knowledge could also be embedded in the VNNs, due to the
fact that Reactome contains around 10 000 genes, which is only
about half of the human protein-coding genes and might limit per-
formance. Many other pathway databases [e.g. Pathway Commons
(Rodchenkov et al., 2020), KEGG (Kanehisa and Goto, 2000),
MSigDB (Liberzon et al., 2015) and PANTHER (Mi et al., 2019)]
could be added to increase the coverage of genes as well as pathway
knowledge. In addition, the gene group information can also be non-
human-curated, such as the gene groups detected from biological
networks by computational algorithms (Cantini et al., 2015; Wilson
et al., 2017). Since those gene groups are not curated by human,
they can be less biased and provide novel functional gene groups.

Second, the model could incorporate more features of cell lines.
One possibility is to integrate other types of genomics data besides
RNA expression, such as DNA mutation (Ghandi et al., 2019),
DNA methylation (Ghandi et al., 2019), copy number variation
(Ghandi et al., 2019) and protein expression (Nusinow et al., 2020).
These multiple biological observations of the same gene from differ-
ent angles could be modeled as one state and then be used as features
for predicting phenotypes. Another possibility is to incorporate
other biological entities [e.g. noncoding RNAs (Ghandi et al., 2019)
and metabolites (Li et al., 2019)]. In both ways, the states of the cells
could be simulated more precisely and completely.
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