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Abstract
This study was carried out to investigate the effects of dietary energy levels on growth performance, blood parameter, and 
intestinal morphology of Pekin ducks in low temperature. A total of 500, 21-d-old Pekin ducks (initial BW = 1,089 ± 5.21 g) 
were evenly assigned to five dietary treatments (2,950, 3,000, 3,050, 3,100, or 3,150 kcal AME/kg, calculated on an as-is 
basis) with four replicates (pens) for each treatment (25 ducks per pen). During the experiment, hens were provided with 
feed and water ad libitum. Overall, increasing dietary energy levels corresponded to an increase of final body weight and 
body weight gain (linear, p < 0.01). Feed intake decreased (linear, p < 0.01) and feed conversion ratio increased (linear, p 
< 0.01) with increasing levels of energy. There were no significant differences (p < 0.05) in the level of leukocytes between 
groups. However, heterophils decreased (quadratic, p < 0.05) and lymphocytes increased (linear, p < 0.01) as inclusion of 
dietary energy levels increased. The H/L ratio increased (linear, p < 0.01) with increasing dietary energy levels while serum 
corticosterone levels decreased at overall experimental periods. Triglycerides increased (linear and quadratic, p < 0.05) with 
increasing dietary energy levels. There were no significant changes in villus height or crypt depth of the jejunum at overall 
experimental. In conclusion, increasing concentrations of dietary energy levels up to 2,950–3,150 kcal/kg in diet. Additionally, 
3,150 kcal/kg dietary energy had been revealed more beneficial and could be practiced as protective management for the 
Pekin ducks reared under low ambient temperature (8°C to 10°C).
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Background
Poultry producers face serious losses when chickens are exposed 
to adverse environmental conditions such as the presence of infec-
tious agents, extreme temperature (heat or cold), poor air quality, 
environmental contaminants, and other conditions such as light 
and diet also may influence the health status of poultry [1]. Low 
ambient temperature is one of the most significant environmental 

stressors and can significantly affect the health and welfare of poul-
try [2]. Low ambient temperature occurs when the surrounding 
temperature falls below 8℃ to 12℃ [3,4]. The body may not be 
able to warm itself, and serious cold-related illnesses, permanent 
tissue damage, and death may occur as a result of low ambient 
temperature [4]. Low ambient temperatures increase feed intake, 
but decrease the growth potential of laying hens and Japanese 
quails [5–8]. Similar to cold stress, serum corticosterone, blood 
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glucose and cholesterol levels increased significantly [9,10]. Insulin 
and corticosterone are well known to be temperature-sensitive 
and important hormones that control nutrient metabolism [11]. 
Voluntary feed intake and the consequent productivity of animals 
depends largely on various animal and environmental factors, and 
feed energy density is considered as the most important factor that 
influences voluntary feed intake [12]. Moreover, from an econom-
ic standpoint feed represents the largest portion of total animal 
production costs; therefore, the accurate estimation of feed energy 
values is crucial for realizing optimal animal production [12]. An-
imals are known to adjust the daily feed intake containing various 
concentrations of energy to maintain a constant daily energy in-
take [13–14]. Current metabolizing energy dietary requirements 
for ducks are estimated to be 3,000 kcal AME/kg [15]. One of the 
limitations of elucidating the relationship between low ambient 
temperature and duck growth performance is how to express di-
etary energy concentrations. The objective of this study, therefore, 
was to investigate whether level of dietary energy would counter 
the positive effects of cold stress on growth performance, plasma 
corticosterone, and intestinal morphology. 

Methods
The protocol for this experiment was reviewed and approved by the 
Institutional Animal Care and Welfare Committee of the National 
Institute of Animal Science, Rural Development Administration, 
Korea.

Birds and experimental design
A total of 500, 21-day-old Pekin Ducks (initial BW [body weight] 
= 1,089 ± 5.21 g) were evenly assigned to five dietary treatments 
(2,950, 3,000, 3,050, 3,100, or 3,100 kcal AME/kg). There were 
four replicates of each treatment, each consisting of 25 ducks in 
a pen. All birds were fed a common starter diet from 0 to 20 d of 
age and an experimental diet during the experimental period from 
21 to 42 d. A commercial type basal diet was formulated to meet 
or exceed the nutrient recommendations of the National Research 
Council [15] for ducks (Table 1). Till the end of this experiment, 
the average ambient temperature and relative humidity inside the 
house were recorded 8 ± 2.1℃ and 62.35 ± 2.7%. A 24-h light 
schedule was used throughout the entire experiment. Diet samples 
were analyzed for dry matter (DM, Method 930.15), ash (Method 
942.05), ether extract (EE, Method 2003.03), and crude protein 
(CP, Method 990.03) [16]. Diet samples were also analyzed for 
apparent metabolizable energy (AME) using bomb calorimetry 
(Model 6400, Parr Instruments Co., Moline, IL, USA) with ben-
zoic acid as the standard for calibration.

Growth performance
Body weight gain (g; BWG) and feed intake (g; FI) were measured 
weekly. The feed conversion ratio (FCR) was calculated as the ratio 
of BWG to FI. BWG, FI, and FCR were corrected for dead birds.

Blood samples
Blood samples were collected from wing vein of randomly selected 
eight birds in each treatment using EDTA-treated BD Vacutain-
er® tubes and non EDTA-treated BD Vacutainer® tubes (Becton 
Dickinson, Franklin Lakes, NJ, USA). The whole blood samples 
were kept on ice and used for immediate analysis of hematology. 
Leukocytes (white blood cells, heterophils, lymphocytes, mono-
cytes, eosinophils, basophils) were analyzed using Hemavet® Mul-
tispecies Hematology System (Drew Scientific Inc., Oxford, CT, 
USA). The H/L ratios were determined by dividing the number of 
heterophils by that of lymphocytes. Serum samples were obtained 
by centrifuging the samples for 20 min at 25,000 ×g and 4℃ and 
were stored at –15℃. Total cholesterol, triglyceride, asperate ami-
notransferase (AST), alanine aminotransferase (ALT), and calcium 
in the serum were quantified using an ADVIA® 1650 chemistry 
system (Bayer Diagnostic, Puteaux, France). 

Serum corticosterone
Blood samples (Serum corticosterone) were collected from wing 
vein of randomly selected eight birds in each treatment using 
Vacutainer® tubes (Becton Dickinson, Franklin Lakes, NJ, USA) 
before morning feeding on d 0, 2, 4, 7, 14, and 21 of the experi-
ment. Serum corticosterone was determined by enzyme-linked 
immunoassay (EIA). The EIA kits (Corticosterone EIA Kit, Assay 
Designs, Inc., Ann Arbor, MI, USA) were based on a sheep poly-
clonal antibody raised against corticosterone. This assay method 
has been compared directly with radioimmunoassay procedures 
(RIA), and precision and accuracy of the EIA assay have been 
shown to exceed that of RIA. The EIA procedure involved pipet-
ting 10 µL of each serum sample into an Eppendorf tube® and 
adding 10 µL of steroid inhibitor buffer. The solution was then 
vortexed and all samples were brought to a 1:40 dilution using Tris 
buffer solution with sodium azide. An aliquot of each sample (100 
µL) was pipetted into microtiter plate wells (coated with don-
key-anti-sheep IgG) in duplicate. In addition, 50 µL of alkaline 
phosphatase conjugated with corticosterone and sheep polyclonal 
antibody was added to each well. After 2 h of incubation on a shaker 
(4,200 × g) at room temperature, plates were washed 3 times in Tris 
buffer solution containing detergents and sodium azide. A solu-
tion of o-nitrophenyl phosphate (200 µL) was added to each well 
and the plate was incubated for another hour (without shaking) 
at room temperature. The stop the reaction, 50 µL of trisodium 
phosphate solution, was added and absorbance was read spectro-
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photometrically (µQuant™ Microplate spectrophotometer, Bio-
Tek Instruments, Inc., Winooski, VT, USA) at 450 nm. Standard 
curves and sample concentrations were calculated using KC junior 
Software (Bio-Tek Instruments, Inc.).

Intestinal morphology measurements
On d 7, d 14, and d 21, four birds (one bird per pen) were random-
ly selected from each treatment. Carcasses of the sacrificed birds 
were immediately opened and the entire intestine was removed 
aseptically. A 2-cm sample of the jejunum (midpoint between the 
bile duct entry and Meckel’s diverticulum) was collected. Each 
of these intestinal segments was flushed with physiological saline 

solution (0.9% NaCl) to remove intestinal contents, fixed in 10% 
neutral buffered formalin, and kept at 4℃ prior to the microscopic 
assessment of intestinal morphology [17]. Formalin-fixed intestinal 
tissues were processed, embedded in paraffin wax, sectioned at 3 
µm, and stained using the hematoxylin-eosin method. Histological 
sections were examined with a Nikon phase contrast microscope 
coupled with a Microcomp integrated digital imaging analysis 
system (Nikon Eclipse 80i, Nikon Co., Tokyo, Japan). Images were 
viewed using a 4x Eplan objective lens (40×) to measure morpho-
metric parameters of intestinal architecture.

For this purpose, three favorably oriented sections cut perpen-
dicularly from the villus enterocytes to the muscularis mucosa were 

Table 1. Composition and nutrient content of experimental diets (as-fed basis)

Dietary ME concentrations (kcal/kg)

Ingredients (%) 2,950 3,000 3,050 3,100 3,150
  Maize 57.07 59.80 58.71 57.41 56.63

  Soybean meal 22.55 22.78 22.89 23.25 23.02

  Wheat 10.00 8.00 8.00 8.00 8.00

  Barley 6.60 5.00 5.00 5.00 5.00

  Soybean oil 0.28 0.83 1.75 2.74 3.60

  Limestone 0.90 0.90 0.90 0.90 0.90

  MDCP 1.10 1.10 1.10 1.10 1.10

  HCl-Lysine-78% 0.25 0.34 0.40 0.35 0.50

  Salt 0.25 0.25 0.25 0.25 0.25

  Vitamin premix1) 0.50 0.50 0.50 0.50 0.50

  Mineral premix2) 0.50 0.50 0.50 0.50 0.50

Total 100.00 100.00 100.00 100.00 100.00

Calculated composition3)

  AMEn (kcal/kg) 2,950.0 3,000.0 3,050 3,100.0 3,150.0

  Crude protein (%) 18.33 18.31 18.32 18.34 18.30

  Ether extract (%) 2.98 3.57 4.45 5.40 6.22

  Lysine (%) 1.08 1.15 1.20 1.16 1.27

  Met+Cys (%) 0.59 0.59 0.59 0.59 0.58

  Calcium (%) 0.62 0.62 0.62 0.62 0.62

  Available P (%) 0.35 0.35 0.35 0.35 0.35

Analyzed composition4)

  GE (kcal/kg) 3,650.4 3,662.3 3,702.2 3,780.4 3,810.5

  DM (%) 89.50 89.57 89.59 90.55 90.53

  Crude protein (%) 17.28 17.26 17.30 17.24 17.23

  Ether extract (%) 2.78 3.84 4.38 5.71 6.09

  Crude ash (%) 4.69 4.81 5.53 5.20 3.27

  Crude fiber (%) 2.66 2.71 2.74 2.76 2.62
1)�Provided per kilogram of the complete diet: vitamin A (vitamin A acetate), 12,500 IU; vitamin D3, 2,500 IU; vitamin E (DL-α-tocopheryl acetate), 20 IU; vitamin K3, 2 mg; vitamin 
B1, 2 mg; vitamin B2, 5 mg; vitamin B6, 3 mg; vitamin B12, 18 µg; calcium pantotenate, 8 mg; folic acid, 1 mg; biotin 50 µg; niacin, 24 mg.

2)Provided per kilogram of the complete diet: Fe (FeSO4 · 7H2O), 40 mg; Cu (CuSO4 · H2O), 8 mg; Zn (ZnSO4 · H2O), 60 mg; Mn (MnSO4 · H2O) 90 mg; Mg (MgO) as 1,500 mg.
3)Calculated value.
4)Analyzed value. 
ME, metabolizable energy; MDCP, monodicalcium phosphate; GE, gross energy; DM, dry matter.
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selected from each animal, and two measurements were made of 
these sections. Villus height was estimated by measuring the ver-
tical distance from the villus tip to the villus-crypt junction level 
for 10 villi per section. Crypt depth (the vertical distance from the 
villus-crypt junction to the lower limit of the crypt) was estimated 
for 10 corresponding crypts per section.

Statistical analysis
Differences in variables between ducks fed increasing amounts 
of AME were analyzed by ANOVA for completely randomized 
designs using the Proc MIXED procedure of SAS (SAS Institute, 
Inc., Cary, NC, USA). The UNIVARIATE procedure of SAS 
was used to identify outliers but none was found. The experimen-
tal unit for all data was the replicate, and dietary treatment was a 
fixed effect in the models. The LSMEANS procedure was used to 
calculate mean values. An orthogonal polynomial contrast test was 
performed to determine linear and quadratic effects of increasing 
AME concentrations in the diets. Significance and tendency for 
statistical tests were set at p < 0.05 and 0.05 ≤ p ≤ 0.10, respectively.

Results 
Overall, increasing inclusion of energy in the diets increased final 
body weight and body weight gain (linear, p < 0.01). Body weight 
gain was 2,182, 2,295, 2,362, 2,395, and 2,434 g for the respective 
increasing dietary energy levels from 2,950 to 3,150 kcal/kg hens, 
and these differences were statistically significant. Further, body 
weight of the 3,000, 3,050, 3,100, and 3,150 kcal/kg groups com-
pared to the 2,950 kcal/kg group increased by 5.2%, 8.2%, 9.7%, 
and 11.5%, respectively. Correspondingly, feed intake decreased (lin-
ear, p < 0.01) with increasing inclusion level of dietary energy, and 
the FCR improved (linear, p < 0.01). The FCR of the other groups 
improved by 6.6%, 11.8%, 13.3%, and 15.1%, respectively, compared 
to the 2,950 kcal/kg group (Table 2). There were no significant dif-
ferences in the level of leukocytes between different dietary groups 
(Table 3). Heterophils decreased (quadratic, p < 0.05) and lympho-
cytes increased (linear, p < 0.01) with increasing inclusion of energy 
in the diets. The H/L ratio also increased (linear, p < 0.01) as dietary 
energy was increased, and the mean H/L ratio was 0.99, 0.82, 0.71, 

Table 2. Growth performance of exposed low ambient temperature as affected by different AME concentration in diets

Items
Dietary ME concentrations (kcal/kg)

SEM1) p-value
2,950 3,000 3,050 3,100 3,150 Linear Quadratic

Initial BW (g/bird) 1,089.0 1,089.5 1,089.3 1,089.0 1,089.9

Final BW (g/bird) 3,271.2c 3,384.2c 3,451.2b 3,483.4ab 3,523.4a 68.57 0.008 0.492

BW gain (g/bird) 2,182.2c 2,294.7c 2,361.9b 2,394.6ab 2,433.5a 68.85 0.009 0.491

Feed intake (g/bird) 5,890.3a 5,781.7ab 5,623.1bc 5,609.0bc 5,585.6c 62.16 <0.001 0.202

Feed conversion ratio 2.71a 2.53ab 2.39bc 2.35bc 2.30c 0.080 <0.001 0.268
Data are least squares means of 4 observations per treatment.
1)Pooled error of mean.
a–cMeans with the different superscripts differ significantly (p < 0.05).
AME, apparent metabolizable energy.

Table 3. Blood parameter of exposed low ambient temperature as affected by different AME concentration in diets

Items
Dietary ME concentrations (kcal/kg)

SEM1) p-value
2,950 3,000 3,050 3,100 3,150 Linear Quadratic

Leukocyte

  White blood cells (K/µL) 26.06 23.39 22.45 27.77 26.84 1.54 0.245 0.112

  Heterophils (K/µL) 11.01 8.87 7.62 9.99 9.24 0.74 0.316 0.038

  Lymphocytes (K/µL) 11.15 10.86 10.70 12.55 12.99 0.63 0.011 0.161

  HE/LY2) 0.99a 0.82ab 0.71b 0.77b 0.72b 0.06 <0.001 0.112

  Monocyte (K/µL) 2.37 2.26 2.07 2.76 2.52 0.18 0.172 0.375

  Eosinophils (K/µL) 1.83 1.77 1.42 1.73 1.99 0.15 0.578 0.211

  Basophils (K/µL) 0.85 0.82 0.66 0.74 0.68 0.09 0.589 0.132
Data are least squares means of 8 observations per treatment.
1)Pooled error of mean.
2)HE/LY, stress index.
a,bMeans with the different superscripts differ significantly (p < 0.05).
AME, apparent metabolizable energy.
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Fig. 1. Serum corticosterone of exposed low ambient temperature as affected by different AME (apparent metabolizable energy) concentration 
in diets. Data are least squares means of 8 observations per treatment.

0.77, and 0.72 for the 2,950 to 3,150 kcal AME/kg groups, respec-
tively. When compared to the 2,950 kcal ME/kg treatment, the H/
L ratio of the other groups improved by 17.7%, 28.8%, 22.2%, and 
27.3%, respectively. As expected, corticosterone values measured in 
the serum increased from 0 to 21 d, regardless of dietary treatments 
(Fig. 1). Increasing inclusion level of dietary energy corresponded to 
decreases (linear) in corticosterone in the serum of ducks exposed 
to low ambient temperature at 2 (p < 0.01), 7 (p < 0.05), 14 (p < 0.01), 
and 21 (p < 0.01) d. There were no significant differences in blood 
biochemistry (total cholesterol, glucose, calcium, AST, and ALT; 
Table 4) between groups. However, triglycerides increased (linear 
and quadratic, p < 0.05) with increasing inclusion level of energy in 
duck diets (258.0, 280.6, 273.3, 304.3, and 396.1 mg/dL for 2,950 
to 3,150 kcal ME/kg, respectively). Compared to the 2,950 kcal 

ME/kg treatment, triglycerides increased by 8.8%, 5.9%, 17.9%, 
and 53.5%, respectively, for the 3,000–3,150 kcal AME/kg groups. 
There were no significant changes in villus height or crypt depth in 
the jejunum at 7, 14, or 21 d in the intestines of ducks exposed to 
low ambient temperature (Table 5).

Discussion
Results of feed intake are in agreement with [5] who have reported 
that low ambient temperatures (10.47±3.3℃) cause an increase 
in feed intake. Since low ambient temperature stress causes an in-
crease in feed intake it is difficult to further increase feed intake at 
the dietary energy level as an index to improve the positive effect 
of cold stress. Therefore, under unfavorable causes such as paying 

Table 4. Blood biochemistry of exposed low ambient temperature as affected by different AME concentration in diets

Items
Dietary ME concentrations (kcal/kg)

SEM1) p-value
2,950 3,000 3,050 3,100 3,150 Linear Quadratic

Total cholesterol (mg/dL) 208.1 205.9 208.3 204.9 209.9 8.86 0.182 0.192

Triglyceride (mg/dL) 258.0 280.6 273.3 304.3 396.1 18.27 <0.010 0.033

Glucose (mg/dL) 185.2 174.5 197.0 218.5 191.0 8.22 0.122 0.288

Asparate aminotransferase (U/L) 13.12 14.63 15.77 14.64 12.06 1.79 0.388 0.251

Alanine transaminase (U/L) 35.17 37.46 29.72 39.99 34.78 4.71 0.916 0.873

Calcium (mg/dL) 12.57 11.48 11.47 12.21 12.22 0.15 0.955 0.207
Data are least squares means of 8 observations per treatment.
1)Pooled error of mean.
ME, metabolizable energy.
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excessive energy demand at low temperature. According to reports, 
weight gain is positively correlated with feed intake. Birds con-
sumed more feed, resulting in higher weight gain and proved our 
observation [8]. Dietary fat supplementation has been shown to 
improve feed conversion and decrease feed intake of broiler chick-
ens [18–23]. Doizer et al. [22] evaluated responses of broilers fed 
diets varying in AMEn from 3,175 to 3,310 kcal/kg during 30 to 
59 d of age. It was determined that feed intake and feed conversion 
decreased linearly with AMEn content in these diets. Also, previ-
ous research has established that feeding broilers diets containing 
AMEn concentrations improved body weight [19–21,24]. These 
results agree with the results of Jensen et al. [25] who found an “extra 
caloric” effect for supplemented fat and suggested that wide calor-
ic/protein ratios in poultry rations with additional fat can be used 
for maximum gain and feed efficiency. In concordance with other 
studies, in this study there were no significant differences in energy 
intake between the groups due to the decrease in feed intake with 
increasing dietary energy.

The H/L ratio has proved to be a valuable measurement in 
stress-related research in poultry [26–28], and it has been shown 
to be highly heritable [29] and a reliable index for determining 
stress in these birds [30]. Physiological and physical stressors 
increase the H/L ratio [31]. Hangalapura et al. [32] found a sig-
nificant enhancing effect of low ambient temperature on in vitro 
lymphocyte proliferation. With respect to the H/L ratio, Hester 
et al. [33] also found that caged white leghorn hens exposed to a 
cold environment had a higher H/L ratio than those of the control 
hens. In relation to plasma corticosterone concentration (another 
stress indicator), Buckland et al. [34] reported that the application 
of cold stress resulted in significant increases in plasma corticoste-
rone levels in chicks. Thus, blood parameters are good indicators of 
the physiological, pathological, and nutritional status of a bird, and 

changes in hematological parameters have the potential of being 
used to elucidate the impact of nutritional factors and additives 
supplied in diet on any living creature. Leukocyte counts also have 
been used as a measure of immune function in birds [35]. Many 
factors such as exposure to various microbes and chemicals sub-
stances can cause change in leukocytes [35]. The lack of adequate 
data on the influence of dietary level of energy of ducks exposed to 
low ambient temperature in altering blood parameters in poultry 
requires further research. Triglycerides are hydrophobic and can 
be stored in a very compact form [36]. In poultry, triglyceride are 
derived from exogenous de novo sources or from the conversion of 
glucose to fat. Therefore, triglyceride content is strongly influenced 
by the proportion of carbohydrates in the diet and the species’ re-
sponse to lipolytic hormones, which affects the balance between 
lipolysis and esterification [37]. The marked increase in the per-
centage of triglycerides and phospholipids in the serum of ducks 
fed diets with an increasing amount of energy is thus likely caused 
by the high-energy diets suggesting a direct relationship between 
triglycerides and dietary energy content.

Crypth depth and villus height: crypth depth ratio was not 
influenced by increasing level of dietary energy. Development of 
intestinal morphology could reflect the health status of the GI 
tract of an animal. New epithelial cells are produced in the intes-
tinal mucosal crypts and migrate along with the villus to the top 
[38]. As the intestines are a major site of enzymatic digestion and 
absorption of nutrients, absorption efficiency, and therefore FCR, 
is highly dependent on intestinal morphology [39]. The deeper the 
crypts, the faster the tissue rotates and the more likely the villus is 
renewed. This suggests that the host intestinal response mechanism 
attempts to compensate for the normal loss or atrophy of the villi 
due to inflammation by pathogens and their toxins [40]. Previous 
research have shown that the intestinal morphology, specifically 

Table 5. Intestinal morphology of exposed low ambient temperature as affected by different AME concentration in diets

Items
Dietary AME concentrations (kcal/kg)

SEM1) p-value
2,950 3,000 3,050 3,100 3,150 Linear Quadratic

7 day

  Villus height (µm) 653.7 634.5 645.8 646.4 710.6 49.48 0.492 0.453

  Crypth depth (µm) 121.5 139.4 128.7 171.9 158.9 17.97 0.258 0.892

14 day

  Villus height (µm) 669.9 713.7 773.5 785.8 697.1 47.19 0.452 0.092

  Crypth depth (µm) 143.5 137.5 120.1 121.2 138.1 12.33 0.123 0.841

21 day

  Villus height (µm) 836.8 868.6 808.9 963.4 935.2 71.28 0.232 0.761

  Crypth depth (µm) 157.6 146.1 170.8 127.8 130.5 13.51 0.121 0.512
Data are least squares means of 8 observations per treatment.
1)Pooled error of mean.
ME, metabolizable energy.
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structures such as villus, crypts and the thickness of mucosa, were 
altered by the composition of diet [41]. The increase in villus height 
and crypt depth is associated with healthy turnover of epithelial 
cell and active cell mitosis [42].

The results and ongoing discussion suggested that dietary in-
creasing level of energy supplementation alleviates the adverse 
effect of cold induced stress and improved the production perfor-
mance in pekin ducks. Additionally, 3,150 kcal/kg dietary energy 
had been revealed more beneficial and could be practiced as pro-
tective management for the pekin ducks reared under low ambient 
temperature. 
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