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ABSTRACT: Nucleic acid−polymer conjugates are an attractive class of
materials endowed with tunable and responsive character. Herein, we
exploit the dynamic character of nucleic acids in the preparation of hybrid
DNA−covalent polymers with extendable grafts by the hybridization
chain reaction. Addition of DNA hairpins to an initiator DNA−dextran
graft copolymer resulted in the growth of the DNA grafts as evidenced by
various characterization techniques over several length scales. Addition-
ally, aggregation of the initiator DNA−graft copolymer before the
hybridization chain reaction was observed resulting in the formation of
kinetically trapped aggregates several hundreds of nanometers in diameter that could be disrupted by a preheating step at 60 °C
prior to extension at room temperature. Materials of increasing viscosity were rapidly formed when metastable DNA hairpins
were added to the initiator DNA-dextran grafted copolymer with increasing concentration of the components in the mixture.
This study shows the potential for hierarchical self-assembly of DNA-grafted polymers through the hybridization chain reaction
and opens the door for biomedical applications where viscosity can be used as a readout.

■ INTRODUCTION

Nucleic acids are powerful tools for the construction of
materials because of their sequence programmability and
predictable dimensions.1−4 Consequently, DNA nanotechnol-
ogy has exploited their use as a structural unit for the bottom-up
self-assembly of numerous discrete two and three-dimensional
architectures.5−8 More recent developments within the field
have centered on taking advantage of the dynamic properties of
DNA through the use of strand displacement reactions to pro-
vide reconfigurable and autonomous functions.9−11 Strand dis-
placement is a reaction that is fuelled by the free energy released
in the hybridization of partial or fully complementary DNA
strands through branch migration.12 Catalyzed hairpin assembly
(CHA),13 entropy-driven catalysis (EDC),14 and the hybridization
chain reaction (HCR)15,16 rely on strand displacement cascades
to create multilayered adaptable and reconfigurable DNA-based
circuits,17 autonomous DNA walkers,18,19 and amplifiers.20,21

These techniques can be useful for a range of applications from
smart therapeutics to diagnostics,10,22,23 using gel electrophoresis,
fluorescence, and electrochemical signals as readouts.
Beyond DNA nanotechnology, the inherent structural and

dynamic features of nucleic acids can be an invaluable means to

tailor the morphology and responsiveness of polymer materials
in a programmable and tunable fashion.24−28 Often DNA is intro-
duced as the water-soluble domain of a block copolymer to form
responsive micellar structures and hydrogels.29−34 Although numer-
ous reports have demonstrated the use of a block copolymer
approach, graft copolymers can provide additional handles to
modify the polymer architecture through variation of grafting
densities, lengths and the choice of the backbone itself.35,36 The
consequence of these structural modifications can result in a
broader range of morphologies, such as worms, spheres, and
cylinders.37,38

Most synthetic strategies to prepare graft copolymers involve
grafting from, to, and through the covalent polymer backbone
to permanently fix polymeric side chains.38 A more recent devel-
opment involves grafting strategies based on noncovalent inter-
actions, opening the door to a whole new range of graft copol-
ymer materials that can be tunable, responsive, and dynamic.37

For example, noncovalent “grafting onto” approaches through
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molecular recognition motifs have been used to append organic
molecules and biopolymers to enable structural transi-
tions.39−42 Therefore, combining graft copolymers with
dynamic DNA nanotechnology can yield a new class of grafted
polymer hybrids that respond through highly specific molecular
interactions in a programmable and dynamic fashion, with
important consequences over several length scales.
Herein, we report the use of the hybridization chain reaction

on a grafted DNA-covalent polymer to drive graft extension in a
dynamic way. Autonomous growth of the nucleic acid grafts
from a covalent polymer backbone is expected when supplied
with two metastable hairpins (HP1 and HP2) that can undergo
an energetically favorable cascade of controlled strand displace-
ment reactions (Scheme 1). In this reaction, the DNA hairpins
coexist stably in solution and are triggered when exposed to a
single stranded DNA initiator complementary to a toehold on
one of the hairpins.15 We herein examine DNA side chain exten-
sion on an initiator DNA graft copolymer by the hybridization
chain reaction and its self-assembly from the molecular to the
macroscopic scale.

■ RESULTS AND DISCUSSION
To synthesize the initiator DNA-grafted copolymer for triggering
the hybridization chain reaction, vinyl sulfone groups were first
introduced on dextran for subsequent bioconjugation with DNA.
Dextran was selected as a backbone to prepare the DNA-grafted
polymers because it is a naturally occurring and biocompatible
FDA approved polymer that can readily be modified due to the
abundance of hydroxyl groups. Dextran (Mn = 10 kDa) was
reacted with divinyl sulfone (using 1.5 mol equiv with respect to
all hydroxyl groups) under basic conditions (0.1 M NaOH) for
0.5 min with thorough vortexing and immediate quenching
by the addition of 5 M HCl followed by dialysis purification

(75% yield).43 By controlling the molar equivalents and
reaction time, a reproducible degree of substitution of 31%
(i.e., 19 hydroxyl groups distributed randomly per dextran
chain) was obtained as determined by 1H NMR measurements
(see Supporting Information). Additionally, size exclusion
chromatography (SEC) showed no change in dispersity (D̵ ∼
1.05) or size of the vinyl sulfone substituted polymers.
In a subsequent step, dithiothreitol(DTT)-mediated depro-

tection of the 5′-disulfide protected initiator DNA strand was
pursued to enable its conjugation to the dextran-vinyl sulfone
(dextran-VS) polymer by vinyl sulfone thiol−Michael addition.
Excess DTT was removed by an ethyl acetate extraction to
prevent a competitive reaction with the vinyl sulfone groups on
dextran and the deprotected 5′-sulfhydryl DNA. The conju-
gation reaction was then carried out immediately by mixing the
freshly reduced 5′-sulfhydryl DNA with dextran−VS in PBS at
pH 8.5 overnight under inert conditions. The synthesized
initiator DNA−dextran graft copolymer conjugates were assessed
by agarose gel electrophoresis (Figure 1A, and Figure S1 for
full details of initiator DNA deprotection and coupling to
dextran). The unreacted DNA (lane 1, bottom), was observed
as two bands, one of the deprotected sulfhydryl-DNA (bottom
diffuse DNA band) and the other consisting of the two DNAs
connected by a disulfide bond (sharp, middle DNA band)
generated by spontaneous oxidation, in comparison to a large,
slowly migrating and smeared band consistent with the
formation of the initiator DNA-dextran conjugate (lane 1,
top) with a variable degree of DNA substitution.44 Analysis of
the agarose gels by densitometry revealed that 74% of the
added 5′-sulfhydryl DNAs were conjugated to dextran, which
corresponds to approximately 14 DNA grafts per dextran chain
on average. Gel electroelution was used to separate and remove
the unreacted initiator DNA from the initiator DNA−dextran

Scheme 1. (A) Initiator DNA−Dextran Graft Copolymer Synthesisa and (B) Schematic Representation of HCR-Driven Graft
Extension from an initiator DNA−Dextran Graft Copolymer by HP1 and HP2

aDextran (1) (Mn: 10 kDa, nav: 62) was reacted with divinyl sulfone yielding dextran−vinyl sulfone (dextran−VS, DS = 19) (2). Chemoselective
ligation of a sulfhydryl-modified HCR DNA initiator strand by a Michael addition reaction on dextran−VS (3). Reaction conditions:
(i) 0.1 M NaOH, divinyl sulfone, (ii) 5 M HCl, and (iii) 0.1 M PBS pH 8.5, using a 1:3 ratio of 5′-sulfhydryl-modified HCR initiator DNA to the
vinyl sulfone groups on dextran.
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graft copolymer and dialysis was subsequently performed to
provide a final yield of 70 %. Complete removal of the
unreacted 5′-sulfhydryl DNA from the DNA−dextran graft
copolymer was displayed on an agarose gel (2%) (Figure 1A,
Lane 2).
The capacity of the initiator DNA−dextran graft copolymer

to trigger HCR was initially evaluated by gel electrophoresis
and fluorescence spectroscopy on dilute solutions to provide
insight into the self-assembly process at the molecular scale.
Prehybridized DNA hairpins (HP1, HP2) thermally annealed
in 5X saline-sodium citrate (SSC) buffer were mixed in
equimolar quantities and added to the initiator DNA−dextran
graft copolymer in the same buffer to enable the growth of the
grafts. Agarose gel electrophoresis (2%) was performed 1 h
after the start of the reaction and showed that the addition
of the folded HP1 and HP2 to the DNA−dextran graft
copolymer resulted in increased retention of the polymer
initiator (Figure 1B, lane 3). In contrast, lower gel retention of
the negative controls including the initiator DNA−dextran graft
copolymer (Figure 1B, lane 2) and the metastable hairpins only
(Figure 1B, lane 1) were observed, underpinning the occurrence
of the hybridization chain reaction on the dextran polymer by
opening of the metastable hairpins. When compared to

initiation by a DNA strand on its own, significantly higher
gel retention of the initiator DNA−graft copolymer was
detected (Figure S2). Moreover, the effect of increasing the
ratio of HP1 and HP2 relative to the initiator DNA−graft
copolymer from 1 to 9 was probed by gel electrophoresis
(Figure S3). In these experiments, incomplete reaction of the
hairpins during the polymerization process was observed
(lane 3, lower band), which may indicate inaccessibility of
some of the B* toehold domains for extension (vide inf ra) due
to steric effects from neighboring DNAs on the polymer
backbone. The highest molecular weight products with the
least unreacted hairpins were observed for an initiator DNA-
dextran:HP1:HP2 1:3:3 ratio. Hence, this composition was
selected for subsequent experiments.
Nucleic acid fluorescence quenching experiments involving a

2-aminopurine (2-AP) functionalized hairpin 1 (HP1−2AP)
were further used to support the results of the gel electro-
phoresis experiments. In this assay, 2-AP-labeled oligonucleo-
tides display fluorescence in their single stranded form, but
become rapidly quenched through stacking with adjacent bases
when hybridized.15,45,46 The decrease in fluorescence intensity
can be directly related to hairpin polymerization as previously
demonstrated by the Pierce group for a DNA only system
where the 2-AP label was positioned in the 5′-sticky end of
HP1.14 As a control, stability of the folded HP1−2AP and HP2
hairpins on their own, in the presence of dextran-VS, and their
polymerization with the addition of an initiator DNA strand
were examined. Initially, a stable fluorescence signal was
recorded for HP1−2AP mixed with HP2 (Figure 1C). Upon
addition of either the DNA initiator strand itself (Figure S4) or
the initiator DNA−dextran graft copolymer (Figure 1C), the
fluorescence signal was rapidly quenched. Addition of the
dextran−VS polymer did not trigger any fluorescence
quenching (Figure S4). Interestingly, using either the initiator
DNA−dextran graft copolymer or initiator DNA led to similar
quenching behavior, suggesting that once side chain extension
is started on the polymer it occurs in a similar manner.
Because of our interest in using the hybridization chain

reaction to drive the formation of soft materials, we examined
the morphology of the DNA−graft copolymer self-assemblies at
the nanoscale by dynamic light scattering (DLS), small-angle
X-ray scattering (SAXS) and atomic force microscopy (AFM).
To roughly estimate the polymer dimensions before and after
DNA side chain extension, graft lengths were approximated
using dimensions of typical B-form DNA and assuming a
conformation of rigid rods, as the maximum graft length is
likely below the persistence length (150 bp). However, it is
anticipated that the estimated graft lengths are shorter due to
the existence of single strands before, and single stranded or
nicked regions in the DNA grafts after hairpin addition. Thus,
the diameter of the initiator DNA−dextran graft copolymer
before side chain extension assuming a spherical morphology
and random coil conformation of dextran (Mw ∼ 10 kDa)47

with a 4 nm diameter, is estimated to be approximately 16 nm,
and after polymerization using a 1:3:3 ratio of initiator DNA−
dextran: HP1: HP2 roughly 76 nm.
The various components (HP1, HP2, HP1 and HP2,

dextran−VS, initiator DNA−dextran, and the HCR reaction
mixture) in 5X SSC buffer were sized by DLS at room tem-
perature. We found average hydrodynamic diameters of 6 and 8
nm for the individual hairpins and their combination, respec-
tively. A diameter of 5 nm was measured for dextran−VS,
which is on par with previously reported values for dextran.47,48

Figure 1. (A) Agarose gel electrophoresis (2%) of the initiator DNA−
dextran graft copolymer before (lane 1) and after purification (lane 2).
Lane M contains a low molecular weight double stranded DNA ladder
ranging from 25 to 766 bp. Densitometry plot shown to the right of
gel. (B) Agarose gel electrophoresis (2%) showing the products of the
hybridization chain reaction on the initiator DNA−dextran graft
copolymer. Combination of HP1 and HP2 (600 nM each, lane 1),
initiator DNA−dextran graft copolymer (200 nM, lane 2), HCR of
HP1 and HP2 on the initiator DNA−dextran graft copolymer (600 nM
of each DNA hairpin and 200 nM of initiator DNA−dextran, lane 3).
Lane M contains a low molecular weight DNA ladder ranging from
25 to 766 bp. (C) Fluorescence time course measurement of
HP1−2AP (λex.= 303 nm, λem.= 365 nm) with HP2 (600 nM each)
for 60 min with subsequent addition of the DNA−dextran initiator
(200 nM) to trigger DNA side chain extension.
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Interestingly, the initiator DNA−dextran graft copolymer appears
to be far larger, exhibiting a hydrodynamic diameter of 500 nm
that is inconsistent with the dimensions of an individual DNA-
grafted copolymer (Figure 2A). Moreover, the subsequent

addition of HP1 and HP2 to the initiator DNA−dextran
graft copolymer to facilitate graft extension resulted in the
formation of micrometer-sized aggregates. The measured large
diameter of the aggregates, even before addition of HP1 and
HP2, suggests that aggregation of the initiator DNA−graft
copolymer exists before and after DNA side chain extension
(vide inf ra). In comparison, the DNA initiator on its own
revealed particles sizes after hairpin addition on the order of
20 nm, suggestive of a lack of aggregation between DNA poly-
mers (Figure 2A).
SAXS experiments were performed to corroborate the DLS

experiments in dilute solution. SAXS profiles were collected for
the individual hairpins and the DNA−dextran graft copolymer
before and after addition of both HP1 and HP2 at room tempera-
ture (Figure 2B). Modeling of the HP1 and HP2 SAXS profiles
with a form factor for Gaussian chains yielded a radius of gyration
(Rg) of 2.5 ± 0.3 nm for HP1 and 2.3 ± 0.3 nm for HP2.
In agreement with the light scattering results, aggregates with
sizes above the resolution of the instrument (π/qmin = 31 nm)
were observed for the initiator DNA−dextran graft copolymer

before and after addition of HP1 and HP2. Importantly, the
experimental SAXS profile of the three-component mixture of
initiator DNA−dextran graft copolymer, HP1 and HP2 is distinct
from the theoretical SAXS profile computed as the sum of profiles
of the individual components in the mixture (Figure 2B). This
difference strongly suggests that the hairpins interact with the
initiator DNA−dextran graft copolymer aggregates, triggering a
conformational change when mixed.
To better follow the extension of the initiator DNA grafts on

the dextran polymer, the potential for thermal disruption of the

Figure 2. Hybridization chain reaction on initiator DNA-graft
copolymers at room temperature. (A) Particle size distributions
measured by DLS of HP1, HP2, HP1, and HP2, dextran−VS, initiator
DNA−dextran graft copolymer, and the initiator DNA−dextran graft
copolymer after performing hybridization chain reaction at room
temperature (N = 3). (B) SAXS profiles of HP1 (blue) and HP2 (red)
modeled with a form factor for Gaussian chains, the initiator DNA−
dextran before (black, open triangles) and after DNA side chain
extension (black, cubes) and a theoretical summated profile of the
HCR components. All samples were prepared in 5X SSC buffer. Figure 3. Hybridization chain reaction on DNA-initiator polymers

preheated at 60 °C for 10 min and cooled to room temperature.
(A) Particle size distributions measured by DLS of HP1, HP2, HP1
and HP2, dextran−VS, initiator DNA with HP1 and HP2, initiator
DNA−dextran graft copolymer and the initiator DNA−dextran graft
copolymer after DNA side chain extension at room temperature
(N = 3). (B, C) Atomic force micrographs (AFM) of drop-casted
samples of initiator DNA−dextran graft copolymers before (B) and
after executing HCR with HP1 and HP2 (C) (below). Scale bar is
500 nm. Insets: histograms of DNA−dextran particle diameter. All
samples were prepared in 5X SSC buffer.
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aggregates was pursued prior to the hybridization chain
reaction. The room temperature-prepared initiator DNA-graft
copolymer solution was heated for 10 min at 60 °C and cooled
to room temperature before the addition of HP1 and HP2, and
the hydrodynamic diameter was measured by DLS at room
temperature before and after hairpin addition (Figure 3A).
Before hairpin addition, a particle population with a diameter of
14 ± 6 nm was recorded, which increased to 66 ± 30 nm after
DNA extension. Interestingly, these low values contrast sharply
with the far larger diameters registered without the preheating
step and are comparable to the estimated diameters of the indi-
vidual graft copolymers before and after HCR. These results
suggest that the large sized aggregates obtained upon direct mixing
at room temperature (without preheating) are kinetic products.
The changes in hydrodynamic diameter of the DNA−dextran

conjugates were further supported by atomic force microscopy
(AFM) measurements on the samples treated at 60 °C prior to
performing HCR. The DNA-graft copolymer self-assemblies
were drop-casted on mica and washed with water to remove
buffer salts prior to imaging. Preheating the sample to 60 °C
before DNA side chain extension on the initiator DNA−dextran
graft copolymer showed small aggregates highly disperse in
diameter (Figure 3B, 14 ± 10 nm). These spherical aggregates
grew in size after addition of HP1 and HP2 (Figure 3C, 40 ±
18 nm) as observed by DLS. However, with or without heat
treatment in both DLS and AFM experiments large devia-
tions in the diameter before and after hairpin addition were
recorded between samples, pointing out the influence of the
dispersity of the dextran polymer, DNA conjugation and
aggregation of the DNA-polymer conjugates on the observed
results.

Taken together, the results of the experiments performed at
room temperature (gel electrophoresis, fluorescence quenching,
DLS and SAXS) or by preheating the samples prior to DNA
hairpin addition (DLS and AFM) point to the initiation of the
hybridization chain reaction by the initiator DNA-graft copolymer.
To understand the origin of the unexpected aggregation

observed in DLS and SAXS of the DNA initiator−dextran
copolymer samples prepared at room temperature, analysis of
the DNA sequences used for self-assembly by NUPACK was
performed.49 These investigations revealed weak homodimer
interactions between four nucleotides in the initiator DNA
strands (B*), and HP1 and HP2 (B*) once hybridized, with a
computed free energy of −11.09 kcal/mol (Scheme 2A). This
value is in contrast to a computed free energy of −40.86 kcal/mol
for each formed duplex during the hybridization chain reaction.
The potential for weak homodimer interactions between
initiator and hairpin DNA strands may provide opportunities
for both intramolecular looping within and intermolecular cross-
linking between the DNA-grafted polymers to occur before and
after the hybridization chain reaction as encountered in the
synthesis of conventional graft copolymers.50 However, it is
likely that the potential for multiple weak homodimer inter-
actions between DNA-grafted copolymers due to their multi-
valent DNA presentation facilitates their secondary aggregation
into large aggregates.
We further examined the potential to prepare hybrid-DNA

polymer materials through the hybridization chain reaction
by particle-tracking microrheology. This technique involves
determining the mean squared displacement (MSD) of
micrometer-sized fluorescently labeled tracer particles subject
to Brownian motion within the material over time. Whereas

Scheme 2. Proposed Mechanism of Initiator DNA−Graft Copolymer Self-Assembly before and after the Hybridization Chain
Reactiona

a(A) Initiator DNA−dextran graft copolymer bearing multiple initiator sequences can aggregate through weak homodimer interactions in domain B*.
Addition of HP1 and HP2 starts the energetically favorable hybridization chain reaction on the initiator DNA−dextran graft copolymer to extend the
DNA grafts. Exposed single stranded B* domains on HP1 and HP2 incorporated on the grafted supramolecular polymer can form weak homodimer
interactions to form larger aggregated structures. (B) Extension of DNA grafts by the hybridization chain reaction on the initiator DNA-graft
copolymers. Addition of HP1 and HP2 results in growth of the DNA grafts on the initiator DNA-graft copolymer aggregates with the potential for
weak homodimer interactions facilitating secondary aggregation to occur.
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conventional oscillatory rheology requires large sample volumes,
particle-tracking microrheology requires volumes as low as 10 μL,
which is highly advantageous for screening DNA-based mate-
rials. Fluorescently labeled polystyrene beads 1 μm in diameter
were mixed into solutions of: HP1 and HP2 (Figure 4 A, B, C,
black tracks), the initiator DNA−dextran graft copolymer
before (red tracks) and after hairpin addition (green tracks).
In these experiments, concentrations of the initiator DNA-graft
copolymer of 0.16, 0.33 and 0.66 mM were examined and a
3-fold molar amount of each HP1 and HP2 were added.
For the various conditions, the bead tracks were followed over time
to monitor the self-assembly process of the DNA-grafts (green
tracks, 0−20 min; blue tracks, 20−40 min). The combination of
the initiator DNA−dextran graft copolymer and both hairpins
HP1 and HP2 showed significantly reduced Brownian motion-
induced bead displacements over time in comparison to con-
trol samples. The strongest reduction of particle motion was
observed for the 0.66 mM initiator DNA-dextran graft copol-
ymer sample, such that axes with smaller increments for x and y
displacements were required for better visualization. These
particle tracks were converted into MSDs and plotted with
respect to time by time-wise data segmentation (Figure 4, parts
D, E and F, respectively. Control samples containing a combi-
nation of HP1 and HP2 (black) or the initiator DNA−dextran

graft copolymer only (red) displayed a linear increase
in their MSDs over lag time, consistent with the behavior of
Newtonian fluids for all sample concentrations. Addition of
HP1 and HP2 to the initiator DNA−dextran copolymer resulted
in a decrease of the MSD values with respect to time (green,
0−20 min; blue, 20−40 min) for the samples containing 0.16 or
0.33 mM of the initiator DNA-dextran graft copolymer,
indicative of increasingly viscous materials. For the sample
containing 0.66 mM of the initiator DNA-dextran graft copol-
ymer, a decrease in both the MSD values as well as a slope of
zero was observed on par with the rapid formation of a gel-
phase material. As a control, performing HCR on a sample
consisting of 0.33 mM of the unconjugated initiator DNA with
1.0 mM of each DNA hairpin did not result in the formation of
equally viscous materials as seen in samples containing the
initiator DNA−dextran graft copolymer (Figure S6).
To gain further insight into the mechanical properties of the

materials, the storage (G′) and loss (G″) moduli were extracted
from the complex modulus obtained from a numerical approxi-
mation of the Laplace transform of the MSD data. G′ and G′′
of the various samples (0.16, 0.33 or 0.66 mM initiator DNA-
dextran graft copolymer samples with the corresponding amount
of DNA hairpins, Figure 4, parts G, H, and I, respectively)
as a function of frequency were determined after 40 min.

Figure 4. Particle tracking microrheology on initiator DNA−dextran graft copolymers after DNA hairpin addition (0.16 (lef t panel), 0.33 (middle
panel) and 0.66 mM (right panel) of initiator DNA−dextran and 0.5, 1.0 and 2.0 mM of each DNA hairpin, respectively). Black: HP1 + HP2 only.
Red: initiator DNA−dextran only. Green: HCR containing initiator DNA−dextran, HP1 and HP2 0−20 min. Blue: ibid., 20−40 min. (A, B, C)
Representative collections of displacement tracks for four beads per test condition (D, E, F). MSD versus lag time plots (G, H, I). Storage (G′) and
loss (G′′) moduli as a function of frequency (solid lines, G′; dashed lines, G′′).
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As expected, for the 0.16 and 0.33 mM initiator DNA-dextran
graft copolymer samples, G″ was larger than G’ over the entire
frequency range consistent with liquid-like behavior. Con-
versely, for the 0.66 mM initiator DNA-dextran graft copolymer
sample G′ was larger than G″, synonymous with the formation
of a viscoelastic material. Most likely, the observed rheological
behavior of the 0.66 mM initiator DNA-graft polymer sample is
as a result of surpassing the overlap concentration upon exten-
sion of the DNA grafts by the hybridization chain reaction.

■ CONCLUSIONS
The DNA hybridization chain reaction is a hallmark example of
dynamic DNA nanotechnology that can be used for sophis-
ticated applications in detection with limits in the femtomolar
range. We have shown that this technique based on DNA
strand displacement can be applied on covalent polymers to
drive on-demand growth of their side chains with the potential to
form macroscale materials depending on concentration through
hierarchical self-assembly. In combination with the advances in
DNA solid phase synthesis and its continuously decreasing
production costs, we envisage that implementing this technique
on polymer materials opens up this area to a whole new level of
structural abstraction, allowing for the future development of a
wide range of responsive materials for biomedical applications
using viscosity-based changes as a readout.
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