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Intervertebral disc degeneration (IVDD) is the main cause of cervical and lumbar
spondylosis. Over the past few years, the relevance between cellular senescence and
IVDD has been widely studied, and the senescence-associated secretory phenotype
(SASP) produced by senescent cells is found to remodel extracellular matrix (ECM)
metabolism and destruct homeostasis. Elimination of senescent cells by senolytics and
suppression of SASP production by senomorphics/senostatics are effective strategies to
alleviate degenerative diseases including IVDD. Here, we review the involvement of
senescence in the process of IVDD; we also discuss the potential of senolytics on
eliminating senescent disc cells and alleviating IVDD; finally, we provide a table listing
senolytic drugs and small molecules, aiming to propose potential drugs for IVDD therapy in
the future.
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INTRODUCTION

Intervertebral disc degeneration (IVDD) refers to an age-related change that mainly occurs in the
lumbar intervertebral disc and often precedes other age-related changes (Adams and Roughley, 2006;
Vergroesen et al., 2015). During the process of IVDD, annulus fibrosis (AF), one of the important
compositions of intervertebral disc, loses its original layer and toughness, and reticulated
degeneration and hyalinization appear, while the percentage of water decreases in another
component called nucleus pulposus (NP). As a result, the intervertebral disc loses its normal
elasticity and tension (Roberts et al., 2006). Severe trauma or repeated inconspicuous damage may
cause the annulus fibrosis to become weak or even rupture. There are two results depending on the
severity of damage to AF. If the annulus fibrosus is partially teared, the nucleus pulposus will
protrude from the weak or ruptured area, compressing the nerve root and producing signs of nerve
root damage; however, if the annulus fibrosus is completely ruptured, the broken nucleus pulposus
tissue is likely to prolapse from the disc and enter into the spinal canal, which will cause irreversible
damage to spinal cord (Roberts et al., 2006; Carrino et al., 2009).

IVDD is considered to be one of the main causes of low back pain and lumbar herniated disc
(Brinjikji et al., 2015). As the life expectancy of the global population rises slowly, the incidence of
IVDD will become increasingly high, thus resulting in a high economic burden (Smith et al., 2011).
Although the situation is severe, the molecular mechanism of IVDD has not yet been fully clarified
yet. At present, there are two main treatment strategies for IVDD: surgery and drug therapy.
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However, the main effects of existing drugs are inhibition of
inflammation and post-onset analgesia, which cannot effectively
prevent intervertebral disc from degenerating in the early stage
(Wu et al., 2020).

Aging is the primary risk factor for the development of IVDD,
which causes the accumulation of senescent cells in the
intervertebral disc (Wang et al., 2016). Researchers have found
that senescent NP cells play an important role in the initiation of
IVDD (Zhang Y. et al., 2020). The number of senescent NP cells
increased significantly during IVDD (Sakai et al., 2012; Dudek
et al., 2017), suggesting the deleterious effect of senescent NP cells
on the pathogenesis of IVDD. Recent studies have shown that
senescent cells could secrete metabolic factors such as pro-
inflammatory cytokines, matrix-degrading proteases, growth
factors, and chemokines, which caused changes of the
extracellular matrix (ECM) (Gruber et al., 2011; Zhao et al.,
2011; Bedore et al., 2014). In addition, senescent cells can affect
adjacent cells through paracrine, thereby inducing the catabolism
and inflammation in the microenvironment of intervertebral disc.
The metabolic factors secreted by senescent cells are collectively
named senescence-associated secretory phenotype (SASP) (Ngo
et al., 2017). In recent years, investigations on new drugs that
target the process of senescence have become a new therapeutic
strategy for the early prevention and latter treatment for
degenerative diseases. Evidence suggest that whether through
genetically modified strategy (Baker et al., 2011; Liu et al., 2019)
or chemotherapy (Zhu et al., 2015; Amor et al., 2020), the
elimination of p16INK4a senescent cells has been shown to
significantly extend the healthspan in murine. So, optimizing
treatments to reduce senescence or eliminate senescent cells may
exert positive effects on human health.

Senolytic represents a wide range of drugs or small molecules
that can selectively eliminate senescent cells. Zhu et al. (2015)
demonstrated a significant effect of senolytic on aging-related
diseases in mice for the first time in 2015. Since then, senolytic has
been investigated in age-related diseases extensively. Its
characteristic of selectively inducing apoptosis of senescent
cells has been validated in osteoporosis, primary biliary
cholangitis, atherosclerosis, and chronic lung diseases,
respectively (Childs et al., 2016; Farr et al., 2017; Barnes et al.,
2019; Sasaki et al., 2020). Therefore, the application of senolytic
drugs is a potential strategy for degenerative disease treatment,
including IVDD.

CELLULAR SENESCENCE

Cellular senescence is usually defined as the process of gradual
decline in cell proliferation and differentiation as well as
physiological dysfunctions during life activities of cells (van
Deursen, 2014). The dynamic balance of cell senescence,
death, and cell proliferation is fundamental for normal
metabolic activities (Calcinotto et al., 2019). Currently, it is
widely believed that cellular senescence can be divided into
two categories, replication senescence (RS) and stress-induced
senescence (SIPS) (Muñoz-Espín and Serrano, 2014). The
signaling pathways involved in these two types of senescence

overlap with each other a lot, which makes it difficult to
distinguish unless external predisposing factors are clarified
(Herranz and Gil, 2018).

The mechanism of age-related replication senescence has been
studied for decades, and a number of hypotheses have been
proposed (Victorelli and Passos, 2017; Schmeer et al., 2019).
Among them, the theory of aging circadian clock generally
accepted by scientists claims that shortened chromosomal
telomeres caused by DNA duplication during mitosis lead to
senescence (Dudek et al., 2017; Hood and Amir, 2017; Sato et al.,
2017). The reactive oxygen species (ROS) theory describes that
the accumulation of ROS in cells will cause organelle dysfunction
(Finkel and Holbrook, 2000; Victorelli and Passos, 2017; Wang R.
et al., 2018). And, the theory of DNA damage accumulation is also
used to explain the mechanism of RS (Lieber and Karanjawala,
2004; Chen et al., 2007). As for SIPS, which refers to cell
senescence induced by external stimuli, it manifests as the
senescence of local tissues or cells instead of the whole
organism. Accordingly, SIPS is considered to be the main
cause of age-related degenerative diseases (de Magalhães and
Passos, 2018).

Non-random damage plays an important role in the initiation
and development of senescence (Gladyshev, 2013). ROS, DNA
lesions, and mitochondrial dysfunction caused by external
stimulation have been shown to be the dominant mechanisms
of SIPS (Passos et al., 2007). As one of the common causes leading
to SIPS, DNA damage induced by external stressors mainly
activates DNA damage response (DDR) signaling pathway-
related kinase (ATM, ATR), which further activates the
downstream p53-p21-retinoblastoma protein (Rb) pathway
and thereby inhibits cell cycle (Gladyshev, 2013; Ou and
Schumacher, 2018). Extensive mechanical tension represents a
common external stressor, and the senescence of NP and AF cells
causes a typical feature in degenerative intervertebral disc (Pang
et al., 2017; Zhao et al., 2019). Additionally, due to the absence of
blood vessels and nerves in the intervertebral disc, it is more
susceptible to be damaged by oxidative stress, lower pH,
hypertonic extracellular environment, and hypoglycemia
(Huang et al., 2014; Che et al., 2020). Oxidative stress and
hypertonic extracellular environment have been shown to
promote NP cell senescence in vitro (Xu et al., 2019; Che
et al., 2020).

When external stressors cause DNA damage, the DDR
signaling pathway and p16Ink4a are both continuously activated
(Rodier et al., 2009; Wang et al., 2013; Horikawa, 2020).
Moreover, mitochondrial dysfunction and ROS production are
also regulated through p38-MAPK pathway. They can then lead
to cell cycle arrest, also known as cell senescence (Passos et al.,
2007; Borodkina et al., 2014). Recent studies have shown that the
inhibition of DDR-related kinase could get senescent cells back
on the track of replication cycle instead of cycle arrest (Menolfi
and Zha, 2020; Zhao et al., 2020). The significance of DDR is to
restrict the damaged DNA to stimulated cell by inhibiting cell
proliferation, which attenuates the accumulation of abnormal
daughter cells with damaged DNA in the tissue (Lans et al., 2019).

Oxidative stress (OS) is a negative process with the production
of ROS, which is a key factor leading to senescence and extensive
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cellular dysfunction (Junqueira et al., 2004; Hernandez et al.,
2015). Hypoxia is the main cause of ROS production (Giordano,
2005). Increasing ROS in cells is closely related to DNA damage,
and DDR-related p53-p21-Rb pathway is subsequently activated
(Passos et al., 2007). The role of the p16-Rb pathway has also been
validated in ROS-induced senescence (Rayesse et al., 2012).

Another important factor of SIPS is mitochondrial
dysfunction-induced senescence, whose underlying mechanism
is closely related to ROS (Bhatti et al., 2017). On the one hand,
mitochondria, as the center of aerobic respiration, are
manufacturers of ROS through the loss of the respiratory
chain, the decrease of mitochondrial membrane potential, and
electronic leak due to opening of mitochondrial permeability
transition pores (Sas et al., 2018). On the other hand,
mitochondria are the main targets of ROS in turn (Bhatti
et al., 2017). When mitochondria are attacked by ROS,
mutations of its DNA (mtDNA) increase and respiratory
enzymes are damaged, subsequently leading to severe
mitochondrial dysfunction (Bhatti et al., 2017; Stokman et al.,
2017). Consequently, ROS and mitochondrial dysfunction form a
vicious cycle of mutual deterioration (Passos et al., 2007).
Furthermore, Wiley et al. (2016) have found that
mitochondrial dysfunction-related senescence activated by
AMPK and p53 axis produces a completely different SASP
compared to that of the IL-1-dependent group, providing new
evidence to explain the senescence induced by mitochondrial
damage. This result elucidates that mitochondrial dysfunction
has multiple effects on cell senescence, while the underlying
mechanism needs to be further clarified. Besides hypoxia
induced by DNA damage, ROS can also be generated by
oxidative stress connected to inflammation and high glucose
(McGarry et al., 2018; Fouda et al., 2020).

From the studies above, we conclude that the p53-p21-Rb
pathway or/and the p16INK4a-Rb pathway play a key role in SIPS.
Although these two pathways prevent cells from entering the S
phase by inhibiting the phosphorylation of Rb through different
cyclin-dependent kinases (CDKs), the cells finally manifest a
similar senescence phenotype (Panossian et al., 2021). The
difference between two pathways is that p21 is an inhibitor of
CDK2 (Morisaki et al., 1999), while p16INK4a works as the
inhibitor of CDK 4/6 (Tao et al., 2017). Moreover, the tumor
suppressor p19Arf, which could activate p53, plays a role in
replicating DNA damage instead of acute damage (Lim et al.,
2021). Although p53 is essential to the initiation of senescence
(Horikawa, 2020), studies have found that p16INK4a is the main
factor maintaining senescence in some cells (Baker et al., 2011).
Studies on intervertebral disc have only found increased
expression of p16INK4a with increasing age, while the levels of
p53 and p19Arf did not manifest a significant discrepancy, which
emphasized the importance of p16INK4a as a key marker for
maintaining age-dependent senescence in the intervertebral disc
of mice (Novais et al., 2019).

In terms of transcriptome, miR-623 has been shown to prevent
LPS-induced senescence of intervertebral disc cells through
CXCL12 (Zhong et al., 2021).

Currently, SIPS is widely recognized as a typical stress
response when suffering from external stimuli, which is

involved in the repair of damaged tissue and inhibition of
abnormal proliferation (Sikora et al., 2011; Dominic et al.,
2020). With risk factors affecting the organization
continuously, senescent cells will accumulate and bring about
unexpected dysfunctions subsequently (deMagalhães and Passos,
2018). Studies have also found that senescent cells play an
irreplaceable role in degenerative diseases such as IVDD
through triggering extensive inflammatory responses by
secreting SASP (Ngo et al., 2017).

SENESCENT CELLS PLAY AN
INDISPENSABLE ROLE IN
INTERVERTEBRAL DISC DEGENERATION
As we have mentioned in the Introduction, aging is the most
important factor that promotes the initiation and development of
IVDD. Besides apoptosis, NP cells affect adjacent tissues in an
aging-related way and aggravate the dysfunction of the
intervertebral disc with our body becoming old generally
(Wang et al., 2016). Among them, senescent cells are involved
in the etiology of several age-related dysfunction, including
Alzheimer’s disease (Lyons and Bartolomucci, 2020),
obstructive pulmonary disease (Barnes et al., 2019),
atherosclerosis (Stojanović et al., 2020), and osteoporosis
(Khosla, 2013). Studies have found that the percentage of
senescent cells experienced a significant increase in the nucleus
pulposus during the process of IVDD (Zhang Y. et al., 2020).
Senescent cells exhibit three main characteristics in vivo,
including reduced replication, expression of SASP, and
p16INK4a activation (Li et al., 2021). As the reduction of
senescent cell replication has been elaborated in detail in the
Cellular Senescence section, we will review the two remaining
features in the following section (Figure 1).

Senescence-Associated Secretory
Phenotype and Intervertebral Disc
Degeneration
ECM degradation and the initiation of inflammation are the two
major processes of IVDD (Yang S. et al., 2020). ECM, mostly
composed of aggrecan and collagen type II (collagen II),
provides a foster ground for the metabolism of intervertebral
disc cells (Zhang Y. et al., 2020). However, with the body getting
older, the synthesis of aggrecan and collagen II decreases year by
year. These degenerative changes could alter the
microenvironment of the NP cells, leading to changes of
intervertebral disc structure and subsequently weakened load
capacity (Smith et al., 2011). In addition, researchers have found
that the ability of senescent NP cell to stabilize ECM declines
with age (Vo et al., 2016). When subjected to the stimulation of
external ROS, aggrecan and collagen Ⅱ are degraded as a
consequence of increased expression of matrix
metalloproteinase family (MMPs) and A Disintegrin And
Metalloproteinase with Thrombo Spondin 1 repeats
(ADAMTSs), which is considered to be the main microscopic
pathological change of IVDD. (Bedore et al., 2014).
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Inflammatory factors (IL-1, IL-6, IL-8, and TNF-α) are key
cytokines involved in aging and age-related diseases, whose
expression levels are related to the severity of degeneration to
a certain extent (Krupkova et al., 2018; Zhang Y. et al., 2019; Kim
et al., 2021). IL-1 has already been shown to be involved in the
pathogenesis of intervertebral disc degeneration (Phillips et al.,
2013). But, the research of Gorth et al. (2019) suggests that there
is also an exception in IVDD. After knocking out gene IL-1 in
mice, they found IVDDwas remarkably exacerbated compared to
the control group, which suggests the opposite effect of IL-1 in
intervertebral disc. Therefore, it is worth noting that the function
of inflammatory factors clarified in other degenerative diseases
cannot be simply applied to IVDD. In the past few years, it is
widely believed that senescent cells can play multiple roles,
including but not limited to secreting metabolic factors,
recruiting inflammatory cells, causing instability of
extracellular microenvironment, and inducing the senescence
of neighboring cells through paracrine. In this way, senescent
cells could lead to the catabolism of the intervertebral disc matrix
and activated inflammation, which are two main mechanisms of
IVDD (McHugh, 2020; Yang S. et al., 2020).

The metabolic factors secreted by senescent cells are called
SASP, which can be divided into proinflammatory factors (IL-6,
IL-7, IL-8, and TNF-α), ECM proteases (MMPs and ADAMTS),

growth factors, cytokines, and other biologically active
substances (Faget et al., 2019; Basisty et al., 2020). ATM/ATR
activated by DDR is considered to be an important target for
initiating SASP synthesis (Victorelli and Passos, 2017; Menolfi
and Zha, 2020), among which the silencing of ATM genes can
remarkably inhibit the secretion of IL-6 (Rodier et al., 2009).
The theory has also been validated in IVDD, and inhibition of
ATM alleviated the symptom significantly with reducing the
expression of IL-6 in SASP (Zhao et al., 2020). In addition,
tumor suppressor genes have been confirmed to play a role in
the initiation of cellular senescence, especially for the secretion
of SASP. In astrocytes, p53 regulated the expression of a variety
of SASP factors (IL-1β, IL-6, and IL-8) (Turnquist et al., 2016),
while another tumor suppressor gene Rb promoted the
activation of the SASP (IL-6) in the mouse osteosarcoma
model (Li and Zhang, 2017). Moreover, mammalian
rapamycin (mTOR) (Herranz et al., 2015), p38MAPK/
MAPK-activated protein kinase 2 (MK2) (Freund et al.,
2011), nuclear factor kappa-B (NF-κB) (Chien et al., 2011;
Zhao et al., 2020), interferon gene cyclic GMP-AMP
synthetase/stimulator (cGAS/STING), and CCAAT/enhancer
binding protein β (C/EBPβ) have been confirmed to regulate
the secretion of SASP (Huggins et al., 2013; Lim et al., 2020;
Aguado et al., 2021).

FIGURE 1 | Cellular senescence and IVDD. (A) Age-related senescence often leads to organ dysfunction and structure failure, while in the spine, it mainly
manifested as IVDD. The senescence of NP cells and fibroblasts in the annulus fibrosus cells is the main cause of IVDD. Under the exposure of inappropriate mechanical
stress, the degenerated intervertebral disc may lose its stability as a consequence of the annulus fibrosus enlargement or even rupture and the position changes of the
nucleus pulposus, resulting in posterior disc protrusion and subsequent compressive myelopathy. (B) Senescence of NP cells is considered to be the main cause
of IVDD. Various external and internal stressors can activate the aging-related signal cascade by changing the function of mitochondria, inducing ROS generation or DNA
damage. These three initiation modes of senescence are interrelated to each other, forming a complex cellular senescence regulation network. In the downstream
cascade, p16-CDK4/6-Rb and p53-p21-CDK2-Rb are recognized to block the G1/S phase of the cell cycle, while p53-p21-cdc2 blocks the S/G2 phase. (C) SASP
secreted by senescent NP cells will result in structural degradation of the intervertebral disc. SASP in nucleus pulposus is mainly composed by two categories of
elements, inflammatory factors (IL-1, IL-6, and IL-8) and ECM proteases (MMP-13, ADAMTS4, and ADAMTS5). For inflammatory factors, they participate in the local
inflammatory response and induce the senescence phenotype of adjacent cells. As for ECM proteases, they mainly degrade the components of the extracellular matrix,
aggrecan (ADAMT4 and ADAMT5), and collagen II (MMP13), to threaten the homeostasis of extracellular structure.
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The secretion of SASP causes a variety of extracellular
reactions, in which inflammation is the most important one.
Accordingly, the interaction between the immune system and
cellular senescence provides a new direction for the diagnosis and
treatment of age-related diseases. A contradiction is that SASP
could specifically eliminate senescent tumor cells by recruiting
immune cells (NK cells) (Chien et al., 2011), meanwhile SASP
could also cause the “senescence cascade” as more cell senescence
is induced by endocytosis of pro-inflammatory cytokines (Faget
et al., 2019).

In IVDD, how SASP plays its role has attracted widespread
attention currently. It has been determined that the expression
level of multiple pro-inflammatory cytokines (IL-1, IL-6, and IL-
8) and ECM proteases (MMP-13, ADAMTS4, and ADAMTS5)
increased in senescent intervertebral disc (Ngo et al., 2017).When
aging-related degeneration occurs, ECM is degraded by elevated
ECM proteases (MMPs and ADAMTS), which is an important
mechanism for the loss of structural stability of the intervertebral
disc (Bedore et al., 2014).

At present, some drugs called senomorphics are found to
improve the extracellular microenvironment by reducing the
production of SASP without eliminating senescent cells
(distinguish from senolytics) (Di Micco et al., 2021). In some
literature, they are also called senostatics (Kang, 2019). Our
previous result suggested that the senomorphic drug
metformin and polydatin could alleviate IVDD by inhibiting
the senescence and apoptosis of NP cells in intervertebral disc
(Chen et al., 2016; Wang J. et al., 2018), and the inhibitory effect
of metformin on SASP (IL-6, IL-1β, MMP3, and MMP13) was
recently verified in the study of Han et al. (2019).

However, the composition of SASP varies from cell to cell
(Basisty et al., 2020), and even for the same cell, the component of
SASP it produces is partially different depending on the type of
stimuli it receives and for which it enters senescence (Özcan et al.,
2016). On this condition, components of SASP secreted by
senescent NP cells are still not fully understood. On the other
hand, as we mentioned before, SASP can recruit immune cells for
self-elimination (Birch and Gil, 2020; Jin et al., 2021), while it is
still unclear whether the mechanism exists in the intervertebral
disc. So, further implementation of senomorphic drugs in IVDD
is limited, although the deteriorating effect of SASP in IVDD has
already been clarified (Zhao et al., 2011; Ngo et al., 2017).
Analogically, the application of senolytic drugs that aim to
remove senescent cells and reduce SASP secretion in
intervertebral disc requires further research.

Eliminating Senescent Cells and Relieving
Intervertebral Disc Degeneration
Since the accumulation of senescent cells is the main cause of age-
related degenerative diseases, it is widely believed that removing
senescent cells and reducing the production of SASP can not only
alleviate the aging-related dysfunction but also improve age-
related diseases or related phenotypes (Baker et al., 2011; Zhu
et al., 2015). For example, removing senescent astrocytes and
microglia has been shown to improve tau-dependent
neurodegenerative diseases (Zhang P. et al., 2019), while

eliminating senescent osteocytes can also delay osteoporosis
caused by aging effectively (Farr et al., 2017). Similar effects
have also been observed in chronic lung diseases (Barnes et al.,
2019) and atherosclerosis (Childs et al., 2016) after senescent cells
being eliminated. In the phase of pre-clinical research, selective
elimination of transgenic marker p16INK4a and chemical
pathways are two effective strategies to remove senescent cells
(Baker et al., 2011; van Deursen, 2019).

p16INK4a, known as a cell cycle suppressor, can inhibit cyclin-
dependent kinases 4 and 6 (CDK4 and CDK6), causing
stagnation of senescent cells at G1 phase (Kim et al., 2021).
The expression level of p16INK4a increases in senescent cells; thus,
p16INK4a is always used as one of the commonly senescent cell
markers (others: SA-β-gal, ki67) (Krupkova et al., 2018;
Ogrodnik, 2021). In recent years, more and more studies have
proved that p16INK4a is essential for inducing and maintaining
senescence in intervertebral discs, and its conditional loss plays an
important role in reducing cell apoptosis, restricting SASP, and
changingmatrix homeostasis of intervertebral disc cells (Liu et al.,
2019; Novais et al., 2019; Patil et al., 2019; Che et al., 2020). After
inserting a strain (tdTOM) into the p16 promoter, Liu et al.
(2019) have found that p16tdTOM-positive cells accumulate
accompanying aging and inflammation, among which mouse
macrophages exhibited a senescent phenotype, and SASP-related
expression was significantly elevated. Also, Che et al. (2020)
detected the decrease of pro-inflammatory cytokine IL-1β and
IL-6 after knocking out p16INK4a. Although a decreased
expression in MMP13 was not detected, the inhibited
degradation of collagen II in the intervertebral disc indicated
that knocking out p16INK4a can prevent intervertebral disc from
inflammatory response and matrix degradation through SASP.
Interestingly, in the study by Novais et al. (2019), although the
secretion of SASP was reduced and ECM homeostasis was
improved in p16INK4a KO mice, there was no significant
difference in the reduction of senescent cells in the
intervertebral disc and the improvement of IVDD process
compared with the control group. Instead, the increase of
p19Arf and Rb expression suggests that perhaps some
bypasses are activated when p16INK4a is silenced, maintaining
the senescent phenotype. This result suggests that inhibiting the
expression of p16INK4a merely cannot alleviate IVDD effectively.

Alternatively, the elimination of senescent cells has been
proved to decrease the paracrine effect of SASP on
neighboring cells (Ngo et al., 2017), which exhibits few
obvious side effects simultaneously (Baker et al., 2011).
Furthermore, after the elimination of transgenic p16INK4a

(p16-3MR) senescent NP cells by target reagents, Patil et al.
(2019) have detected the extensive reduction of MMP13
expression and ECM degradation in the intervertebral disc.
Although the expression of IL-6 and ADAMTS4 exerts no
distinction compared with negative control, which suggests
that IL-6 and ADAMTS4 may not be the SASP components
that cause the development of IVDD, the targeted elimination of
senescent cells significantly improves the histological
characteristics of the intervertebral disc compared with the
knockout of p16INK4a. The results suggest that the elimination
of senescent NP cells with a high expression of p16INK4a can delay
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the aging process and reduce the degeneration of
intervertebral discs.

A senolytic is a kind of small molecules with the feature of
clearing senescent cells selectively (van Deursen, 2019). After
dasatinib and quercetin were first reported as a senolytic
combination in 2015, it was discovered that the indiscriminate
removal of senescent cells through senolytic can effectively inhibit
the degradation of proteoglycans in the intervertebral disc (Zhu
et al., 2015). Dozens of compounds with senolytic activity have
been distinguished so far, which are mainly divided into natural
extracts with their derivatives and synthetic chemical molecules
(Partridge et al., 2020; Lagoumtzi and Chondrogianni, 2021).

As for natural extracts, compounds with senolytic features
mainly include quercetin, fisetin, curcumin, and its derivative
o-Vanillin (Di Micco et al., 2021). The latest study has found that
the grape seed extract PCC1 also has senolytic properties, which
may be stronger than existing compounds (Xu Q. et al., 2021).
Among them, curcumin and its metabolite o-Vanillin have been
proven to eliminate senescent cells in the intervertebral disc,
reducing SASP secretion and alleviating IVDD (Cherif et al.,
2019; Mannarino et al., 2021). Our previous study has elucidated
that quercetin could significantly reduce the proportion of
senescent cells in the intervertebral disc through the Nrf-2/
NF-κB pathway and slow down the deterioration of IVDD
(Shao et al., 2021). The antiaging effects of fisetin and PCC1
in the intervertebral disc reserve to be proven.

For synthetic chemical molecules, the effects of FDA-approved
reagent RG7112 in eliminating senescent cells were validated in
the intervertebral disc by targeting MDM2 (Cherif et al., 2020).
From the preclinical studies above, we have seen the feasibility
and great potential of senolytic therapy in IVDD. Compared with
transgenic therapies, senolytic drugs have fewer side effects and
clearer mechanisms. Also, some of them are clinical drugs that
have been approved by the FDA, which have better prospects in
application (Nogueira-Recalde et al., 2019; Sargiacomo et al.,
2020). However, considering the beneficial effects of senescent
cells in some diseases such as tissue repairing (Xu et al., 2018;
Lagoumtzi and Chondrogianni, 2021), the systemic application of
senolytic drugs needs a more in-depth evaluation.

POTENTIAL INTRACELLULAR TARGETS
OF SENOLYTIC AND INTERVERTEBRAL
DISC DEGENERATION
In recent years, an increasing number of studies have shown that
the application of transgenes or chemical reagents in eliminating
senescent cells can protect organisms from aging and some age-
related degenerative diseases and prolong the healthspan (Baker
et al., 2011; van Deursen, 2019). As a type of aging treatment
strategy, senolytics can selectively clear senescent cells by
inducing apoptosis and reduce the production of SASP,
contributing to the alleviation of aging-related diseases and
improvement of metabolic function (Xu et al., 2018;
Lagoumtzi and Chondrogianni, 2021). The naturally extracted
senolytic has a complicated mechanism where multiple
intracellular targets are involved (Ge et al., 2021). For

synthetic senolytics, there are four types of potential targets
that have been identified in senescent cells, including BCL
family (Yosef et al., 2016), HSP90 inhibitor (Fuhrmann-
Stroissnigg et al., 2017), PI3K/AKT (Wagner and Gil, 2020),
and others (Hubackova et al., 2019; He et al., 2020a; Zhang et al.,
2021). Here, we will discuss the underlying mechanisms of these
senolytic target families on cell senescence as well as their role in
the process of IVDD (Figure 2).

PI3K/Akt
PI3K (phosphatidylinositol kinase) is a dimer that is composed of
regulatory subunit p85 and catalytic subunit p110 (Cully et al.,
2006). When binding to growth factors, cytokines, or hormone
receptors, PI3K can change the structure of Akt and make it
phosphorylated (p-AKT). p-AKT is the activated state of Akt that
could regulate FoxO, mTOR, and other signal proteins in its
downstream (Yang et al., 2019). PI3K/Akt is a classic pathway
that plays an important regulatory role in cell proliferation,
apoptosis, and autophagy (Koyasu, 2003; Cully et al., 2006;
Greenhill, 2019; Zhou et al., 2020). Meanwhile, an increasing
number of evidence show that the activation of the PI3K/AKT
pathway is also involved in stabilizing senescent cells (Zhu et al.,
2015; Mendez-Pertuz et al., 2017; Wagner and Gil, 2020).

Until now, two types of downstream targets have been figured
out in inhibiting the apoptosis of senescent cells through
PI3K/Akt.

The first is the pro-apoptotic signaling pathways mainly
suppressing Bax, Bad, and FoxO (Stitt et al., 2004; She et al.,
2005; Rahmani et al., 2018). Studies have found that after
blocking the binding of FoxO4 and p53, FoxO4-DRI can
induce the apoptosis of aging Leydig cells in testicles
effectively (Zhang C. et al., 2020), while the role of Bax and
Bad inhibitors in inducing apoptosis of senescent cells has not
been reported yet.

mTOR, together with NF-κB signaling pathways, represents
another kind of targets regulated by PI3K/Akt (Dutta Gupta and
Pan, 2020). As an important regulatory protein in aging,
autophagy, and apoptosis, mTOR plays a key role in cell
senescence and autophagy (Nam et al., 2013; Kim and Guan,
2015). mTORC1 is widely involved in cell metabolisms whose
suppression will lead to the surging autophagy and clearance of
damaged proteins and organelles (such as mitochondria)
(Weichhart, 2018), which could also reduce the accumulation
of SASP and alleviate aging (Weichhart, 2018). The application of
rapamycin, inhibitor of mTORC1, has been shown to extend the
lifespan of model organisms, although the latest clinical trial
results do not support its anti-aging effect in healthy older adults
(Kraig et al., 2018). Accordingly, whether mTORC1 inhibitors
can alleviate human aging needs further discussion. As in
intervertebral disc, rapamycin can exert a variety of effects
through mTORC1, including inhibiting the senescence of
annulus fibrosus cell (Gao et al., 2018), promoting autophagy
of end plate chondrocytes (Zhang C. et al., 2020), and protecting
NP cell from apoptosis and senescence (Kang et al., 2019). Hence,
the process of IVDD was delayed (Kakiuchi et al., 2019). Due to
its properties in reducing SASP secretion, rapamycin is classified
as senomorphic currently (Xu C. et al., 2021).
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NF-κB is another important molecule regulated by PI3K/Akt
(Hoesel and Schmid, 2013).We have validated the role of NF-κB in
reducing the production of SASP and elimination of senescent NP
cell under the treatment of quercetin (Shao et al., 2021).
Furthermore, quercetin has also been shown to inhibit the
upstream of PI3K/Akt pathway through certain mechanisms,
suppressing the proliferation of tumor cells and inducing the
apoptosis of senescent cells (Kim et al., 2019; Lan et al., 2019).
In addition, another natural senolytic drug fisetin is also proven to
promote apoptosis of tumor and senescent cell by inhibiting PI3K/
Akt and mTOR (Yousefzadeh et al., 2018). Therefore, PI3K/Akt is
considered to be an essential target of natural senolytic extracts as
well as the potential signaling pathway for IVDD.

B-Cell Lymphoma 2 Family
The B-cell lymphoma 2 (BCL-2) family is a special protein family
that shares one or more BCL-2 homology (BH) domains. Most of
BCL-2 are located on the outer mitochondrial membrane or
transferred to outside of the mitochondria under certain stimuli
(Adams and Cory, 1998). The family plays a decisive role in the
intracellular apoptosis by regulating the permeability of the outer
mitochondrial membrane (Korsmeyer, 1999).

At present, 25 proteins have already been recognized as Bcl-2
family homologue (Kale et al., 2018). According to different

responses to apoptotic stimulus, they can be divided into two
groups: Bcl-2, Bcl-xL, Bcl-w, MCL-1, and A1 who inhibit cell
apoptosis and Bax, Bak, Bad, Noxa, etc. that promote cell apoptosis
(Adams and Cory, 1998). Bcl-2 can prevent the release of
cytochrome c from mitochondria to the cytoplasm, thereby
inhibiting endogenous cell apoptosis (Chipuk et al., 2004; Sun
et al., 2019). Besides, Bcl-2 also plays an important role in the
survival of senescent cells (Chong et al., 2020). Studies have found
that the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and
Bcl-w increased, which enhances the cells’ ability of drug resistance
through cell senescence by anti-apoptotic pathway and hence
resisting external stimuli and maintaining tissue integrity (Yosef
et al., 2016). This evidence indicates that anti-apoptotic proteins in
the BCL-2 family have become potential targets for senolytic drugs.

Since inhibiting the expression of anti-apoptotic proteins such
as BCL-2, BCL-xL, and BCL-w displays a positive effect on tumor
cell apoptosis, a series of anti-cancer reagents targeting BCL-2
have been developed in recent years (Delbridge et al., 2016). For
senescence, the senolytic properties of some BCL-2-targeting
molecules [such as ABT263 (navitoclax), ABT737, and A-
1331852] have been verified in a few systems (Chong et al.,
2020; Sasaki et al., 2020; Yang H. et al., 2020). Another BCL-XL
inhibitor A-1155463 has not been applied in the study of
senescent cell clearance yet (Xu D. et al., 2021).

FIGURE 2 | Potential intracellular targets of senolytics. According to the diverse intracellular targets of different senolytics, they are divided into certain groups. As
one of the principal pathways targeted by senolytics, PI3K/Akt can be suppressed by dasatinib through receptor tyrosine kinase (RTK). The natural extracts quercetin
and fisetin are proven to inhibit the phosphorylation of Akt and then induce senescent cell apoptosis and SASP-secret inhibition through FoxO4 and mTOR, respectively.
Besides quercetin, curcumin with its derivative o-Vanillin and fisetin exert their senolytic effects by inhibiting NF-κB. HSP90 inhibitors have also been shown to
induce apoptosis by indirectly inhibiting Akt. The FDA-approved cardiac glycoside drugs digoxin, digitoxin, and ouabain canmediate the elimination of senescent cells by
inhibiting Na+/K+ ATPase and anti-apoptotic protein Bcl-2 simultaneously. In addition, senolytic properties of inhibitors on anti-apoptotic proteins (Bcl-2, Bcl-w, and Bcl-
xL) of Bcl-2 family and transcription factor FoxO4 have also been demonstrated.
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Interestingly, previous studies in IVDD have found that the
apoptosis of normal functioning cells in the nucleus pulposus and
endplate is an essential element to degeneration’s exacerbation
(Chen et al., 2018; Xie et al., 2019), and researchers used to
activate Bcl-2 by miRNA or chemical activators to inhibit the
apoptosis and alleviate IVDD caused by apoptosis (Chen et al.,
2015; Song et al., 2018). Given the contradiction, the challenge
turns into how to guide Bcl-2 inhibitors to induce apoptosis in
senescent cells exclusively instead of normal cells, which is the key
to reducing the side effects of Bcl-2 inhibitors.

The latest study by Lim et al. (2021) elucidates that the BCl-2
inhibitor ABT-263 (navitoclax) did not display any interference
to normal functioning cells while inducing the apoptosis of
senescent NP cells in intervertebral disc. However, this study
did not elucidate whether apoptosis of normal functioning cells
occurred in the process of ABT-263 administration and whether
the positive effect was dose related. In order to prevent ABT-263
(navitoclax) from acting on other tissues of the body, researchers
loaded ABT-263 (navitoclax) in poly(lactic-co-glycolic acid)
nanoparticles (PLGA-ABT), which can specifically release the
reagent to the intervertebral disc. After the release of ABT-263,
the secretion of SASP (IL-6 and MMP-13) in the intervertebral
disc was significantly reduced, the degradation of ECM was
weakened, and the structural integrity and stability of the
intervertebral disc were restored as well (Lim et al., 2021).
Besides ABT-263, several studies have also proven that some
senolytic drugs could induce apoptosis of senescent disc cells
in vitro and in vivo, providing inspirations for the application of
BCL-2 inhibitor drugs in the treatment of IVDD (Wang et al.,
2016; Xu et al., 2018; Wu et al., 2020). Although the study of Lim
et al. has enlightened the application of senolytic in IVDD to a
certain degree, how to accurately guide BCL-2 inhibitors to
senescent cells in the intervertebral disc and adjust the dosage
so that the positive effects of BCL-2 inhibitors by inducing the
apoptosis of senescent cells far outweigh the negative effects
caused by normal functioning cell apoptosis requires further
research.

HSP90
Heat shock protein (HSP) refers to a protein group produced
under the stimulation by stressors, especially for high-
temperature environment (Richter et al., 2010). The majority
of HSP family are known as molecular chaperones, which can
assist proteins to fold correctly. In light of molecular weight, HSPs
are divided into five categories: HSP110, HSP90, HSP70, HSP60,
and small heat shock proteins (sHSPs) (Saibil, 2013). HSP90 plays
a vital role in stabilizing key signal proteins from heat stress
whose inhibition will lead to apoptosis in tumor cells
(Pungsrinont et al., 2020; Khaledian et al., 2021). As a
consequence, HSP90 has been intensively studied as a target of
cancer chemotherapy, and some anti-tumor compounds that
inhibit HSP90 have been developed.

In recent years, the role of HSP90 in cell senescence has
aroused a wide interest. Currently, in nasopharyngeal
carcinoma, age-related cardiac disorders, age-related macular
degeneration, and Alzheimer’s disease, the increase of HSP90
expression in senescent cells has been verified, and the senolytic

activity of HSP90 inhibitors has also been recognized (Chan et al.,
2013; Carnemolla et al., 2014; Wang et al., 2014; Fuhrmann-
Stroissnigg et al., 2017; Chen et al., 2021; Criado-Marrero et al.,
2021). Studies have found that HSP90 can activate Akt through
phosphorylation and inhibit the apoptosis of senescent cells
(Chen et al., 2017). In addition, according to what we have
introduced before, DNA damage caused by radiation or
external and internal factors is an important part of cell
senescence and even apoptosis (Dote et al., 2006), and the
expression of HSP90 increases during this process, which
stabilizes the DDR reactive proteins in senescent cells (Solier
et al., 2012; Orth et al., 2021).

Currently, the senolytic activity of HSP90 inhibitors has been
gradually proven. For example, HSP90 inhibitor ganetespib has
shown obvious senolytic effects in the treatment of prostate
cancer (Pungsrinont et al., 2020). Besides anti-cancer effects,
further studies on HSP90 inhibitors are suggested to evaluate
its senolytic potential (Fuhrmann-Stroissnigg et al., 2017). In
IVDD, inhibiting HSP90 in nucleoplasmic stem cells/progenitor
cells (NPSCs) has been shown to alleviate the process, but its
effect on the clearance of senescent cells in the intervertebral disc
needs further exploration (Hu et al., 2020).

Others
SirT1 is a deacetylase that can promote autophagy and suppress
cell apoptosis and inflammation by inhibiting the p53-p21-Rb
axis (Rubinsztein et al., 2011). SirT1-autophagy pathway’s
activation can effectively slow down the senescence of AF and
NP cells in the intervertebral disc (Zhou et al., 2016; Zhu et al.,
2021). Except for NF-κB, SirT1 pathway has also been proven to
be one of quercetin’s aging-resistant targets (Lazo-Gomez and
Tapia, 2017; Liu et al., 2020). The study of Wang D. et al. (2020)
has proven that quercetin can inhibit apoptosis and relieve IVDD
by activating SirT1 in the intervertebral disc in vivo and in vitro.
Resveratrol, a strong activator of SirT1, is also proven to alleviate
IVDD (Li et al., 2019). However, its anti-apoptotic properties
suggest that it should be classified as senomorphic senomorphic/
senostatic, revealing that SirT1 may be a senormorphic’s target
instead of senolytic’s.

In addition, some studies have also found thatMDM2, HDAC,
OXR1, and USP7 have the potential as senolytic targets
(Samaraweera et al., 2017; Zhang et al., 2018; He et al., 2020a;
Xu et al., 2020). Whether these targets can be inhibited by
senolytics and subsequently decelerate the progression of
IVDD needs to be further studied. Unambiguously, research
on senolytic targets can provide a molecular basis for us to
avoid side effects when applying such drugs in the future.

CONCLUDING REMARKS AND
PROSPECTS OF SENOLYTIC IN
INTERVERTEBRAL DISC DEGENERATION
THERAPY

In this review, we first sort out the mechanism of cellular
senescence, including RS and SIPS. SIPS triggered by external
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stimuli is considered to be one of the main reactions in IVDD,
which includes DDR, oxidative stress, and mitochondrial
dysfunction.

Secondly, we discussed the role and mechanism of senescent
cells in the process of IVDD through SASP. The p16INK4a-Rb and
the p53-p21-Rb pathways are considered to be two key signaling
axes in regulating SIPS. The expression of p16INK4a in NP and AF

cells increased in the intervertebral discs of young IVDD patients,
with the telomeres shortened, which proved the intrinsic
connection between cellular senescence and IVDD (Le Maitre
et al., 2007). At present, it is generally believed that the
mechanism of cell senescence affecting the intervertebral disc
is as follows. Firstly, senescent NP and AF cells secrete SASP to
promote ECMdegradation and extracellular inflammation. Then,

TABLE 1 | Identified senolytic agents, their targets, whether the role has been validated in IVDD, clinical trial’s status, and whether approved by the FDA.

Senolytic Targets In IVDD Clinical trial’s status FDA-approved References

Natural compounds
Quercetin PI3K/Akt, Nrf2, NF-

κB, and SirT1
√ Phase 1 and 2 for COPD (NCT03989271), phase 2

for aging (NCT04946383), and phase 2 for
Alzheimer’s disease (NCT04785300)

— Miao et al. (2021), Shao et al.
(2021)

Fisetin PI3K/Akt, Nrf2, and
NF-κB

— Phase 1 and 2 for osteoarthritis (NCT04210986)
and phase 2 for frail elderly syndrome
(NCT03675724)

— Yousefzadeh et al. (2018)

Ouabain Bcl-2, Noxa, and Na+/
K+ ATPase pump

— — — Triana-Martinez et al. (2019),
L’Hôte et al. (2021)

Digoxin Bcl-2 and Na+/K+

ATPase pump
— Phase 2 for rheumatoid arthritis (NCT04834557) √ Triana-Martinez et al. (2019);

Barrera-Vazquez et al. (2021)
Digitoxin Bcl-2 and Na+/K+

ATPase pump
— — √ Triana-Martinez et al. (2019)

Proscillaridin A Na+/K+ ATPase pump — — — Li et al. (2018), Triana-Martinez
et al. (2019)

Curcumin
o-Vanillin

Nrf2, NF-κB, and
autophagy

√ Phase 1 for age-related macular degeneration
(NCT04590196) and phase 2 for Alzheimer’s
disease (NCT00099710, completed)

— Ma et al. (2015), Cherif et al.,
(2019), Kang et al. (2019)

Piperlongumine OXR-1 — — — Zhang et al. (2018)
PCC1 NF-κB, Noxa, and

Puma
— — — Xu Q. et al. (2021)

Synthetic molecules
Dasatinib PI3K/Akt and RTK

(receptor tyrosine
kinase)

— Phase 1 for aging (NCT04994561) and phase 1 and
2 for Alzheimer’s disease (NCT04785300)

√ Salaami et al. (2021)

ABT-263 (navitoclax)
PZ15227

Bcl-2, Bcl-xL, and
Bcl-w

— Phase 3 for myelofibrosis (NCT04468984) — Gandhi et al. (2011), He et al.
(2020b)

ABT-737 Bcl-2, Bcl-xL, and
Bcl-w

— Preclinical studies for ovarian cancer
(NCT01440504)

— Miyao et al. (2020)

A-1331852 Bcl-xL — — — Sasaki et al. (2020)
A-1155463 Bcl-xL — — — Wang L. et al. (2020)
UBX-1325 Bcl-xL — Phase 1 for neovascular age-related macular

degeneration (NCT04537884) and phase 1 and 2
for diabetic macular edema (NCT04857996)

— Unity Biotechnology (2021)

Geldanamycin HSP90 — — — Han et al. (2017)
Tanespimycin
(17-AAG)

HSP90 — Phase 1 for multiple myeloma (NCT00113204) and
phase 2 for adenocarcinoma of the prostate
(NCT00118092)

— Calero et al. (2017), Lee-Theilen
et al. (2021)

Alevspimycin
(17-DMAG)

HSP90 — Phase 2 for breast cancer (NCT00780000) — Fuhrmann-Stroissnigg et al. (2017)

Azithromycin Autophagy — Phase 1 for age-related macular degeneration
(NCT00831961)

√ Ozsvari et al. (2018)

Roxithromycin Autophagy — Phase 1 for low back pain (NCT00285493) √ Zhang et al. (2021)
FoxO4-DRI FoxO4 — — — Alvarez-Garcia et al. (2017)
UBX0101 MDM2 and p32 — Phase 2 for osteoarthritis (NCT04129944) — Jeon et al. (2017)
RG7112 MDM2 √ Phase 1 for hematologic neoplasms

(NCT00623870)
— Cherif et al. (2020)

P5091 USP7 — — — He et al. (2020a)
Panobinostat HDAC — Phase 3 for multiple myeloma (NCT01023308) √ Samaraweera et al. (2017)
Fenofibrate PPAR-α — Phase 3 for diabetic macular edema

(NCT03345901)
√ Nogueira-Recalde et al. (2019)

Combination
Quercetin and

dasatinib
PI3K/Akt, Nrf2, and
NF-κB

√ Phase 2 for aging (NCT04946383) and Alzheimer’s
disease (NCT04685590)

— Novais et al. (2021)
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the intervertebral disc degenerates and loses its stability, causing
low back pain and cervical and lumbar spondylosis.

Therefore, senotherapy, which eliminates senescent cells
through senolytics or down-regulates the expression of related
SASP by senomorphics/senostatics, has become a potential
treatment for IVDD (Schmitt, 2017). Compared with surgical
treatment and pain-relieving glucocorticoid therapy, the
advantage of senotherapy is that it can intervene before the
onset of IVDD symptoms. Unluckily, since the components of
SASP produced in intervertebral discs are not yet clearly clarified,
the application of senomorphics in IVDD remains to be further
studied. However, senolytics that reduce the secretion of SASP by
eliminating senescent cells have a greater chance of becoming a
therapeutic drug for IVDD. Thus, we thirdly summarized several
targets of senolytics, including PI3K/Akt, BCL-2 family, and
HSP90.

Finally, although several senolytics have been proven to
alleviate IVDD in murine, it is still unclear whether the
clinical application of senolytics has an effect on the
intervertebral disc. Hence, we summarized the intracellular
targets of reagents with senolytic properties, reviewed their
application in IVDD, and determined their clinical research
status and whether they are approved by the FDA (Table 1).

Since some senolytics are clinically applied drugs, we
introduce some early clinical research and application
prospects for their senescent cell-eliminating property as follows.

Pre-clinical studies have proven that the application of
senolytics to remove senescent cells could lead to tissue
renewal and better physical performance. Moreover, several
intracellular targets for senolytics have also been discovered,
which provide directions for senolytic development and
potential clinical applications in aging-related diseases. After
discovering the senolytic effects of quercetin and dasatinib, Dr.
Kirkland was also the first to put it into clinical trial. They
recruited 14 patients with idiopathic pulmonary fibrosis
caused by senescent cells and found that the exercise capacity

of these patients continues to improve with the in-depth
dasatinib + quercetin combination therapy, which is a miracle
for patients with pulmonary fibrosis who were considered
incurable before (Justice et al., 2019). The subsequent trial of
Dr. Kirkland on patients with diabetic nephropathy manifested
that senolytics can eliminate senescent cells in the human body as
senescent cell markers and the level of SASP decreased
significantly (Hickson et al., 2019).

Since senescent cells are also involved in beneficial processes
such as wound healing, embryonic development, tissue
regeneration, and cancer prevention, long-term use of
senolytics may have potential side effects (He and Sharpless,
2017), and the usage plans of senolytics also need further
discussion. Should senolytics be used systemically or locally
and long-term or short-term? Accordingly, further studies are
needed to enhance effectiveness without weakening the positive
effects of cellular senescence before it is applied as an anti-
aging drug.
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