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Optical molecular imaging is a promising technique and has been widely used in physiology, and pathology at cellular and
molecular levels, which includes different modalities such as bioluminescence tomography, fluorescence molecular tomography
and Cerenkov luminescence tomography. The inverse problem is ill-posed for the above modalities, which cause a nonunique
solution. In this paper, we propose an effective reconstruction method based on the linearized Bregman iterative algorithm with
sparse regularization (LBSR) for reconstruction. Considering the sparsity characteristics of the reconstructed sources, the sparsity
can be regarded as a kind of a priori information and sparse regularization is incorporated, which can accurately locate the position
of the source. The linearized Bregman iteration method is exploited to minimize the sparse regularization problem so as to further
achieve fast and accurate reconstruction results. Experimental results in a numerical simulation and in vivo mouse demonstrate
the effectiveness and potential of the proposed method.

1. Introduction

Optical molecular imaging provides the promising tools to
monitor physiological and pathological activities at cellular
andmolecular levels and has become an important technique
for biomedical research. Meanwhile, it also has attracted
attention due to its high sensitivity and low cost and has been
applied to disease diagnosis, tumor detection, anddrug devel-
opment [1–4]. To overcome the limitation of planar imaging,
bioluminescence tomography (BLT) [5], fluorescence molec-
ular tomography (FMT) [6], and Cerenkov luminescence
tomography (CLT) [7] were developed to determine the 3D
distribution inside a phantom or a small animal with the
reconstruction algorithm from the signal detected on the
external surface associated with anatomical structure and
optical properties [8].

In mathematics, one of the main challenging problems
for the abovemodalities is severely ill-posed inverse problem,

which ismainly caused by insufficientmeasurement and high
diffusive nature of the photon propagation in tissues [9, 10].
In order to obtain a unique solution, many reconstruction
algorithms have been developed and applied to linear inverse
problem such as multispectral measurement [11, 12] and
permissible source region (PSR) [13, 14]. These methods
improve reconstruction results to a certain degree and in turn
impose a variety of limitations on practical applications. The
multispectral methods have some limitations by increasing
measurable information [15], and both the size and position
of the PSR have significant impact on the reconstruction
results [16].

In addition, some regularization methods have been
introduced to enhance the numerical stability and efficiency
for reconstruction. The most popular is Tikhonov regular-
ization (𝑙

2
-norm) used to solve the linear inverse problem

[17], which can produce oversmooth solutions. Recently,
sparse regularization (𝑙

1
-norm) and total variation (TV)
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regularization are commonly used in reconstruction. Sparse
regularization has receivedmore attention for reconstruction,
which allows high quality images to be reconstructed from a
small amount of measurements [18–20]. Total variation was
first introduced by Rudin et al. [21] for image denoising.
Now, TV regularization methods have been widely used
for reconstruction [22, 23]. Meanwhile, TV regularization is
effective for reconstruction because the source distribution
can be taken as a nearly piecewise constant when photons are
collected [24]. In order to solve these regularizationmethods,
some novel solution algorithms were proposed such as the
conjugate gradient method [25] and Split Bregman method
[26, 27]. But the accuracy and efficiency of reconstruction
are still challenging for the above methods. In addition, TV
regularization can also produce the staircase effect.

In order to further resolve these problems, we propose a
new method based on the linearized Bregman algorithm to
solve the sparse regularization problem for reconstruction.
The sparse regularization method can balance the merits
of the sparsity characteristics and accurately locate the
position of the source. In view of reconstruction accuracy
and efficiency, the sparse regularization-based reconstruction
problem is solved effectively by the linearized Bregman
iterative algorithm. The main purpose of this paper is to
show that the proposed algorithm is a very simple but very
fast and accurate method in both theory and practice for
reconstruction problem involving only matrix multiplication
and scalar shrinkage. The experimental results including
numerical simulation and an in vivo mouse were employed
to evaluate the performance of the proposed method.

This paper is organized as follows. Section 2 presents
the linear equation and sparse regularization. Then, we
give the linearized Bregman iterative algorithm to solve the
sparse regularization problem. Section 3 gives the numerical
simulation and in vivo results to verify the performance of the
proposed method and we draw the conclusion and describe
further research in Section 4.

2. Methods

2.1. Linear Equation. The radiative transfer equation (RTE)
is used to describe photon propagation in biological tissues
belonging to the forward problem, and how to develop recon-
struction algorithms to detect the internal targets or source
distribution is exactly the same for the above modalities
to solve the inverse problem [10]. In addition, the detailed
forward problem can be found for different modalities in
[28, 29].

Given the optical properties of the tissues, the solving
domain can be discretized based on the finite elementmethod
(FEM) and a series of transformations and rearrangements
are made for the elements in the matrix [30]. Therefore, the
reconstruction problem can be simplified by the following
linear relationship in the heterogeneous medium as follows:

𝐴𝑆 = Φ, (1)

where 𝐴 ∈ 𝑅
𝑚×𝑛 is an ill-conditioned system matrix,Φ ∈ 𝑅

𝑚

is the measured boundary flux, and 𝑆 ∈ 𝑅
𝑛 is the unknown

source density.

2.2. Sparse Regularization. Due to insufficient measurement
and the highly diffusive nature of photon propagation in
tissues, (1) is an ill-posed inverse problem. In order to obtain
a unique solution, we exploited the sparse regularization
method to determine the source power density 𝑆 by trans-
ferring (1) to minimize the following objective function as
follows:

𝐽
𝜇
(𝑆) = min

𝑆

𝜇 ‖𝑆‖1 +
1

2
‖𝐴𝑆 − Φ‖

2

2
, (2)

where 𝜇 is the positive regularization parameter balancing
the data fidelity and the regularization term ‖𝑆‖

1
. The object

function of (2) is convex and nondifferentiable and we will
give the linearized Bregman method to solve this kind of
convex optimization problem.

2.3. Linearized Bregman Method with Sparse Regularization.
The Bregman iterative algorithm is based on Bregman Dis-
tance [31, 32], so the Bregman Distance of a convex function
𝐸 between points 𝑢 and V is defined as

𝐷
𝑝

𝐸
(𝑢, V) = 𝐸 (𝑢) − 𝐸 (V) − ⟨𝑝, 𝑢 − V⟩ , (3)

where 𝑝 is in the subgradient of 𝐸 at the point V. Again, con-
sider convex energy function 𝐸 and convex and differentiable
energy function 𝐻 defined over 𝑅𝑛, and thus the associated
unconstrained general minimization problem is given as

min
𝑆

(𝐸 (𝑆) + 𝐻 (𝑆)) . (4)

The above problem is solved by the Bregman iterative
algorithm:

𝑆
𝑘+1

= min
𝑆

𝐷
𝑝

𝐸
(𝑆, 𝑆
𝑘
) + 𝐻 (𝑆) . (5)

Then, (5) is approximated by adding a penalty term (1/2𝛿)‖𝑆−

𝑆
𝑘
‖
2 to obtain the following iterative equation:

𝑆
𝑘+1

= argmin
𝑆

𝐷
𝑝
𝑘

𝐸
(𝑆, 𝑆
𝑘
) + 𝐻(𝑆

𝑘
)

+ ⟨∇𝐻(𝑆
𝑘
) , 𝑆 − 𝑆

𝑘
⟩ +

1

2𝛿

󵄩󵄩󵄩󵄩󵄩
𝑆 − 𝑆
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
,

(6)

where parameter 𝛿 is positive and serves as the step size.
The iteration equation (6) is equivalent to the following

iteration by omitting the constant term with respect to 𝑆:

𝑆
𝑘+1

= argmin
𝑆

𝐷
𝑝
𝑘

𝐸
(𝑆, 𝑆
𝑘
)

+
1

2𝛿

󵄩󵄩󵄩󵄩󵄩
𝑆 − (𝑆

𝑘
− 𝛿∇𝐻(𝑆

𝑘
))
󵄩󵄩󵄩󵄩󵄩

2

2
.

(7)

Let𝐻(𝑆) = (1/2)‖𝐴𝑆 − Φ‖2
2
by (7), and thus we have

𝑆
𝑘+1

= argmin
𝑆

𝐷
𝑝
𝑘

𝐸
(𝑆, 𝑆
𝑘
)

+
1

2𝛿

󵄩󵄩󵄩󵄩󵄩
𝑆 − (𝑆

𝑘
− 𝛿𝐴
𝑇
(𝐴𝑆
𝑘
− Φ))

󵄩󵄩󵄩󵄩󵄩

2

2
.

(8)
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Since 𝑝𝑘+1 ∈ 𝜕𝐸(𝑆𝑘+1) at this location, we have

𝑝
𝑘+1

= 𝑝
𝑘
− ∇𝐻(𝑆

𝑘+1
)

= 𝑝
𝑘
−
1

𝛿
(𝑆
𝑘+1

− (𝑆
𝑘
− 𝛿𝐴
𝑇
(𝐴𝑆
𝑘
− Φ))) .

(9)

This yields the following iteration form from (9) due to𝑝0 = 0
and 𝑆0 = 0:

𝑝
𝑘+1

= 𝑝
𝑘
− 𝐴
𝑇
(𝐴𝑆
𝑘
− Φ) −

(𝑆
𝑘+1

− 𝑆
𝑘
)

𝛿
= ⋅ ⋅ ⋅

=

𝑘

∑

𝑗=0

𝐴
𝑇
(Φ − 𝐴𝑆

𝑗
) −

𝑆
𝑘+1

𝛿
.

(10)

Now, we consider the case of (8) when 𝐸(𝑆) = 𝜇‖𝑆‖
1
and 𝜇 is

the regularization parameter. Then, let

V𝑘 =
𝑘

∑

𝑗=0

𝐴
𝑇
(Φ − 𝐴𝑆

𝑗
) . (11)

The linearized Bregman algorithm is given after rearrange-
ment to solve (8), which is equivalent to solving the objective
function equation (2) as follows:

V𝑘+1 = V𝑘 + 𝐴𝑇 (Φ − 𝐴𝑆
𝑘
) ,

𝑆
𝑘+1

𝑖
= 𝛿 shrink (V𝑘+1

𝑖
, 𝜇) ,

(12)

where the shrinkage operator is defined as follows:

shrink (𝑥, 𝛾) = 𝑥

|𝑥|
∗max (|𝑥| − 𝛾, 0) . (13)

The main outline of the linearized Bregman algorithm
with sparse regularization is given in Algorithm 1, and, as for
the stopping condition, we choose ‖𝑆𝑘+1 − 𝑆

𝑘
‖/‖𝑆
𝑘
‖ ≤ 𝜀 =

1.0 × 10
−3.

3. Experimental Results and Discussion

In this section, numerical simulation and in vivo experiments
were conducted to evaluate the proposed method (LBSR)
compared with the 𝑙

2
-norm regularization method based on

the conjugate gradient method (𝑙
2
-CG) and 𝑙

1
-norm regular-

ization method based on the Split Bregman iterative method
(𝑙
1
-SB) [27] for source reconstruction, respectively. All of

the reconstruction results were conducted on a personal
computer using MATLAB R2010a, with Intel Core CPU
2.53GHz and 4.00GBRAM.

We demonstrate the efficiency of the reconstruction by
the proposed method, which was quantitatively performed
in terms of location error (LE), and LE could be defined as
LE = √(𝑥 − 𝑥

0
)
2
+ (𝑦 − 𝑦

0
)
2
+ (𝑧 − 𝑧

0
)
2, where (𝑥

0
, 𝑦
0
, 𝑧
0
)

is the actual source center and (𝑥, 𝑦, 𝑧) is the reconstructed
source center.The reconstructed time and source energywere
used to evaluate the reconstruction performance. In addition,
the contrast-to-noise ratio (CNR) was also used as metrics
to evaluate whether the reconstructed results could be clearly
distinguished from the background, and larger CNR means
better performance [33, 34].

Input: 𝐴 and Φ
Initialization: 𝑆0 = 0, V0 = 0, 𝜀, 𝛿 and 𝜇
While ‖𝑆𝑘+1 − 𝑆𝑘‖/‖𝑆𝑘‖ > 𝜀

V𝑘+1 = V𝑘 + 𝐴𝑇(Φ − 𝐴𝑆
𝑘
)

𝑆
𝑘+1

= 𝛿shrink(V𝑘+1
𝑖
, 𝜇)

𝑘 = 𝑘 + 1

End
Output: 𝑆

Algorithm 1: Linearized Bregman algorithm with sparse regular-
ization (LBSR).

Table 1: Optical parameters for each organ in the heterogeneous
cylindrical phantom.

Coefficient Muscle Lungs Bone Heart
𝜇
𝑎𝑥

[mm−1] 0.0052 0.0133 0.0024 0.0083
𝜇
󸀠

𝑠𝑥
[mm−1] 1.08 1.97 1.75 1.01

𝜇
𝑎𝑚

[mm−1] 0.0068 0.0203 0.0035 0.0104
𝜇
󸀠

𝑠𝑚
[mm−1] 1.03 1.95 1.61 0.99

3.1. Heterogeneous Phantom Stimulation. Heterogeneous
phantom stimulation experiments were conducted to test the
performance of the proposed method. The heterogeneous
cylindrical phantom was 20mm in diameter and 20mm
in height, which included the two sources S1 (6.00, 5.00,
0.00) and S2 (6.00, −5.00, 0.00), and also included four
types of materials to represent muscle (M), lungs (L), bone
(B), and heart (H) as shown in Figure 1. The corresponding
optical parameters of different tissues for both the excitation
and emission wavelength were set as listed in Table 1 [29].
The phantom was discretized into 5657 nodes and 30676
tetrahedral elements, and the 3D view of the phantom and
cross section of the phantom in the 𝑧 = 0 plane are also
shown in Figures 1(a) and 1(b), respectively. The black dots
in Figure 1(b) represent the excitation light sources, which
were modeled as isotropic point sources located in the 𝑧 = 0

plane. To generate the fluorescence measurements, for each
excitation source, the emitted fluorescence was captured
from the opposite side of the cylindrical model with a 160∘
field of view as illustrated in Figure 1(b).

In order to better evaluate the performance of the pro-
posed method, we compared our method with another two
classical and effective reconstruction methods to reconstruct
the same data while maintaining the same termination
condition. 𝑙

2
-CG is a very classical method based on 𝑙

2
-

norm regularization by the conjugate gradient method to
solve the ill-posed inverse problem. 𝑙

1
-SB is also a very

effective method based on sparse regularization because
of the introduction of compressed sensing with the Split
Bregman iterative method to solve this kind of constrained
optimization problem. Figure 2 shows the reconstruction
results by the three methods including 3D views and the
corresponding slice image reconstruction results. From the
reconstruction results, it emerges that 𝑙

2
-CG can reconstruct

an accurate source location, but it can produce oversmooth
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Figure 1: A heterogeneous cylindrical phantom. (a) 3D view of the phantom; (b) cross section of the phantom in the 𝑧 = 0 plane.
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Figure 2: Reconstruction results using different methods. ((a) and (d)) Reconstruction results based on the 𝑙
2
-CG method; ((b) and (e))

reconstruction results based on the 𝑙
1
-SB method; ((c) and (f)) reconstruction results based on the LBSR method. Top row: 3D views of the

reconstruction results. Bottom row: the corresponding slice image reconstruction results in the 𝑧 = 0 plane.The red circles in the slice images
denote the real locations of the sources.
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Table 2: Quantitative results for two sources by different methods.

Methods Reconstructed position
center (mm) LE (mm) CNR Reconstruction

time (s)
Maximum reconstructed
energy value (nW/mm3)

𝑙
2
-CG 𝑆1 (6.00, 5.00, 0.00)

𝑆2 (6.00, −5.00, 0.00)
0.00
0.00 13.2 223.58 0.0022

0.0019

𝑙
1
-SB 𝑆1 (6.00, 6.00, 0.00)

𝑆2 (5.00, −5.00, 0.00)
1.00
1.00 17.6 72.18 0.0080

0.0079

LBSR 𝑆1 (6.00, 5.00, 0.00)
𝑆2 (6.00, −5.00, 0.00)

0.00
0.00 20.8 6.68 0.0091

0.0082

Table 3: Optical parameters of biological tissues for the mouse organ regions.

Coefficient Adipose/bladder Heart Lungs Liver/spleen Stomach Kidneys Bone Intestines
𝜇
𝑎
[mm−1] 0.1017 1.5477 4.6832 9.2860 0.3082 1.7334 1.5233 0.2891

𝜇
󸀠

𝑠
[mm−1] 1.2929 1.1674 2.3271 0.7786 1.6320 2.7599 3.0393 1.3548

results and have more scattering in the two source regions
and it also needs more time to run as shown in Figure 2(d)
and in Table 2. It can be seen that 𝑙

1
-SB is faster than 𝑙

2
-CG

method, and the reason is that the main idea of the Split
Bregman method is to decompose a complex optimization
problem to two independent suboptimization problems by
introducing an auxiliary variable in order to make it easy
to implement. But the reconstructed sources are sparser
and are not accurately localized with a location error of
1.00mm as shown in Figure 2(e). In contrast, the proposed
method is very accurate for source reconstruction and the
reconstruction time is very small, which demonstrates that
the proposed method is effective. In addition, the proposed
method also has good reconstructed source energy, and the
reconstructed quantitative results are shown in Table 2.

3.2. In Vivo Mouse Experiments. To further validate the
feasibility of the proposedmethod in practical application, an
in vivo experiment on an athymic nudemousewas performed
with a dual-modality optical and micro-CT imaging system
previously developed by our group [35–37], which was to
acquire the Cerenkov luminescence data and anatomical
structural data by a cooled, sensitive charge-coupled device
(CCD) and micro-CT, respectively. The in vivo mouse data
is provided by Hu et al. [38], and the main process of
in vivo mouse experiments can be summarized as follows.
First, the mouse was injected with intravenous tail injection
and the injected doses of Iodine-131 (I-131) were 400 𝜇Ci,
which were performed for the 3D reconstruction of I-131
uptake in the mouse bladder. Second, two hours later, the
raw micro-CT data and Cerenkov luminescence data were
acquired by dual-modality imaging system. In order to build
the heterogeneous mouse model, the organs of micro-CT
data were segmented, which included adipose, bladder, heart,
lungs, liver, spleen, stomach, kidneys, bone, and intestines,
and we need to integrate them into one volume of data as
shown in Figure 3. The corresponding optical parameters
of the biological tissues are listed in Table 3 [38]. Finally,
the heterogeneous mouse torso was discretized into 3718
nodes and 18952 tetrahedrons for the reconstruction. In
addition, the geometrical center of the bladder was defined as

Z
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250
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50

X X

Z

Y

(a)

Z

Y

Light source
X

Density
950
850
750
650
550
450
350
250
150
50

(b)

Figure 3: The biodistribution of I-131 uptake in the heterogeneous
mouse bladder. (a) Coronal view of the bladder; (b) cross section of
the bladder in the 𝑧 = 3.68 plane.

the actual source location, which could be obtained bymicro-
CT images at 18.24, 25.76, and 3.68mm.

The 3D reconstruction of I-131 uptake in the mouse
bladder was performed using 𝑙

2
-CG method, 𝑙

1
-SB method,

and LBSR method including horizontal and coronal views
of the bladder as shown in Figure 4. The three methods
produced almost the same results in the first two coordinates
of the actual location, but the third coordinate location
reconstructed from the proposed method was completely
different from the other two methods. In addition, the
reconstructed error was 1.82mm, 1.82mm, and 0.15mm by
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Figure 4: Reconstruction results using different methods. ((a) and (d)) Reconstruction results based on the 𝑙
2
-CG method; ((b) and (e))

reconstruction results based on the 𝑙
1
-SB method; ((c) and (f)) reconstruction results based on the LBSR method. Top row: coronal views of

the reconstruction results. Bottom row: the corresponding cross section reconstruction results in the 𝑧 = 3.68 plane.

𝑙
2
-CGmethod, 𝑙

1
-SBmethod, andLBSRmethod, respectively,

as shown in Table 4, which indicated that the LBSR method
was very accurate under the very ill-posed linear equation. In
addition, the computation time of all the methods was small,
but the proposed method is still faster than the other two
methods because the permissible source region 𝐼

𝑥
× 𝐼
𝑦
× 𝐼
𝑧
=

[10, 25] × [15, 35] × [2, 10]was exploited, which could reduce
the size of the system matrix. Meanwhile, the permissible
source region also reduces the ill-posedness and improves the
reconstruction quality [13, 14]. The quantitative comparisons
of the reconstruction results for the above three methods are
given in Table 4. 𝑙

2
-CG method produced some scattering

and artifacts, and 𝑙
1
-SB method produced sparse source as

shown in Figures 4(a) and 4(b), respectively. However, the
reconstructed source was more concentrated and had a good
contrast with the background by using the LBSR method as
shown in Figure 4(c). In addition, it can be noted that the
LBSR method is accurate based on the source distribution
from Figure 4 and Table 4, which indicates that the LBSR
method has an advantage in accuracy for practical in vivo
applications.

4. Conclusion

It is well known that the quality of reconstructed images
largely depends on the reconstruction algorithm. In this
paper, we proposed an effective algorithm based on the
linearized Bregman method with sparse regularization for

Table 4: Quantitative results for one source by different methods.

Methods
Actual source

location
(mm)

Reconstructed
position center

(mm)

Reconstruction
time (s)

𝑙
2
-CG (18.24, 25.76,

3.68)
(18.82, 29.90,

5.50) 0.6342

𝑙
1
-SB (18.24, 25.76,

3.68)
(18.82, 29.90,

5.50) 0.5063

LBSR (18.24, 25.76,
3.68)

(19.06, 29.98,
3.83) 0.4853

reconstruction. The linearized Bregman iteration method is
exploited to minimize the sparse regularization problem,
which requires little computation time and can accelerate the
convergence process so as to further achieve fast and accurate
source reconstruction. The numerical simulation and in vivo
mouse experiment were used to evaluate the performance
of the proposed method and the other two methods. The
experiment results indicate that 𝑙

2
-CGmethod could produce

some scattering and a smooth solution, and 𝑙
1
-SB method

produced sparse source and created some big errors. In
contrast, the proposed method is accurate and efficient for
reconstruction. Futureworkwill focus on studying the reason
why the error is relatively big of the second coordinate
location reconstructed for in vivo experiments and further
improve the proposedmethod formore practical applications
such as early detection of tumor and evaluation of treatment.
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