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Abstract

The finite-time stabilization and finite-time H1 control problems of Port-controlled Hamilto-

nian (PCH) systems with disturbances and input saturation (IS) are studied in this paper.

First, by designing an appropriate output feedback, a strictly dissipative PCH system is

obtained and finite-time stabilization result for nominal system is given. Second, with the

help of the Hamilton function method and truncation inequality technique, a novel output

feedback controller is developed to make the PCH system finite-time stable when IS occurs.

Further, a finite-time H1 controller is designed to attenuate disturbances for PCH systems

with IS, and sufficient conditions are presented. Finally, a numerical example and a circuit

example are given to reveal the feasibility of the obtained theoretical results.

Introduction

The Port-controlled Hamiltonian (PCH) system has been studied well [1–4] since it was put

forward [5, 6]. In practical systems, the Hamilton function [7–9], as the total energy containing

kinetic energy and potential energy, is a good candidate of Lyapunov function. Apart from the

significant Hamilton function, the PCH system’s other structures also have important physical

meaning. Thus, many practical systems can be expressed as PCH systems and the PCH system

has received wide attention in nonlinear analysis and synthesis [10–13]. Up to now, lots of

results on stability analysis and control designs for PCH systems have been presented based on

Hamilton function method [14–18].

Under asymptotically stabilized controller, system states can only converge to desired equi-

librium points in infinite time, which is a common result. In order to optimize control time,

the concept of finite-time stability naturally arises and further finite-time stability theory is

developed to improve control performance. In fact, the finite-time control approach has the

following significant superiorities: the closed-loop system possesses faster convergence speed

and better robustness against uncertainties and disturbances [19–22]. Because of these advan-

tages, finite-time control problems have received a great deal of attention and lots of results
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have been given in a series of literatures [23–26]. For a class of systems with mismatched dis-

turbances [27], studies the finite-time output regulation problem utilizing the finite-time dis-

turbance observer technique. For a class of nonlinear systems, the finite-time stabilization

problem is investigated by constructing a suitable sliding mode control law [29]. For a class of

discrete time-delay switched systems, with the help of the average dwell time approach [29]

solves the finite-time H1 control problem. For a class of Hamiltonian descriptor systems, the

finite-time stabilization problem as well as the H1 control problem is studied utilizing the

Hamilton function method in [30].

Practical systems are often constrained by the limited capacity of physical components.

Among these constraint phenomena [31–34], input saturation (IS) is a very common one,

which usually destroys the control performance of systems and even results in instability.

Since 1950s, control problems of systems with IS has attracted considerable attention and

plenty of studies have been reported [35–38]. For uncertain nonstrict-feedback nonlinear sys-

tems with IS, the finite-time tracking control problem is addressed via dynamic surface control

technique and backstepping approach in [35]. [36] studies finite-time feedback control for

input-delay system with nonlinear IS using the comparison function method. Adaptive neural

network control for full-state constrained robotic manipulator with IS and time-varying delays

is studied in [37]. Utilizing Lyapunov-Krasovskii functional theorem and linear matrix

inequalities [38], investigates stabilization problem of time-delay Hamiltonian systems subject

to IS. Although lots of results have been presented about stabilization and finite-time stabiliza-

tion of nonlinear systems in the presence of IS, to our best knowledge, there are fewer results

on the finite-time control design of PCH systems with disturbances and IS.

The finite-time stabilization and finite-time H1 control problems for PCH systems with

disturbances and IS are concerned in this paper. First, the nominal PCH system (without dis-

turbances and IS) is investigated. By utilizing the system’s structural properties and the output

feedback strategy, the strictly dissipative PCH system and finite-time stability condition are

obtained. Second, the finite-time stabilization problem for the case with IS is studied by

designing an output feedback controller using the truncation inequality technique and Hamil-

ton function method. Third, the finite-time H1 control problem for the case with IS is

addressed, and the sufficient condition is proposed. Finally, a numerical example and a circuit

example are given to verify the obtained results.

The contribution is that the strictly dissipative PCH system and finite-time stability condi-

tion obtained in this paper, have provided a novel approach to the finite-time stability analysis

of PCH systems. Section 3 demonstrates the application of this approach, which discusses the

finite-time stabilization and finite-time H1 control problems of disturbed PCH systems with

IS. We call this novel approach Hamilton function-based analysis method, which includes two

cases. (i) The Hamiltonian system is expressed as the strictly dissipative PCH system by design-

ing an appropriate output feedback controller, and the obtained PCH system is finite-time sta-

ble. (ii) Under some constraint conditions, the strictly dissipative PCH system cannot be

obtained. However, by utilizing the idea of constructing strictly dissipative PCH systems, the

positive definite damping matrix can be obtained in the proof, which is very helpful to analyze

the finite-time stability of the closed-loop system. It is the advantage that this method applies

the systems’ structural properties to controller design and stability analysis effectively. How-

ever, different constraints may lead to the theoretical method obtained not being able to solve

all related problems. Fortunately, there is at least one broad category where solutions can be

found under the theories. We believe that under the PCH systems’ framework, most control

problems with saturation can be solved with the development of control theory.

The rest of this article is given below. The problem statement and preliminaries are pre-

sented in Section 2. Section 3 addresses the finite-time stabilization problem of the case
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without and with IS, and the H1 control problem of the case with IS and disturbances. Two

examples with simulations are presented in Section 4. Section 5 gives the conclusion in final.

Notation: The transposition of matrix g(z) is denoted by gT(z). The positive definite matrix

R(z) is denoted by R(z)>0. The positive semi-definite matrix R(z) is denoted by R(z)�0. |a|

stands for the absolute value of real number a. kRk represents the Euclidean norm of R.rE(z)

denotes
@EðzÞ
@z

.

Problem statement and preliminaries

A PCH system subject to disturbances and IS is considered

_z ¼ ½JðzÞ � RðzÞ�rEðzÞ þ g1ðzÞsatðUÞ þ g2ðzÞdðtÞ;

y ¼ gT
1
ðzÞrEðzÞ;

z ¼ MðzÞgT
1
ðzÞrEðzÞ

8
>>><

>>>:

ð1Þ

where z 2 Rn is the state, U 2 Rm is the control input, y 2 Rm is the output, dðtÞ 2 Rs is the

disturbance in L2, and z 2 Rq
is the penalty signal. The Hamilton function E(z) has a mini-

mum point at z = 0, andrE(z) is the gradient of E(z). � JTðzÞ ¼ JðzÞ 2 Rn�n is the intercon-

nection matrix, 0 � RðzÞ ¼ RTðzÞ 2 Rn�n
is the damping matrix, M(z) is the weighting

matrix, g1ðzÞ 2 R
n�m

is the full column rank gain matrix, (R, g1) is a full row rank matrix,

g2ðzÞ 2 R
n�s

, and satðUÞ ¼ ½satðU1Þ; satðU2Þ; . . . ; satðUmÞ�
T

is the IS function with

satðUiÞ ¼

pi; Ui > pi > 0;

Ui; pi � Ui � � pi;

� pi; 0 > � pi > Ui;

8
>>><

>>>:

ð2Þ

pi is a positive real number which represents the upper bound of the saturated function sat
(Ui).

For the subsequent analysis, the following four lemmas are adopted.

Lemma 1 ([39]) Jensen’s inequality:

ð
Xn

j¼1

jajj
r1Þ

1
r1 � ð

Xn

j¼1

jajj
r2Þ

1
r2 ; 0 < r1 � r2; ð3Þ

where r1, r2 and aj are real numbers.
Let r1 ¼

1

c and r2 = 1 in Lemma 1, then the following inequality is derived

ð
Xn

j¼1

jajjÞ
1
c �

Xn

j¼1

jajj
1
c ; c � 1: ð4Þ

Lemma 2 ([19]) The following system is considered

_c ¼ f ðcÞ; cðt0Þ ¼ c0; f ð0Þ ¼ 0; c 2 Rn: ð5Þ

If there is a C1 radially unbounded Lyapunov function V(ψ) and a real number b> 1 making
inequality (6) holds along system (5) with any c0 2 R

n
,

_V ðcÞ � � lV1
bðcÞ; l > 0; ð6Þ

then system (5) is globally finite-time stable.
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Lemma 3 ([32, 40]) Truncation-inequality technique: Consider the saturation function sat
(U) defined in (2). Then, the inequality holds

d
T
d � �UTU; ð7Þ

where δ = sat(U) − U, 0< �� 1.

Lemma 4 ([41]) The following system is given
( _c ¼ f ðcÞ þ GðcÞDðtÞ; f ð0Þ ¼ 0;

z ¼ hðcÞ;
ð8Þ

where ψ is the state, z is the penalty signal and D is the disturbance.
If there is a function V(ψ) satisfying the following Hamiltonian-Jacobian inequality,

rTVðcÞf ðcÞ þ
1

2g2
rTVðcÞGðcÞGTðcÞrVðcÞ þ

1

2
hTðcÞhðcÞ � 0; ð9Þ

then the L2 gain from D to z is no bigger than γ, i.e.,

g2

Z T

0

kDðtÞk2dt �
Z T

0

kzðtÞk2dt; 8D 2 L2½0;T�; ð10Þ

where V(ψ)> 0 with ψ 6¼ 0, V(0) = 0, and γ> 0.

Assumption 1 The Hamilton function E(z) satisfies the condition EðzÞ ¼
Pn

i¼1
ðz

2

i Þ
Z

2Z� 1,

where η> 1 is a real number.
Remark 1 As the total energy function of PCH systems, the Hamilton function E(z) is usually

selected as the form in Assumption 1, and it represents a very important class of Hamilton func-
tions in mechanical systems.

In order to deal with the finite-time control problems of PCH system (1) with disturbances

and IS, several novel control schemes are presented via output feedback strategies and trunca-

tion-inequality technique.

Main results

In this part, the finite-time control problems of PCH system (1) subject to disturbances and IS

are considered. For nominal PCH system, the finite-time stabilization result is given first.

Next, the finite-time stabilization result of PCH system is also proposed when IS occurs.

Finally, the finite-time H1 control problem for the case with disturbances and IS is studied.

Finite-time stabilization for nominal PCH systems

PCH system (1) with d(t) = 0 and sat(U) = U is considered in this subsection, i.e., the nominal

system (11) is obtained

( _z ¼ ½JðzÞ � RðzÞ�rEðzÞ þ g1ðzÞU;

y ¼ gT
1
ðzÞrEðzÞ:

ð11Þ

For matrix R(z) of system (11), two cases on positive semi-definite and positive definite are

first discussed.

Case 1: If R(z) is a positive definite matrix, then system (11) is a strictly dissipative PCH

system.
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Case 2: If R(z) is a positive semi-definite matrix, an appropriate output feedback controller

U ¼ � Ky ð12Þ

is needed designing to make new matrix �RðzÞ positive definite. Then, system (11) can be

transformed into the following strictly dissipative PCH system,

_z ¼ ½JðzÞ � �RðzÞ�rEðzÞ; ð13Þ

where K is a symmetric matrix with proper dimensions,

�RðzÞ ¼ RðzÞ þ g1ðzÞKgT1 ðzÞ > 0: ð14Þ

According to the above discussion, a result is given.

Theorem 1 Consider nominal PCH system (11) with Assumption 1. Suppose the condition
(14) holds, then the output feedback controller (12) can finite-time stabilize PCH system (11).

Proof. Substituting output feedback controller (12) into system (11), the strictly dissipative

PCH system (13) is derived. Taking E(z) as the Lyapunov function and calculating its deriva-

tive along system (11), one obtains

_EðzÞ ¼ rTEðzÞ½JðzÞ � RðzÞ�rEðzÞ � rTEðzÞg1ðzÞKy

¼ rTEðzÞ½JðzÞ � RðzÞ�rEðzÞ � rTEðzÞg1ðzÞKgT1 ðzÞrEðzÞ

¼ rTEðzÞ½JðzÞ � �RðzÞ�rEðzÞ

¼ � rTEðzÞ�RðzÞrEðzÞ

� � s1

Xn

i¼1

2Z

2Z � 1

� �2

z
2

2Z� 1

i ;

ð15Þ

where

s1 ≔ min
1�i�n
f inf
z2Rn
fs

�R
i ðzÞgg > 0; ð16Þ

s
�R
i ðzÞ are the eigenvalues of matrix �RðzÞ, i = 1, 2, . . ., n.

From Lemma 1, it yields

_EðzÞ � � s1

2Z

2Z � 1

� �2Xn

i¼1

ðz
2

i Þ
Z

2Z� 1

h i1
Z

� � s1

2Z

2Z � 1

� �2 Xn

i¼1

ðz
2

i Þ
Z

2Z� 1

" #1
Z

; ð17Þ

i.e.,

_EðzÞ � � s1

2Z

2Z � 1

� �2

E1
ZðzðtÞÞ: ð18Þ

From Lemma 2, one gets that the closed-loop PCH system (11) with output feedback con-

troller (12) is globally finite-time stable.

Remark 2 If matrix R(z) is positive definite, i.e., case 1 is considered, PCH system (11) is a
strictly dissipative PCH system with U = 0. In output feedback controller (12), we just choose
K = 0, and the PCH system (11) is also globally finite-time stable.
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Finite-time stabilization for PCH systems with IS

PCH system (1) with d(t) = 0 is considered in this subsection, i.e.,

( _z ¼ ½JðzÞ � RðzÞ�rEðzÞ þ g1ðzÞsatðUÞ;

y ¼ gT
1
ðzÞrEðzÞ:

ð19Þ

Via the Hamilton function method and truncation-inequality method, a novel output feed-

back strategy is developed to solve the finite-time stabilization problem of system (19). Now,

the relevant theorem is given as follows.

Theorem 2 Consider PCH system (19) with Assumption 1. If there exists a matrix K with
KT = K and proper dimensions satisfying the following condition,

R̂ðzÞ ¼ RðzÞ þ g1ðzÞKgT1 ðzÞ � g1ðzÞgT1 ðzÞ � �g1ðzÞKTKgT
1
ðzÞ > 0; ð20Þ

then the output feedback controller

U ¼ � Ky; ð21Þ

can finite-time stabilize PCH system (19) globally.

Proof. Define δ = sat(U) − U, then system (19) can be rewritten as

( _z ¼ ½JðzÞ � RðzÞ�rEðzÞ þ g1ðzÞU þ g1ðzÞd;

y ¼ gT
1
ðzÞrEðzÞ:

ð22Þ

Choosing Hamilton function E(z) as the Lyapunov function and calculating its derivative,

we have

_EðzÞ ¼ rTEðzÞ½JðzÞ � RðzÞ�rEðzÞ þ rTEðzÞg1ðzÞU þrTEðzÞg1ðzÞd

¼ rTEðzÞ½JðzÞ � RðzÞ�rEðzÞ � rTEðzÞg1ðzÞKyþrTEðzÞg1ðzÞd

� � rTEðzÞRðzÞrEðzÞ � rTEðzÞg1ðzÞKgT1 ðzÞrEðzÞ

þrTEðzÞg1ðzÞgT1 ðzÞrEðzÞ þ d
T
d

ð23Þ

Utilizing truncation-inequality technique in Lemma 3, it yields

_EðzÞ � � rTEðzÞ½RðzÞ þ g1ðzÞKgT1 ðzÞ � g1ðzÞgT1 ðzÞ�rEðzÞ þ �y
TKTKy

� � rTEðzÞ½RðzÞ þ g1ðzÞKgT1 ðzÞ � g1ðzÞgT1 ðzÞ � �g1ðzÞKTKgT
1
ðzÞ�rEðzÞ

¼ � rTEðzÞR̂ðzÞrEðzÞ

� � s2

Xn

i¼1

2Z

2Z � 1

� �2

z
2

2Z� 1

i ;

ð24Þ

where

s2 ≔ min
1�i�n
f inf
z2Rn
fsR̂

i ðzÞgg > 0; ð25Þ

sR̂
i ðzÞ are the eigenvalues of matrix R̂ðzÞ, i = 1, 2, . . ., n.
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According to Lemma 1, one obtains

_EðzÞ � � s2

2Z

2Z � 1

� �2Xn

i¼1

ðz
2

i Þ
Z

2Z� 1

h i1
Z

� � s2

2Z

2Z � 1

� �2 Xn

i¼1

ðz
2

i Þ
Z

2Z� 1

" #1
Z

¼ � s2

2Z

2Z � 1

� �2

E1
ZðzðtÞÞ:

ð26Þ

According to the above analysis and Lemma 2, it can be concluded output feedback con-

troller (21) can finite-time stabilize PCH system (20).

Remark 3 Under IS constraints, the strictly dissipative PCH system is not obtained and hence
the finite-time stabilization result cannot be yielded directly. However, the positive definite
damping matrix is obtained utilizing the idea of constructing strictly dissipative PCH systems
and truncation-inequality technique, which helps to prove the finite-time stability of the closed-
loop system in Theorem 2.

Finite-time H1 control for PCH systems with IS

In this subsection, PCH system (1) with d(t)6¼0 is considered. To investigate the finite-time

H1 control problem, a novel output feedback controller is designed using Hamiltonian-Jaco-

bian inequality technique and truncation-inequality method. And the result is derived as

follows.

Theorem 3 Consider PCH system (1) with Assumption 1. Suppose there exists a symmetric
matrix K with proper dimensions and a number γ> 0 satisfying the following conditions,

�RðzÞ ¼ RðzÞ þ g1ðzÞ½K �
1

2
��KT �K �

1

2
Im�g

T
1
ðzÞ > 0; ð27Þ

~RðzÞ ¼ �RðzÞ þ
1

2g2
½g1ðzÞg

T
1
ðzÞ � g2ðzÞg

T
2
ðzÞ� � 0; ð28Þ

then the output feedback controller

U ¼ � ðK þ
1

2
MTM þ

1

2g2
ImÞy ¼ � �Ky ð29Þ

can effectively solve the finite-time H1 control problem of PCH system (1).

Proof. Set δ = sat(U) − U. Substituting output feedback control law (29) into system (1), the

following closed-loop system is obtained

_z ¼ JðzÞ � RðzÞ þ g1ðzÞ K þ 1

2
MTM þ 1

2g2
Im

� �
gT

1
ðzÞ

� �h i
rEðzÞ

þ g1ðzÞdþ g2ðzÞdðtÞ≔ f ðzÞ þ g2ðzÞdðtÞ;

y ¼ gT
1
ðzÞrEðzÞ;

z ¼ MðzÞgT
1
ðzÞrEðzÞ≔ hðzÞ:

8
>>>>>>>><

>>>>>>>>:

ð30Þ

The proof is divided into two parts. Part 1, system (30) has a finite-time L2 gain. Part 2,

when d(t) = 0, system (30) is finite-time stable.
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We will prove part 1 first. Choose the Lyapunov function E(z), and define

WðzÞ ¼ rTEðzÞf ðzÞ þ
1

2g2
rTEðzÞg2ðzÞg

T
2
ðzÞrEðzÞ þ

1

2
hTðzÞhðzÞ: ð31Þ

According to truncation-inequality and Young’s inequality, one has

WðzÞ ¼ � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2
MTM þ

1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ

þrTEðzÞg1ðzÞdþ
1

2g2
rTEðzÞg2ðzÞg

T
2
ðzÞrEðzÞ

þ
1

2
rTEðzÞg1ðzÞM

TMgT
1
ðzÞrEðzÞ

� � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ

þ
1

2
rTEðzÞg1ðzÞg

T
1
ðzÞrEðzÞ

þ
1

2
d
T
dþ

1

2g2
rTEðzÞg2ðzÞg

T
2
ðzÞrEðzÞ

� � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ

þ
1

2
rTEðzÞg1ðzÞg

T
1
ðzÞrEðzÞ þ

1

2g2
rTEðzÞg2ðzÞg

T
2
ðzÞrEðzÞ

þ
1

2
�rTEðzÞg1ðzÞ

�KT �KgT
1
ðzÞrEðzÞ

¼ � rTEðzÞ½RðzÞ þ g1ðzÞðK �
1

2
��KT �K �

1

2
ImÞg

T
1
ðzÞ

þ
1

2g2
ðg1ðzÞg

T
1
ðzÞ � g2ðzÞg

T
2
ðzÞÞ�rEðzÞ

¼ � rTEðzÞ~RðzÞEðzÞ:

ð32Þ

Based on (32), it follows from condition (28) that

WðzÞ � 0: ð33Þ

According to the Hamiltonian-Jacobian inequality in Lemma 4, one gets the L2 gain of sys-

tem (30) is not bigger than γ.
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Next, part 2 will be proved. Calculating the derivative of E(z) when d(t) = 0, one obtains the

following result,

_EðzÞ ¼ rTEðzÞ½JðzÞ � ðRðzÞ þ g1ðzÞðK þ
1

2
MTM þ

1

2g2
ImÞg

T
1
ðzÞÞ�rEðzÞ

þrTEðzÞg1ðzÞd

� � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2
MTM þ

1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ

þ
1

2
rTEðzÞg1ðzÞg

T
1
ðzÞrEðzÞ þ

1

2
d
T
d

� � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2
MTM þ

1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ

þ
1

2
rTEðzÞg1ðzÞg

T
1
ðzÞrEðzÞ þ

1

2
�UTU

¼ � rTEðzÞ½RðzÞ þ g1ðzÞðK þ
1

2
MTM

þ
1

2g2
Im �

1

2
Im �

1

2
��KT �KÞgT

1
ðzÞ�rEðzÞ

¼ � rTEðzÞ½�RðzÞ þ g1ðzÞð
1

2
MTM þ

1

2g2
ImÞg

T
1
ðzÞ�rEðzÞ:

ð34Þ

Condition (27) implies matrix �RðzÞ þ g1ðzÞð
1

2
MTM þ 1

2g2
ImÞgT1 ðzÞ≔ �RðzÞ > 0.

Let

s3 ≔ min
1�i�n
f inf
z2Rn
fs

�R
i ðzÞg g > 0; ð35Þ

where s
�R
i ðzÞ are the eigenvalues of matrix �RðzÞ, i = 1, 2, . . ., n.

Thus, inequality (34) can be written as

_EðzÞ � � s3

Xn

i¼1

2Z

2Z � 1

� �2

z
2

2Z� 1

i : ð36Þ

From Lemma 1, it is further deduced that

_EðzÞ � � s3

2Z

2Z � 1

� �2Xn

i¼1

½ðz
2

i Þ
Z

2Z� 1�
1
Z � � s3

2Z

2Z � 1

� �2

½
Xn

i¼1

ðz
2

i Þ
Z

2Z� 1�
1
Z

¼ � s3

2Z

2Z � 1

� �2

E1
ZðzðtÞÞ:

ð37Þ

According to Lemma 2, one gets that when d(t) = 0, the closed-loop system (30) is globally

finite-time stable.

Therefore, the finite-time H1 control problem of PCH system (1) is solved.

Remark 4 In this paper, the salient features are reflected in the following several aspects com-
pared with the existing research results [30, 31, 35–38]. (i) Compared with the inequality tech-
nique in [31, 36], the truncation inequality technique, borrowed to address IS, is more feasible.
(ii) Different from the the result that the state is bounded in finite-time [35], our aim is that the
state converges to the equilibrium point in finite-time. (iii) Via the Hamilton function method
and finite-time control technique, two novel output feedback control laws are designed to solve
the finite-time stabilization and finite-time H1 control problems of PCH systems in the presence
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of disturbances and IS, which is different from the stabilization of Hamiltonian systems without
disturbances and with IS [38] and the finite-time H1 control for Hamiltonian descriptor systems
without IS [30].

Simulations

This section presents two simulation examples to reveal the feasibility of the proposed control

methods.

Example 1. The following PCH system with IS is considered

(
_x ¼ ½JðxÞ � RðxÞ�rEðxÞ þ g1ðxÞsatðuÞ;

y ¼ gT
1
ðxÞrEðxÞ;

ð38Þ

where the state x 2 R2
, the Hamilton function EðxÞ ¼ x

4
3

1 þ x
4
3

2, g1 ¼ ð0; 1Þ
T
, J ¼

0 � 1

1 0

 !

,

R ¼
2 0

0 0

 !

, satðuÞ 2 R is the saturated control input and given as

satðuÞ ¼

0:2; u > 0:2;

u; 0:2 � u � � 0:2;

� 0:2; u < � 0:2:

8
>>><

>>>:

ð39Þ

By choosing K = 2 and 2 ¼ 1

5
, we know the condition (20) holds, where

R̂ðxÞ ¼ RðxÞ þ g1ðxÞKgT1 ðxÞ � g1ðxÞgT1 ðxÞ � �g1ðxÞKTKgT
1
ðxÞ ¼

2 0

0 1

5

0

@

1

A > 0; ð40Þ

and all the conditions hold in Theorem 2.

Based on Eq (21), the output feedback law is designed as

u ¼ � Ky ¼ � 2y: ð41Þ

According to Theorem 2, it is easy to get that control law (41) can finite-time stabilize sys-

tem (38).

To demonstrate the feasibility of the control strategy, the initial condition x1(0) = 1 = x2(0)

is first given and further the simulation is carried out.

Figs 1 to 3 present the simulation results. Fig 1 illustrates that the states x1 and x2 converge

to the equilibrium point fast via the output feedback control (41) when IS is considered, i.e.,

closed-loop system (38) is finite-time stable. The response curve of the output feedback signal

is given in Fig 2. Fig 3 is the response curve of the saturated control input sat(u), and the

amplitudes of the response curve are all within the saturation range. The simulations reveal

that the output feedback control strategy with IS is effective.

Example 2. Fig 4 ([18]) describes the nonlinear circuit system, where the magnetic flux ψ
controls the inductance, the electric charge q controls the capacitance, i3 = f1(ψ) is current,

U1 = f2(q) is voltage, and the current source disturbance is denoted by iw.
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The system is written as follows by Kirchhoff’s Law,

(
_q ¼ � Is � f1ðcÞ � iw;

_c ¼ Us þ f2ðqÞ � R3f1ðcÞ:
ð42Þ

Denote f1ðcÞ ¼ 4

3
c

1
3, f2ðqÞ ¼ 4

3
q1

3 and R3 = 3. Let the state x = (x1, x2)T = (q, ψ)T, the control

input u = (u1, u2)T = (Is, Us)
T, and the disturbance d(t) = iw. Then system (42) is expressed as

Fig 1. States x1 and x2 with sat(u).

https://doi.org/10.1371/journal.pone.0255797.g001

Fig 2. Response curve of the output feedback signal.

https://doi.org/10.1371/journal.pone.0255797.g002
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the PCH system

_x ¼
_q

_c

 !

¼
0 � 1

1 0

 !

�
0 0

0 3

 !" #

�

4

3
q1

3

4

3
c

1
3

0

@

1

Aþ
� 1 0

0 1

 ! Is

Us

 !

þ
� 1

0

 !

iw ≔ ½JðxÞ � RðxÞ�rEðxÞ þ g1ðxÞuþ g2ðxÞdðtÞ;

ð43Þ

where EðxÞ ¼ x
4
3

1 þ x
4
3

2, g1ðxÞ ¼
� 1 0

0 1

 !

and g2ðxÞ ¼
� 1

0

 !

.

Fig 4. Nonlinear circuit system.

https://doi.org/10.1371/journal.pone.0255797.g004

Fig 3. Response curve of the saturated control input sat(u).

https://doi.org/10.1371/journal.pone.0255797.g003
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Considering IS, system (43) with disturbances is rewritten as

_x ¼ ½JðxÞ � RðxÞ�rEðxÞ þ g1ðxÞsatðuÞ þ g2ðxÞdðtÞ;

y ¼ gT
1
ðxÞrEðxÞ;

z ¼ MðxÞgT
1
ðxÞrEðxÞ;

8
>>><

>>>:

ð44Þ

where y, d(t) and z are the output, the disturbance and the penalty signal, respectively.

satðuÞ 2 R is the saturated control input and given as

satðuÞ ¼

0:8; u > 0:8;

u; 0:8 � u � � 0:8;

� 0:8; u < � 0:8:

8
>>><

>>>:

ð45Þ

For disturbance attenuation level γ = 1, we choose symmetric matrix K ¼
3 0

0 3

 !

, the

weighting matrix M ¼
1

2
0

0 1

2

 !

and � ¼ 1

30
. Through verification, we find that these condi-

tions in Theorem 3 hold, where

�K ¼ K þ
1

2
MTM þ

1

2g2
Im ¼

29

8
0

0 29

8

0

@

1

A; ð46Þ

�RðxÞ ¼ RðxÞ þ g1ðxÞ½K �
1

2
��KT �K �

1

2
Im�g

T
1
ðxÞ ¼

2:28 0

0 5:28

 !

> 0; ð47Þ

~RðxÞ ¼ �RðxÞ þ
1

2g2
½g1ðxÞg

T
1
ðxÞ � g2ðxÞg

T
2
ðxÞ� ¼

2:28 0

0 5:78

 !

> 0: ð48Þ

According to Eq (29), the output feedback law is obtained

u ¼ � �Ky ¼
29

8
0

0 29

8

0

@

1

Ay: ð49Þ

From Theorem 3, we know that controller (49) can effectively solve the problem of finite-

time H1 control of PCH system (44).

The simulation is carried out with initial condition x1(0) = −0.5 and x2(0) = 1.2. To verify

the robustness of the proposed controller against disturbances, the current source disturbance

d(t) = iw = 1.1sin t is added into system (44) when 4s� t� 6s.
Figs 5 to 8 give the simulation results. The response curves of states x1 and x2 with and with-

out the saturated control input are shown in Figs 5 and 6, respectively. It can be seen that com-

pared with Fig 6, the effect of the disturbance on the system is well suppressed when the

disturbance appears in Fig 5. After the disturbance vanishes, the states converge to the equilib-

rium point faster in Fig 5. The response curves of the output feedback control are given in Fig

7. Fig 8 shows the response curves of the saturated control input sat(u), and the amplitudes of

the response curves are all within the saturation range. The simulations illustrate that the
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output feedback controller is very effective against disturbances subject to IS. Therefore, when

IS is considered, the proposed finite-time H1 control strategy is valid.

Conclusion

The problems of finite-time stabilization and finite-time H1 control of PCH systems subject

to disturbances and IS have been studied in this paper. By using system’s structure characteris-

tics and an appropriate output feedback, the strictly dissipative PCH system has been obtained

first. Second, the finite-time stabilization results for the case without and with IS have been

presented using the Hamilton function method and truncation inequality technique. Next, the

Fig 5. States x1 and x2 with disturbance and sat(u).

https://doi.org/10.1371/journal.pone.0255797.g005

Fig 6. States x1 and x2 with disturbance and without sat(u).

https://doi.org/10.1371/journal.pone.0255797.g006
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finite-time H1 control problem for PCH system with disturbances and IS has also been solved.

Finally, two examples have been proposed to illustrative the effectiveness of the theoretical

results.

The control method proposed has been applied to two simulation examples in this paper.

In fact, compared with the simulation results, the experimental results can better illustrate the

effectiveness of the proposed method. It is of great theoretical and engineering significance to

investigate engineering systems’ experiments using the proposed control scheme, which will

be studied in the future.

Fig 7. Response curves of the output feedback signal.

https://doi.org/10.1371/journal.pone.0255797.g007

Fig 8. Response curves of the saturated control input sat(u).

https://doi.org/10.1371/journal.pone.0255797.g008
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