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Our objective was to develop an automated deep-learning-basedmethod to evaluate cellularity in rat bonemarrowhe-
matoxylin and eosin whole slide images for preclinical safety assessment. We trained a shallow CNN for segmenting
marrow, 2 Mask R-CNN models for segmenting megakaryocytes (MKCs), and small hematopoietic cells (SHCs), and
a SegNet model for segmenting red blood cells. We incorporated the models into a pipeline that identifies and counts
MKCs and SHCs in rat bone marrow. We compared cell segmentation and counts that our method generated to those
that pathologists generated on 10 slides with a range of cell depletion levels from 10 studies. For SHCs, we compared
cell counts that our method generated to counts generated by Cellpose and Stardist. The median Dice and object Dice
scores for MKCs using our method vs pathologist consensus and the inter- and intra-pathologist variation were compa-
rable, with overlapping first-third quartile ranges. For SHCs, the median scores were close, with first-third quartile
ranges partially overlapping intra-pathologist variation. For SHCs, in comparison to Cellpose and Stardist, counts
from our method were closer to pathologist counts, with a smaller 95% limits of agreement range. The performance
of the bone marrow analysis pipeline supports its incorporation into routine use as an aid for hematotoxicity assess-
ment by pathologists. The pipeline could help expedite hematotoxicity assessment in preclinical studies and conse-
quently could expedite drug development. The method may enable meta-analysis of rat bone marrow characteristics
from future and historical whole slide images andmay generate new biological insights from cross-study comparisons.
Introduction

A critical step in pharmaceutical drug development is preclinical safety
assessment, which involves evaluating the effects of candidate molecules in
in-vivo animal models prior to human dosing in clinical trials. A major part
of safety assessment is the microscopic evaluation of all major organ
systems in these animals for signs of drug-related toxicity. A common drug-
related finding is hematotoxicity, toxicity to the blood cells and blood-
producing tissues. The bone marrow is the primary site for hematopoiesis,
or blood cell production, making its evaluation crucial in preclinical safety
studies prior to submission of Investigational New Drug (IND) applications.

Microscopic evaluation of the bone marrow is routinely performed on
hematoxylin and eosin (H&E)-stained tissue sections by toxicologic pathol-
ogists in the preclinical setting, and includes assessment of the cellularity,
or cell count, proportion of blood cell types, and blood cell maturation.1–6

A common histopathological finding in the bone marrow is decreased
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cellularity of hematopoietic elements, which is based on the anatomic pa-
thologist’s manual visual assessment of bone marrow sections by micro-
scope, and scored on a scale of severity, from minimal through mild,
moderate, marked, to severe.7 This manual visual assessment, on glass
slides4 or whole slide images (WSIs),8 is typically performed at multiple
magnifications to allow scrutiny of both tissue architecture and cellular
morphology. Fig. 1 demonstrates some of the magnifications required for
evaluating the cellularity in a whole slide image (WSI) of bone marrow
from a rat with mild cell depletion. Manual assessment can be subjective,7

laborious, and time-consuming,9 and is prone to inter-pathologist
variability.10–12 In preclinical toxicity studies, pathologists compare bone
marrow cellularity across multiple dose groups, often against a control
group, and ensuring accuracy and consistency can be challenging in this
subjective, qualitative approach.1

A variety of automated methods for analyzing WSIs have been devel-
oped that help pathologists obtain accurate and reproducible analysis
2023
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Fig. 1. Whole slide image of rat sternum (H&E), acquired at 40× magnification (pixel size 0.23 μm). (a) A section through the sternum. (b) A section through a
sternebra. (c) A view through the marrow, with arrows pointing to examples of a megakaryocyte (MKC) in yellow, myeloid cells in lime green, and red blood
cells (RBCs) in cyan.
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results with considerably less effort compared to the standard evaluation
methods.6,7,11–13 To achieve high accuracy and robustness, methods for au-
tomated analysis ofWSIsmust address the challenges related to tissue char-
acteristics, sample preparation, and imaging artifacts, all of which could
impact the appearance of cells in WSIs.

Challenging tissue characteristics include a multitude of different types
of cells14 that are densely mixed and heterogeneously distributed,15 touch-
ing and/or overlapping cells, potentially indistinct cell boundaries, and
natural variations in the appearance of cells within cell classes.16 For exam-
ple, the myeloid cell appearances vary across different cell lineages and
stages of development. Another challenge is the variation in the staining
quality of the H&E slides that may result from differences in sample prepa-
ration and staining procedures. Further, underlying pathology can impact
staining properties. For example, Fig. 2 shows variation in the tinctorial
appearance of the small hematopoietic cells (SHCs)1 and megakaryocytes
(MKCs) across WSIs with increasing cell depletion.2

Typical artifacts in WSIs include defects in slide preparation such as
tissue tears, folds, staining variability within and across laboratories, as
well as blurriness and noise which are defects that can arise from slide
scanning.17–19 In current automated image analysis methods, it is common
practice to remove artifacts where possible in a pre-processing step. Pre-
processing addresses the variability in tissue characteristics by extracting
explicitly or implicitly the important information in WSIs, such as color,
cell morphology, nuclear orientation, texture, and spatial arrangement,
and associating this information with objects of interest for analysis.
Another approach to addressing the anticipated variability is selection of
a large set of samples that exhibits the variability, or via data
augmentation.20

We leveraged recent deep learning model architectures to develop a
high-throughput screening pipeline for rapid, accurate, and robust quantifi-
cation of cellularity in WSIs of bone marrow tissue for preclinical safety
studies performed in rats. While we could have adapted existing models
for analyzing histopathological WSIs as other groups did,21–23 we antici-
pated that tailoring a pipeline specifically for rat histopathological WSIs
would yield high accuracy, which is crucial for hematotoxicity evaluation.
In this paper, we refer to the steps that the pipeline performed as our
method. We describe the post-processing techniques that we developed to
address detection and segmentation errors made by the deep learning
models, which were limited by the small amount of data available for train-
ing, under-representation of samples with regions of interest (ROIs), and
the difficulty in annotating cell ground truth (GT). We demonstrate that
our method identified and segmented bone marrow objects on an evalua-
tion dataset with an accuracy that was close to that of pathologists and
out-performed 2 state-of-the-art publicly available deep-learning cell
segmentation models.
1 We use the term small hematopoietic cells to refer to non-megakaryotic nucleated hema-
topoietic cells.

2 The variation in the tinctorial appearance may or may not be related to cell depletion.
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Automated analysis of pathology images began in the early 1990s.24

The introduction of WSIs enabled wide application of image processing
techniques, such as smoothing, thresholding, morphological operators,
and filters, to analyze histopathology WSIs, including human and animal
bone marrow data.7,12 WSIs allowed computational scientists to leverage
machine learning methods to develop efficient and robust prediction algo-
rithms with reduced dependency on tuning parameters via trial and error
for a variety of tissues,8,18 including human bone marrow.25,26 Machine
learning processes included extracting representations from sample image
data and training models by comparing predictions based on these
representations to ground truth. In the last decade, deep learning, a subset
of machine learning, has enabled development of highly accurate, efficient,
and generalizable image analysis models, which generally outperformed
traditional methods as well as human performance on some tasks.27 Deep
learning models exist for analyzing histopathology in a variety of contexts:
in bone marrow of humans15,26 and animals,11 and other organs, in both
humans6,21–23,28–35 and animals.36

The benefits of deep learning for analyzing histopathology WSIs sug-
gested that deep learning would be a promising approach for analyzing
bone marrow cellularity in rat histologic WSIs. We considered models
used to analyze pathology modalities other than histology, for example
bone marrow smear13 or blood smear37 and other microscopy
modalities.16,29,34,38 While these models achieved promising performance,
they were not amenable to histology WSIs with small hematopoietic cells
because the models relied on clear depiction of cell boundaries that was un-
like the depiction of small hematopoietic cells in H&E histology.

Deep learning methods use neural networks with many layers to
learn image representations iteratively by adjusting network weights
to minimize differences between predictions and GT. Deep learning
models are applicable to object detection, segmentation, and classifica-
tion. Two types of segmentation are relevant to our work: semantic seg-
mentation, which partitions scenes into classes by assigning class labels
to individual pixels, and instance segmentation, which identifies and
labels individual object instances within a given class.39 Our method
is based on 2 network architectures that are commonly used for segmen-
tation: encoder–decoder,40 and Mask R-CNN.41 Encoder–decoder archi-
tectures are often used for semantic segmentation. The encoder
comprises successive layers of convolution operators, activation func-
tions, and pooling operators to create feature-map representations
with progressive abstraction. The decoder creates successive upsampled
versions of the last encoder feature-map, often with the same pooling
indices that the encoder uses to generate downsampled maps. A soft-
max classification layer produces a pixel-level classification from the
last decoder feature map.40 Mask R-CNN is one of the better performing
instance segmentation architectures.42 The architecture comprises a
network that proposes ROIs, a network that extracts features within
the ROI bounding boxes and classifies the ROI, a module that refines re-
gion bounding box location via regression, and a fully convolutional
network that generates a binary mask for each ROI.41
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Fig. 2. Variation in the appearance of H&E bone marrow tissue across increasing depletion scores: (a, d) normal (no depletion), (b, e) moderate, and (c, f) severe. MKCs are
designated with a yellow ‘+’ sign, and example SHCs with a cyan arrow. As we examine panels (a) through (c) and (d) through (f), the tissue samples appear less-densely
packed, consistent with the depletion severity. The SHC examples include cells with a variety of morphologies consistent with the expected diversity of cell lineages and
developmental stages comprising the hematopoietic tissue. The tinctorial properties of the MKC cytoplasm vary considerably across the examples shown, with (a, d)
exhibiting the most basophilic staining and (c, f) the most eosinophilic staining.

3 In this paper, we refer to regions of both unilocular and /ormultilocular adipocytes, white,
brown, and /or beige adipose tissue as admixed adipose tissue.
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Materials and methods

Framework

We developed a method based on publicly available pre-trained deep
learning architectures and updated the model weights using GT data that
we collected for target objects used to determine cellularity in rat bonemar-
rowWSIs. Our method includes 4 steps. First, our method identifies the tis-
sue area in theWSI using a k-means classifier. Second, themethod segments
bone marrow regions at 5× magnification, and excludes all non-marrow
regions from further analysis. For segmenting bone marrow regions, the
method uses a shallow semantic segmentation model.43 Third, our method
segments components within the marrow that are key to further quantifica-
tion and analysis: MKCs, at 20× magnification, and SHCs, at 40× magni-
fication. For segmenting MKCs and SHCs, the method uses Mask R-CNN41

instance segmentation models. The method also segments red blood cells
(RBCs), at 40× magnification, using a SegNet40 semantic segmentation
model. The models for segmenting marrow components operate indepen-
dently. Fourth, themethod combines the segmentation results from the pre-
ceding step into a labeled result mask (Eq. 1). The method uses MKC and
RBC segmentation masks to filter out false-positive SHCs (MKC nuclei and
RBCs that were falsely segmented as SHCs). From the result mask, the
method calculates cell quantities and toxicity endpoints such as MKC and
SHC cell densities (Fig. 3). Typical processing time per WSI of size
95,000×60,000 pixels is about 12 min on a high-performance computing
cluster with a NVIDIA V100 GPU.

Result mask ¼ Marrow∧ MKCs∨ SHCs∧:RBCs∧:MKCð Þð Þ (1)

Ground-truth (GT) collection for training models

For the GT collection, we used male and female (31 Sprague Dawley
(Crl:CD(SD)) and 2 Wistar Han (Crl: WI)) rat bone marrow sternum slides
from the Genentech study archive, chosen to represent a range of levels
of cell depletion. The slides were generated for safety studies between
the years 2011 and 2019, processed in 1 of 2 contract research organiza-
tions (CROs) using the same protocol, had a thickness of 4–6 μm, and
were scanned with a Hamamatsu NanoZoomer-XR or Hamamatsu
3

NanoZoomer-S360 (Hamamatsu Photonics, Hamamatsu City, Japan) at
40×magnification (0.23 μm/pixel). A team of pathologists, computational
scientists, and technicians collected GT using annotation tools available in
Halo® Image Analysis Platform version v3.2 (Indica Labs). A computa-
tional scientist and a technician annotated, on 1 sternebra section per
WSI, a boundary around the sternebra, marrow, cartilage, and admixed
adipose3 tissue. Three pathologists and 2 technicians marked all MKC
boundaries within the marrow region in 1 sternebra section per WSI.
Four pathologists annotated boundaries around small hematopoietic cells
in 2 predefined rectangular regions per WSI. Annotating small hematopoi-
etic cells was difficult because of the small size of the cells and the lack of
clear boundaries around the cells within the WSIs, especially when cells
in the tissue were overlapping or densely positioned. Pathologists reviewed
and discussed cases where MKC and SHC boundaries or cell type were
difficult to discern. A computational scientist marked boundaries around
regions with RBCs. Table 1 presents the details of the GT used to train the
models.

Model details

Supplementary Materials Table 1 lists the characteristics of the models
included in our method. We trained models with fixed hyperparameters
and obtained a baseline intersection over union (IoU)44,45 via cross-valida-
tion for each model. For the bone marrow, MKC, and SHC models, we ran
tuning experiments via the tuning platform, Tune,46 which resulted in
only negligible improvement over the baseline IoUs. All models were
based on publicly available TensorFlow implementations. The bone mar-
row and RBC models were based on semantic segmentation model
suites,47,48 the MKC and SHC models were based on a publicly available
implementation of Mask R-CNN.49 All models were trained on tiles (see
tile sizes for each model in Table 1). Model inference was conducted as
depicted in Fig. 3. Fig. 4 depicts segmentation boundaries for marrow,
MKCs, and SHCs. We applied augmentation to the tiles used in the marrow,
MKC, and SHC models (see details in Supplementary Material Section 1).

All models included in our method perform inference on partially over-
lapping tiles, and the resulting segmentation masks for the tiles are stitched



Fig. 3. The model framework used as the basis for the bone marrow analysis
pipeline. SHCs that are within the marrow region are filtered by the detected
RBCs and then, together with MKCs in the marrow region, are included in the
labeled mask.
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together to form the result mask for each of the marrow segments. The
stitching strategy is dependent on the model type. For the marrow model,
every tile mask overrides preceding masks from overlapping tiles. For the
MKC, SHC, and RBCmodels, tile masks are combined with those of preced-
ing tiles by taking the maximum pixel label where pixels overlap. Taking
the maximum value allows us to capture all objects that were detected de-
spite potentially different depictions of the same objects in overlapping tiles
due to translational variation.50,51 We observed that for MKC and SHC tile
masks, there were cases where objects had duplicate (partial) representa-
tions in overlapping areas of neighboring tiles that were cropped by tile
edges and were discontinuous in the stitched mask. To alleviate the risk
of overcounting, we ignored segments that were very close to tile edges
(we assumed these objects would be depicted in overlapping tiles).

Post-processing

Our method applies procedures to address inference errors. For the
bone marrow, a procedure removes small regions outside the convex
hulls of marrow sections and retains as marrow any holes within the mar-
row that were likely omitted due to confounding by a similar-looking
class of admixed adipose tissue included on many sternebrae bone marrow
sections and located outside the marrow cavity (Fig. 5(a)–(c)). For MKCs, a
procedure removes small, noisy regions, and false-positive regions with
homogeneous colors where nuclei were clearly absent (Fig. 5(d)).

For SHCs, when multiple instances touch, a procedure performs a sec-
ondary analysis to determine if instances are actual objects or inference
errors. The procedure compares the normalized standard deviation (nSTD)
of pixel counts for the touching instances to a threshold of 0.25. A nSTD
smaller than the threshold suggests that all instances are actual objects,
and the original labels are retained. A nSTD larger than the threshold sug-
gests that the group of instances belongs to one object, and a single instance
label is assigned to the touching instances (Fig. 6). We determined the
threshold via visual exploration. Large SHC instances are regarded as infer-
ence errors where multiple touching cells have a single label. A cell splitting
procedure based on the work of Bai et al52 estimates the correct partitioning
of a large SHC instance. Following these procedures for correctingmodel in-
ferences, ourmethod labels SHC andMKC instanceswithunique color codes
to allow computing end points for the marrow result masks.
Table 1
GT used for training models.

Tissue
type

Tile
size

WSI/Tiles per depletion severity

Normal Minimal Mild

Marrow 132 7/439 5/565 5/657
MKCs 1024 2/54 2/89 0
SHCs 128 2/122 2/115 0
RBCs 128 5/435 3/553 1/13

a Sternebra sections.
b Cells.
c ROIs.

4

Evaluation

A prerequisite to deployment of the bone marrow method as a routine
analysis pipeline to aid in safety assessment was a demonstration of good
object segmentation accuracy and accurate counts compared to segmenta-
tion performed manually by a pathologist and compared to derived counts.
We estimated the baseline segmentation accuracy for each model using
cross-validation (see SupplementaryMaterial Table 1). Then, we undertook
a formal evaluation inwhichwe comparedmarrow,MKC, and SHC cell seg-
mentation ROIs and cell counts that our method inferred to GT that scien-
tists/pathologists had delineated. We also compared the nuclei counts
produced by 2 state-of-the-art deep learning models, Cellpose23 and
Stardist pre-trainedwith histologyweights53 to the GT.We did not formally
evaluate the accuracy of the RBC model alone by comparing segmented
RBC regions to RBC GT annotated by pathologists. However, we deter-
mined the error rate for the RBC model by comparing the RBC segmenta-
tion masks to those of pathologist SHC consensus GT.

Data collection
We selected 1WSI from each of 10 unique studies thatwere not used for

training the models, all from the Genentech study archive. The slides were
Sprague Dawley (Crl:CD(SD)) rat bone sternum slides generated for safety
studies between the years 2012 and 2019, processed in 1 of 2 CROs
(using the same protocol), had a thickness of 4–6 μm, and were scanned
with Hamamatsu NanoZoomer-XR or Hamamatsu NanoZoomer-S360 (Ha-
mamatsu Photonics, Hamamatsu City, Japan) at 40× magnification (0.23
μm/pixel). The selection included WSIs with a range of levels of cell deple-
tion (see slide specification in Supplementary Material). For evaluating the
marrowmodel, a veterinary medical student annotatedmarrow sections on
one of the sternebrae within each of the 10 WSIs using Halo® Image
Analysis Platform version v3.2 (Indica Labs). For evaluating the MKC and
SHC models, a computational scientist selected 2 ROIs per WSI for SHC an-
notations (about 65000 μm2 when combined) and 1 ROI per WSI for MKC
annotation (about 8mm2, see SupplementaryMaterial Table 6 forMKC and
SHC annotation counts). Three board-certified veterinary pathologists from
an external CRO, who did not take part in the GT collection for training, an-
notated all MKCs and SHCs that they identified within all ROIs using
QuPath.54 Fig. 7 shows the annotated ROIs for 1 WSI evaluation. To mini-
mize potential bias related to order of presentation, the order of ROI presen-
tationwas randomized for each pathologist. The ROIswere partitioned into
2 groups of 5 (random partition for each pathologist) and were annotated
by the pathologist in 2 sessions with a month gap between the groups to
minimize pathologist fatigue. We established the pathologist consensus
GT by aligning, for a given ROI, the 3 annotation masks generated by the
pathologists, and selecting only pixels that were included in at least 2 out
of the 3masks. In order to estimate intra-pathologist variation, after awash-
out period of at least 6 months (to eliminate potential recollection of pre-
ceding annotations), the annotation process was repeated with the same
pathologists and ROIs.

Tests and metrics
To compare the bone marrow segmentations obtained using our

method with segmentations determined by scientists, we computed the
Unique
studies

Total
count

Moderate Marked Severe

0 3/599 3/595 15 17a

1/31 2/31 1/36 8 1597b

0 2/248 1/60 7 7114b

0 0 0 8 1111c



Fig. 4. Segmentation results of the bone marrow analysis pipeline for normal tissue, depicted with contours around the segmented objects. (a) Marrow within a sternebra
section (red). The dashed red lines depict bone, which is excluded from the marrow. (b) A marrow patch with segmented MKCs (cyan). (c) A marrow patch with
segmented SHC (yellow). In this example, therewas no pixel overlap between the SHC and RBCmasks. Thus, panel c is the same before and after application of the RBCmask.

Fig. 5. Example of segmentation error for the marrow and MKC models that were addressed with post-processing. (a) A WSI with marked cell depletion. (b) Regions within
the marrow that the model confused with adipose tissue (cyan arrows). (c) Adipose tissue. (d) MKC segmentation in an ROI of a WSI with no cell depletion (yellow and cyan
arrows). The region pointed to by the yellow arrow represents a segmentation error because it includes a nuclear material that did not meet the morphologic criteria for
designation as an MKC and is in contrast to the nucleated megakaryocyte segmentation pointed to by the cyan arrow.
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Dice score,44,45 which is based on the coordinate overlap of 2 ROIs (twice
the number of pixels in the intersection between the ROIs divided by the
total number of pixels in both ROIs). To compare the method’s cell segmen-
tations to pathologist segmentations, and to establish inter- and intra-pa-
thologist variability, we computed the Dice and the object Dice55 scores,
the second of which estimated per-object segmentation overlap.55 In
order to evaluate the impact of discrepancies in object segmentation on de-
rived total cell counts, we compared for MKCs and SHCs cell counts derived
from our method to cell counts derived from pathologist annotations
with the Bland–Altman test.56 For SHCs, we also compared counts
derived from Cellpose and Stardist nuclei segmentations to cell counts
derived from pathologist annotations. The comparison of SHC cell counts
derived from Cellpose and Stardist nuclei segmentations were based on 2
configurations: 1 with the filtering of RBC and MKC false-positives and 1
without. The Bland–Altman test was suitable for cell count comparisons be-
cause it established the agreement interval between counts derived from 2
imperfect segmentation methods, our automated method and pathologist
delineations. To determine the RBC error rate we calculated, for each eval-
uation ROI, the percentage of RBC pixels that overlapped with SHC pathol-
ogist consensus GT.

Results

Comparison of segmentations from our method to those of scientists/pathologists

Themean Dice score for our method’s marrow segmentation vs scientist
bone marrow segmentations was 0.9±0.1. Box plots of mean Dice and
5

mean object Dice scores for our method’s cell segmentations vs pathologist
cell segmentations, and for pathologist pairs (estimate of the inter- and
intra-pathologist variation for cell segmentations) are shown in Fig. 8
(Dice and object Dice scores for individual WSI appear in Supplementary
Material tables 2–5). The median Dice and median object Dice scores
determined for MKCs using our method vs pathologist consensus and for
inter- and intra-pathologist variation were comparable with overlapping
first-third quartile ranges. For SHCs, the median scores were close, with
first-third quartile ranges partially overlapping inter-pathologist variation.
The error rate for RBC segments was 9%.We observed that SHCDice scores
for our method when applied with RBC false-positive filtering were the
same as Dice scores obtained when our method was applied without RBC
filtering, the mean Dice score was 0.70 in both cases (see Supplementary
Material Table 4).

Comparison of cell counts derived from cell segmentation methods and cell
segmentations of pathologists

The Bland–Altman plots (Fig. 9) show the difference between cell counts
derived from automated segmentation and from pathologist segmentation
consensus for the evaluation ROIs. The average consensus GT cell count
per evaluated slide (1 ROI for MKC, 2 ROIs for SHC) for MKCs and SHCs
were 28 and 431, respectively. The 95% limits of agreement designate the
range of values that encompasses the differences for most ROIs. The mean
difference between our method and pathologist consensus for the MKC
counts was 6.2 with 95% limits of agreement ranging from −14 to 27
(Fig. 9(a)), and a percent difference of 22% relative to the average cell count.



Fig. 6. Typical tiles with SHC instance segmentation errors partially resolved by
post processing. (a, d) Raw tiles with visible cells. (b, e) Segmentation masks for
the tiles, depicting instances in different colors (note that the colors of some
instances may look similar despite having different color values). (c, f) Result cell
boundaries after post-processing superimposed on raw tiles. Note that boundaries
of cells along the tile perimeter, which are not depicted in the masks, are included
in masks of neighboring overlapping tiles. Missing cells are a result of either
segmentation errors or errors in the cell splitting procedure. (a–c) Segmentation
errors addressed by secondary nSTD analysis or cell splitting. (b1) Shows 3 cells
segmented as 2 instances. (b2) Shows 1 cell segmented as 2 instances. (d–f)
Touching instances that were correctly determined to be 2 cells by the secondary
nSTD analysis. (e3) Shows 2 cells segmented as 2 instances.
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The results shown in Fig. 9(b–d) for SHC counts reflect cell counts de-
rived from segmentation masks after filtering false-positives (see example
Supplementary Material Fig. 1). The mean difference between our method
and pathologist consensus for the SHC counts was 62.9 with 95% limits of
agreement ranging from−15 to 140 (Fig. 9(b)), and a percent difference of
15% relative to the average cell count. The percent cell count differences for
MKCs and SHCs indicate that our method to pathologist differences were
more prominent for MKCs than for SHCs. In Fig. 9(c), the mean difference
between the Cellpose and pathologist consensus SHC counts was 82.7
with 95% limits of agreements ranging from −170 to 330 (Fig. 9(c)), and
a percent difference of 19% relative to the average cell count. Finally, the
mean difference between the Stardist and pathologist consensus SHC
Fig. 7.Manually annotated ROIs in aWSIwith marked depletion. (a) A view of the entire
MKC (blue) and SHC (green) ROIs. (b–d) Zoomed in views of MKC and 2 SHC ROIs, res
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counts was 120.4 with 95% limits of agreement ranging from −45 to 290
(Fig. 9(d)), and a percent difference of 28% relative to the average cell
count. Based on these results, our method produced counts that were closer
to pathologist counts than Cellpose and Stardist (Fig. 9(b)–(d)), with a
smaller 95% limits of agreement range.

False-positive filtering for Cellpose resulted in a cell count that was
closer to that of the pathologist consensus GT than cell count without
false-positive filtering. For Stardist, false-positive filtering resulted in a
cell count that was slightly farther apart from the pathologist consensus
GT. However, SHC cell counts for our method were closest to pathologist
consensus GT compared to the other 2 methods (with or without false-pos-
itive filtering, see Supplementary Materials Tables 7–9). A visual example
of SHC segmentations in 1 evaluation ROI for the consensus GT and all 3
SHC segmentation models is shown in Supplementary Material Fig. 1.

Discussion

The scientific literature includes a few reports of automated methods for
analyzing WSIs of histologic preparations of bone marrow samples from an-
imal models,7,11,12,57 all of which could potentially enhance the work of tox-
icologic pathologists. However, these methods were not suitable for routine
high-throughput cellularity analysis of bone marrow histology in new stud-
ies, either because the methods were not targeted at assessing cellularity,12

because the foundational software was no longer available,7 the methods
were designed for animalmodels other than rat,11,12 or because themethods
were evaluated on only 1 study and therefore were not demonstrated to be
generalizable.11 We considered adapting available models for analyzing
human bone marrow to rat data, which was similar to human bone
marrow,58 but preferred to tailor our models to rat data to increase the like-
lihood of achieving highly accurate results. We embarked upon the task of
collecting GT data for model training and evaluation and trained multiple
publicly available semantic and instance segmentation models to identify
key tissue components while removing irrelevant components.

We observed that segmenting MKCs was easier than segmenting SHCs,
both for pathologists and for ourmethod, as reflected in the higher Dice and
object Dice scores for MKCs. Segmenting SHCs was most difficult when the
cells were densely arranged and overlapped. Part of the challenge stemmed
from the difficulty discerning cytoplasm borders, which did not always
stain well in H&E slides, and distinguishing between overlapping cells, to-
gether making cell boundaries difficult to visualize. Unlike other projects
that analyzed tissue with small cells, where researchers resorted to nuclei
segmentation,7,59 we performed our analysis with whole cells to capture
WSI withmarrow annotations around a sternebra section (red), and demarcation of
pectively. MKCs are shown in cyan (b), SHCs in yellow (c, d).



Fig 8. Box plots for mean Dice and mean object Dice scores for cell segmentation.
(a–b) Scores for MKC segmentation. (c–d) Scores for SHC segmentation. In all
plots, the whiskers indicate the 5 and 95 percentiles, and extreme outliers are
plotted as circles. The orange horizontal lines depict medians. Note that for MKC,
the lowest Dice and object Dice values were zero because the 2 WSIs with severe
cell depletion had few MKCs, and there was no full agreement with respect to
these MKCs. The term GT in the plot tick labels refers to consensus GT. The data
from which the plot was generated appear in Supplementary Material Tables 2
through Table 5.

Fig. 9. Bland–Altman plots for cell count comparisons in ROIs from 10 evaluation slide
(a) Our method’s MKC counts vs pathologist MKC consensus counts. (b) Our method
pathologist SHC consensus counts. (d) Stardist SHC counts vs pathologist SHC consensu
of the compared method, negative differences indicate that the GT count was lower tha
appear in Supplementary Material Table 6.
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the highly variable nuclearmorphologies, for example, band, u-shaped, and
lobulated nuclear forms of cells in the granulocytic lineages.We anticipated
that the bone marrow nuclear morphologies would be challenging for nu-
clear segmentation algorithms optimized to identify oval shaped nuclei
withmore homogeneous size and shape characteristics. We combined over-
lapping tiles with a maximum operation to consider all information that
models inferred in overlapping areas, some of which was not consistent
due to translational variation.50,51 Our post-processing analysis based on
nSTD helped us identify and merge multiple instances for single objects.
We found that SHC cell counts derived from Mask R-CNN inference were
closer to those derived from GT compared to counts derived from Cellpose
and Stardist inferences. ForMKCs and SHCs, small cell count differences be-
tween our method and pathologist scores held across different pathological
contexts selected for the evaluation slides. We observed that in the current
version of our method, filtering of RBC false-positives did not improve the
accuracy of SHC segmentation compared to pathologist consensus GT. This
result is not surprising given that the accuracy of the RBC model was lim-
ited. However, we anticipated that future improvements to the RBC
model would enhance the performance of our method and therefore we
retained the RBC model in our framework.

Although deployment of publicly available segmentation models was
much easier than collecting GT for rat-bone marrow WSIs, our goal to
achieve accuracy close to that of pathologists justified the GT collection ef-
fort. The GT specific to rat bone marrow yielded segmentation and cell
count accuracies that were close to those of pathologists, and a robust and
consistent pipeline for high-throughput screening of rat bone marrow
WSIs for cell depletion.

Conclusion

The strong performance of the bone marrow analysis pipeline supports
its incorporation into routine use as an aid for hematotoxicity assessment
s, chosen from 10 different studies to represent a range of levels of cell depletion.
’s SHC counts vs pathologist SHC consensus counts. (c) Cellpose SHC counts vs
s counts. Positive differences indicate that the GT count was higher than the count
n the count of the compared method. The data from which the plot was generated
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by pathologists. To build diagnostic confidence in themethod for use by pa-
thologists, wewill derive scores from pipeline endpoints and compare these
to pathologist bone marrow scores in studies. We will also compare differ-
ences between study groups derived from our methods to differences
between study groups derived from pathologist scores. Moreover, we will
define a standard procedure for assessing pipeline analysis results to assure
quality of pipeline performance on every sample. An important next step for
our work would be to test the bone marrow analysis pipeline on rat WSI
generated and scanned at other sites (beyond the 2 CROs that processed
the slides used in our work), and to address compatibility issues that arise
by applying domain adaptation techniques to our data. This effort is
underway.

We envision that utilizing our method may enable meta-analysis of rat
bone marrow characteristics from future and historical WSIs and may gen-
erate new biological insights from cross-study comparisons. We anticipate
continuing to improve segmentation accuracy by generating additional
GT annotations and retraining the method’s models. We hope to reduce
the RBC error rate so that we can improve the accuracy of our method by
filtering out false-positive SHC. Potential extensions of our work include
adapting themodels toH&E bonemarrow from additional bone tissues rou-
tinely collected in safety studies, such as the femur, as well as applying the
approach to other preclinical species. Additional future goals include train-
ing models that can identify developmental cell states and distinguish be-
tween the hematopoietic cell’s lineages. We are looking to facilitate
manual collection of segmentation GT by pairing bone marrow histology
WSIswithWSIs depicting hematopoietic cells identifiedwith immunohisto-
chemical markers, and to leverage semi-supervised learning methods for
automatic identification of hematopoietic cell annotations using
existing GT.
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