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Abstract: This study aimed to increase the antibacterial activity of chitosan-polylactic acid (PLA)
composite film by adding nisin and ethylenediaminetetraacetic acid (EDTA). We evaluated the
mechanical, physicochemical, and antibacterial properties of various PLA composite films, as well as
the enhancement effect of PLA composite films with EDTA + nisin on the preservation of grouper
fillets. Films of PLA alone, PLA plus chitosan (C5), PLA plus nisin + EDTA (EN2), and PLA plus
chitosan plus nisin + EDTA (C5EN1 and C5EN2) were prepared. The addition of EDTA + nisin
to the chitosan-PLA matrix significantly improved the antibacterial activity of the PLA composite
film, with C5EN1 and C5EN2 films showing the highest antibacterial activity among the five films.
Compared with the fish samples covered by C5, the counts of several microbial categories (i.e.,
mesophilic bacteria, psychrotrophic bacteria, coliforms, Aeromonas, Pseudomonas, and Vibrio) and total
volatile basic nitrogen content in fish were significantly reduced in the samples covered by C5EN1.
In addition, the counts of samples covered by C5EN1 or C5 were significantly lower compared to the
uncovered and PLA film-covered samples.

Keywords: chitosan; PLA composite film; EDTA; nisin; antimicrobial activity; fish preservation

1. Introduction

Aquatic products are susceptible to microbial deterioration. Every year, approximately
30 million tons of aquatic products are not properly preserved after being caught, leading to
their deterioration [1]. Fish meat is more susceptible to spoilage than livestock meat owing
to its higher content of water and free amino acid and lower content of connective tissue.
Compared with poultry, various biochemical and enzymatic changes are triggered in fish
muscles immediately after death, especially at incorrect processing temperatures. Both
these changes and microbial activity cause the degradation of fish muscle [2]. Various fish
preservation techniques are used to prevent the fish quality from deterioration and extend
its shelf-life; these include the use of preservatives, the management of water activity and
pH, and the combination of packaging and cold-chain transportation systems. [3].

Polylactic acid (PLA), which is biodegradable and biocompatible, has been applied
in various fields as a packaging and supporting material [4]. However, owing to its
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heat sensitivity and poor tensile strength, PLA is frequently co-formulated with other
flexible biopolymers, plasticizers, fibers, and nanofillers [5,6]. Several researchers have
developed PLA composite films for food preservation. Talebi et al. [7] incorporated 1%
spice essential oils (Mentha piperita and Bunium percicum) into the PLA film matrix, which
strongly inhibited the growth of Staphylococcus aureus, Enterobacteriaceae, Pseudomonas,
and lactic acid bacteria in ground beef and extended its shelf-life from 4 days to 7 days.
Llana-Ruiz-Cabello et al. [8] used PLA films incorporating 2–6.5% of Allium herbal extracts
to package ready-to-eat salads. All the extract-containing PLA films effectively suppressed
enterobacterial growth in salad samples, with the greatest effect observed for film contain-
ing 6.5% extract. Yang et al. [9] developed biodegradable films based on PLA blended with
poly(butylene succinate adipate) (PBSA) and carvacrol (CAR) for food preservation, in
particular for aquatic products. The addition of CAR increased the mobility of PLA/PBSA
chains and improved their flexibility and ductility. This CAR-added PLA/PBSA film effec-
tively inhibited the growth of bacteria and extended the cold-storage shelf-life of salmon
fillets by 3–4 days [10].

Chitosan, a polymer composed of glucosamine and N-acetylglucosamine from crus-
taceans, insects, and fungi, has strong antimicrobial activity and has been used in clinical,
agricultural, and food products [11]. Various antibacterial films made from chitosan alone
or chitosan with other bioactive agents, such as cumin [4], guava peel extract [12], and
ginger oil [13], have been developed to extend the shelf-life of foods. However, owing
to the high water permeability and low mechanical strength of chitosan films, chitosan
must be combined with other less water-impermeable polymers to make biodegradable
antibacterial films. Some types of chitosan-PLA films have been developed, including chi-
tosan/poly (vinyl alcohol) PLA film [14] and chitosan/polyethylene glycol PLA film [15].
In our previous report, we prepared a chitosan-PLA composite film for the preservation of
fish fillets [16]. As the mechanism of chitosan antimicrobial action is mediated through the
electrostatic interaction between the protonated amine residues in the chitosan molecule
and the negatively charged groups on the bacterial surface [12,17], the biocidal effect of
chitosan film, as proposed by Zimet et al. [18], may be due to the release of protonated
glucosamine fractions from the biopolymer. However, the larger molecular weight and
poor water-solubility of the chitosan (220 kDa) used in our previous chitosan-PLA film [16]
may have limited the release of glucosamine residues, and thus limited the preservative
effect on grouper fillet at room temperature. Only low-temperature storage could clearly
show the ability of this film to extend the shelf-life of grouper [16].

Nisin, a small antibacterial peptide (3500 Da) produced by Lactococcus lactis, is the
most widely used bacteriocin in more than 48 countries and is approved by the USFDA.
This peptide can inhibit the growth of a broad spectrum of gram-positive microorganisms,
including Listeria monocytogenes and Staphylococcus aureus, and prevent spore germina-
tion [19]. It is well accepted that nisin exerts better potency against Gram-positive [G(+)]
bacteria than Gram-negative [G(−)] bacteria as the cell wall of gram-positive bacteria
is highly negatively charged. The electrostatic interaction between the positive charges
in nisin and the negatively charged cell surface allows the nisin peptide to attach to the
bacterial cell membrane [20], and the hydrophobic amino acid of the peptide inserts deeper
into the bacterial cell, changing the permeability of the bacterial cell membrane and induc-
ing bacterial death [21]. Ethylene diamine tetraacetic acid (EDTA) is a safe, economical
metal chelator that sequesters divalent cations (notably Ca2+ and Mg2+) that contribute
to the stability of the outer membrane of gram-negative bacteria [17]. Therefore, EDTA
improves the activity of nisin against gram-negative bacteria, including E. coli O157:H7 and
S. typhimurium in in vitro tests [22].

The chitosan-PLA composite film we prepared previously had a much weaker effect
at 25 ◦C than at 4 ◦C on the preservation of grouper fillet [16]. In the present study, we
aimed to improve the antibacterial function of a chitosan-PLA composite film through the
incorporation of the low-molecular-weight antibacterial agents of nisin and EDTA. Films
of PLA alone, PLA plus chitosan, PLA plus nisin + EDTA, and PLA plus chitosan plus
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nisin + EDTA were prepared. Their mechanical, physicochemical, and antibacterial proper-
ties were determined. Their application for grouper fillet preservation was also evaluated.

2. Materials and Methods
2.1. Bacterial Strains and Chemicals

Escherichia coli BCRC 11,634 and Staphylococcus aureus BCRC 10,451 were purchased
from the Biosources Collection and Research Center (Hsinchu, Taiwan). EDTA, sodium
bicarbonate (NaHCO3), and nisin (106 IU) were obtained from Sigma Chemical Co. (Gilling-
ham, UK). Chitosan powder was obtained from Applied Chemical Co., Ltd. (Kaohsiung,
Taiwan). Bacto agar, nutrient broth (NB), nutrient agar, plate count agar (PCA), Pseudomonas
isolation agar, starch ampicillin agar (SAI), thiosulphate-citrate-bile salts-sucrose, tryptic
soy broth, and violet red bile agar were supplied by Becton Dickinson (Sparks, MD, USA).
Polylactic acid (PLA, manufactured by Natureworks@ (4032D), Minnetonka, MA, USA)
had a weight-average molecular weight (Mw) of 1.96 × 104 Da, as determined by gel
permeation chromatography.

2.2. Antibacterial Activity of Chitosan, Nisin, and EDTA

E. coli BCRC 11,634 and S. aureus BCRC 10,451 were incubated in NB at 37 ◦C for
24 h for use as the bacterial cultures. The sterile stock solutions of 1M EDTE-2Na, 10%
(w/v) nisin, and 1% (w/v) chitosan were prepared based on the methods of Ukuku and
Fett [23], Hoffman et al. [24], and Chang et al. [16], respectively. To vials containing 10 mL
NB, different volumes of chitosan stock solution, nisin stock solution, and EDTA-2Na stock
solution were added to prepare final concentrations of 5 ppm chitosan, 20 mM EDTA-
2Na, and 0–75 µg/mL nisin in NB, respectively. After inoculation of bacterial cultures
with an initial cell density of 106 CFU/mL into chitosan/EDTA/nisin-containing NB and
incubation at 37 ◦C for 24 h, the viable cells were measured using a plate counting method.

2.3. Film Preparation

Film preparation was based on the method of Chang et al. [16]. The films contain-
ing PLA alone, PLA + 0.5% (w/w) chitosan (abbreviated as C5), PLA + 20 mM EDTA + 0.02%
(w/w) nisin (abbreviated as EN2), and PLA + 0.5% chitosan + 20 mM EDTA + 0.01% − 0.02%
nisin (abbreviated as C5EN1 and C5EN2) were manufactured by Plastics Industry Devel-
opment Center (Taichung, Taiwan, ROC). The base mixture without chitosan was used as
the PLA control. Extrusion on a casting laminating machine (SHFV-QA16010, HsinPow
Machinery Co. Ltd., Tainan, Taiwan) was used to produce the chitosan-EDTA-nisin-PLA
composite films, which were finally trimmed into film rolls of 30 cm in width and 0.04 mm
in thickness.

2.4. Antimicrobial Activity of Films

The antimicrobial activity of film was measured in accordance with the protocol of
Chang et al. [16]. In brief, the diluted cultures (2.5–10 × 105 CFU/mL) of E. coli BCRC
11,634 and S. aureus BCRC 10,451 incubated in NB at 37 ◦C for 24 h were used as the
bacterial cultures. In total, 0.4 mL of the diluted culture was added to the test samples
of PLA, C5, C5EN1 or C5EN2, and EN2 films, which had been sterilized in UV-light for
24 h. After incubation at 37 ◦C for 24 h, the test films were rinsed with 10 mL of SCDLP
broth. The viable bacterial count in the washed SCDLP broth was measured by counting
the colonies on the PCA plate. The tests were conducted in triplicate.

2.5. Application on the Preservation of Fish Fillet

Based on the method of Chang et al. [16], fresh grouper (Epinephelus fuscoguttatus ×
Epinephelus lanceolatus) fillets were cut into smaller fillets and the upper and the lower
surfaces of the fillets were covered with the test films; fish fillet with no covering was
used as the control. All samples were placed in dishes and stored at 4 ◦C or 25 ◦C. Five
samples were removed from each storage condition: two were used for the measurement
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of total volatile basic nitrogen (TVBN) content using Conway’s method [25]; the remaining
three were used for pH measurements and microbial analysis. Surface plating counts were
adopted by spreading decimal diluents (100 µL) on various media and the incubation
conditions used were as described in the method of Chang et al. [16].

2.6. Mechanical and Physical Properties
2.6.1. Mechanical Properties

The mechanical properties were investigated based on the determination of the tensile
strength and elongation at break of the films in accordance with the ASTM D882 standard
method [26]. The tensile strength and elongation at break were calculated from the stress-
strain curves. The tear strength was measured in accordance with ASTM D1938 method.

2.6.2. Water Vapor Transmission Rate

The test film was sealed over the top of a test tube containing anhydrous silica gel at
20 ◦C ± 2 ◦C [16]. The water vapor transmission rate (g mm/m2 day kPa) was calculated
from the increase in the test tube weight over time after the transfer reach steady-state. The
test was conducted in triplicate.

2.6.3. Moisture Content

The moisture content of the film was calculated as the percentage reduction in the dry
weight of the film reduction (50 mg) at 105 ◦C until a constant weight was reached [16].
The test was conducted in triplicate.

2.6.4. Overall Migration Test

Based on the method of Tovar et al. [27], but with some modifications, three aqueous
simulants of distilled water, 10% aqueous ethanol (v/v), and 3% aqueous acetic acid (w/v)
were used. A piece of the test film (3 cm × 4 cm) and 20 mL of simulant were placed in
a glass vial at 40 ◦C for 10 days. After the film was removed, the simulant was vacuum-
evaporated to dryness and the solid residue was gravimetrically analyzed. Six replicates
were performed for each film and each stimulant.

2.7. Statistical Analysis

All data were analyzed statistically using repeated-measure and one-way analysis of
variance (ANOVA), and multiple comparisons between treatment means were completed
by Duncan’s tests. All experiments were performed in triplicate, and an evaluation of
the statistical significance at p < 0.05 was performed using SPSS 16.0 software (SPSS Inc.,
Chicago, IL, USA). The data were expressed as mean values with standard deviation
(mean ± SD).

3. Results and Discussion
3.1. Antimicrobial Activity of Chitosan, EDTA, Nisin, and Combined Films

Nisin is the most widely used bacteriocin in the world. It has a strong inhibitory effect
on gram-positive bacteria and a weaker inhibitory effect on Gram-negative bacteria [20].
The metal chelator, EDTA, can increase the effect of nisin on Gram-negative bacteria [28].
Therefore, the antibacterial activity of the combination of chitosan, nisin, and EDTA was
first evaluated in vitro, and then PLA composite membranes were prepared. In the absence
of EDTA (A, C) or the presence of 20 mM EDTA (B, D), the antibacterial effects of various
concentrations of nisin (with/without 5 µg/mL chitosan) in NB broth against the G(−)
(bacterium E. coli BCRC11634 (A, B) and the G(+) bacterium S. aureus BCRC 10,451 (C, D) are
shown in Figure 1. Nisin alone (10–75 µg/mL), without 5 µg/mL chitosan, had almost no
activity against E. coli, whereas chitosan alone at 5 µg/mL had some activity against E. coli.
The antibacterial activity of the combination of chitosan (5 µg/mL) and nisin gradually
increased as the nisin concentration increased (Figure 1A). Compared with the survival
(8 log CFU/mL) of the control (without chitosan and nisin) in Figure 1A, the survival
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in the broth containing only 20 mM EDTA in Figure 1B was reduced by approximately
0.9 log CFU/mL. The survival in 20 mM EDTA plus 5 µg/mL chitosan and 20 mM EDTA
plus various concentrations of nisin were greatly reduced (Figure 1B), compared with the
survival of 5 µg/mL chitosan alone or nisin without EDTA in Figure 1A, respectively. This
demonstrated that EDTA could enhance the bactericidal effect of chitosan and nisin on
E. coli. In addition to the inhibitory effect of nisin alone on S. aureus (Figure 1C), 20 mM
EDTA similarly increased the inhibitory effect of chitosan and nisin on S. aureus (Figure 1D).
In brief, 20 mM EDTA could significantly enhance the antibacterial activity of both chitosan
and nisin against E. coli and S. aureus. The bactericidal effect of chitosan was greatly
increased by the combination of EDTA and nisin. Similarly, Hui et al. [29] showed that
nisin combined with chitosan treatment had stronger antibacterial activity and provided
better quality for yellow croaker during storage.
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Figure 1. Antibacterial activity of chitosan (5 µg/mL) in NB broth containing various concentrations
of nisin without EDTA (A,C) and with EDTA (20 mM) (B,D) against Escherichia coli BCRC11634 (A,B)
and Staphylococcus aureus BCRC 10451(C,D). Data were presented as mean ± SD from triplicate
experiments. Different letters of upper or lowercase were significantly different (p < 0.05).

3.2. Mechanical and Physical Properties of Films

The five films ((PLA (as control), C5 (PLA + 0.5% of chitosan), EN2 (PLA + 20 mM
EDTA + 0.02% nisin), C5EN1 (PLA + 0.5% chitosan + 20 mM EDTA + 0.01% nisin), and
C5EN2 (PLA + 0.5% chitosan + 20 mM EDTA + 0.02% nisin)) were prepared and their
visual appearances are shown in Figure 2. Compared with the PLA and EN2 films, the
C5, C5EN1, and C5EN2 films were comparable yellowish, which may be due to chitosan’s
partial miscibility affecting the color of the continuous matrix [30].

For polymeric films to provide sufficient physical protection to maintain food integrity,
adequate mechanical properties are very important [31]. Therefore, the tensile strength,
elongation at break, and tear strength were investigated as a function of chitosan and/or
EDTA + nisin incorporation in the PLA matrix; the results are shown in Table 1.
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Table 1. Tensile strength, elongation at break, and tearing strength of PLA, EN2, C5, C5EN1, and
C5EN2 films.

Film
Tensile Strength (kgf/cm2) Elongation at Break (%) Tearing Strength (gf)

MD TD MD TD MD TD

PLA 140 ± 11 a 104 ± 9 a 215 ± 23 a 51 ± 23 a 110 ± 18 d 264 ± 17 c

EN2 63 ± 6 b 35 ± 3 b 48 ± 6 b 16 ± 5 b 407 ± 40 b 367 ± 20 b

C5 58 ± 8 b 38 ± 2 b 35 ± 5 b 16 ± 1 b 540 ± 30 a 458 ± 40 a

C5EN1 53 ± 7 b 34 ± 2 b 28 ± 4 b 17 ±3 b 346 ± 30 c 214 ± 50 c

C5EN2 47 ± 1 c 32 ± 3 b 29 ± 8 b 16 ± 1 b 387 ± 41 c 387 ± 40 b

MD, Machine Direction; TD, Transverse Direction; PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA
+ 20 mM EDTA + 0.02% nisin; C5EN1, PLA + 0.5% chitosan + 20 mM EDTA + 0.01% nisin; C5EN2, PLA + 0.5%
chitosan + 20 mM EDTA + 0.02% nisin. Data are presented as mean ± SD (n = 3). Different superscript in the
same column indicates significant difference (p < 0.05).

The inclusion of either chitosan or EDTA + nisin into the PLA matrix greatly reduced
the tensile strength and elongation at break [in both machine direction (MD) and transverse
direction (TD)], as shown in C5 and EN2. However, as shown in C5EN1 and C5EN2, the
tensile strength and elongation at break after the inclusion of chitosan and EDTA + nisin
were not significantly different from the C5 and EN2. Bonilla et al. [30] proposed that
chitosan particles may cause irregularities and discontinuities in the oriented PLA matrix,
which can result in the decrease of tensile strength. A similar explanation may apply for
the reduction resulting from the addition of EDTA + nisin to the PLA matrix on the tensile
strength and elongation at break. However, adding either chitosan or EDTA + nisin into
PLA matrix greatly increased the tear strength of the composite PLA films, as shown in
EN2 and C5. When these two components are both added to the PLA matrix, the increase
in the tear strength was slightly reduced, as shown with C5EN1 and C5EN2. Although
we are currently unable to provide an explanation for this, the helical configuration of
chitosan [32] and nisin [33], and the electronic attraction between chitosan-PLA and EDTA-
PLA may help increase the tear strength (gf) of the film. When both chitosan and EDTA +
nisin are added to PLA, the charge interaction between chitosan and EDTA may reduce
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the electronic force between PLA and each component. Therefore, the tear strength for
C5EN1 and C5EN2 were lower than that of EN2 and C5.

Water plays a central role in various chemical and microbial spoilage reactions in
food. With a suitable packaging film that can reduce water vapor transmission rate, the
free water content of food can be gradually reduced, thereby extending the shelf-life [7].
The water vapor transmission rate and moisture content of PLA, EN2, C5, C5EN1, and
C5EN2 films are shown in Table 2. Owing to the hydrophilicity of chitosan [34], the water
vapor transmission rate and moisture content of chitosan-containing PLA composite films,
such as C5, C5EN1, and C5EN2 were significantly increased. Similarly, the hydrophilic
EDTA + nisin in the PLA matrix also increased the water vapor transmission rate and
moisture content of the film. Consequently, C5EN2 had the highest transmission rate
(0.85 ± 0.12 g mm/m2 day kPa) and moisture content (1.68% ± 0.78%).

Table 2. Water vapor transmission rate and moisture content of PLA, C5, EN2, C5EN1, and
C5EN2 films.

Film Water Vapor Transmission Rate
(g mm/m2 day kPa) Moisture Content (%)

PLA 0.52 ± 0.12 c 0.28 ± 0.23 d

EN2 0.59 ± 0.05 b,c 0.52 ± 0.43 c

C5 0.64 ± 0.14 b 1.27 ± 0.02 b

C5EN1 0.68 ± 0.09 b 1.01 ± 0.15 b

C5EN2 0.85 ± 0.12 a 1.68 ± 0.48 a

MD, Machine Direction; TD, Transverse Direction; PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2,
PLA + 20 mM EDTA+ 0.02% nisin; C5EN1, PLA + 0.5% chitosan + 20 mM EDTA + 0.01% nisin; C5EN2, PLA + 0.5%
chitosan + 20 mM EDTA + 0.02% nisin. Data are presented as mean ± SD (n = 3). Different superscript in the
same column indicates significant difference (p < 0.05).

In this study, chitosan and/or EDTA + nisin was directly mixed with the PLA matrix
to prepare a PLA composite film, which was used as a packaging material in contact
with food. To comply with food contact material legislation, the total mass of packaging
compounds released into food or food simulants was monitored. Three aqueous simulants
(distilled water, 10% ethanol, and 3% acetic acid) were used, and the harshest conditions
(40 ◦C for 10 days) were used, in accordance with the 97/48/CE [35], directive to represent
the worst-case food packaging material. As shown in Table 3, the total migration of the
five test films to the three simulants was very low. Even the highest migration mass, of
C5EN2 (3.04 ± 0.18 µg/dm2) in 3% acetic acid, was still well below the 10 µg/dm2 limit
set by the European Commission [36]. This confirmed the safety of all tested films.

Table 3. Overall migration mass of PLA and PLA composite films into various food simulants.

Simulants
Over Migration Mass (µg/dm2)

PLA C5 EN2 C5EN1 C5EN2

Water 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
10% Ethanol 0.00 ± 0.00 d 0.25 ± 0.08 c 0.37 ± 0.06 c 0.53 ± 0.13 b 0.79 ± 0.06 a

3% Acetic acid 0.50 ± 0.24 c 0.69 ± 0.13 c 0.92 ± 0.30 c 2.00 ± 0.35 b 3.04 ± 0.18 a

PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA + 20 mM EDTA + 0.02% nisin; C5EN1, PLA +
0.5% chitosan + 20 mM EDTA + 0.01% nisin; C5EN2, PLA + 0.5% chitosan + 20 mM EDTA + 0.02% nisin. Data
are presented as mean ± SD (n = 3). Different superscript in the same column indicates significant difference
(p < 0.05).

3.3. Antibacterial Activity of Films

The antibacterial activity of PLA and various PLA composite films against E. coli (A)
and S. aureus (B) is shown in Figure 3. There was no significant difference in the survival
of E. coli with the PLA and C5 films. Compared with PLA, the survival of E. coli in the
EN2, C5EN1, and C5EN2 were significantly reduced (Figure 3A). Similarly, there was no
significant difference in the survival of S. aureus with the PLA and C5 films, whereas the
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survival of S. aureus with the EN2, C5EN1, and C5EN2 films were significantly reduced by
1.2 log CFU/cm2 compared with that of PLA (Figure 3B).

Antibacterial materials can be added directly to food formulations or slowly releasing
from packaging materials. The application of the antibacterial film allows the antibacterial
agent to migrate to the surface of the film and confers a sustained antibacterial effect to the
food over a prolonged period [37]. In addition, antibacterial agents in film may be protected
from inactivation by food enzymes [38]. Salmaso et al. [39] observed that nisin-loaded PLA
materials prolonged nisin activity by up to 40 days whereas the free nisin samples displayed
antimicrobial activity for only 7 days. Compared with the molecular size of chitosan, the
molecular weight of nisin and EDTA is smaller; consequently, it can migrate more easily
in the PLA film. Therefore, the chitosan-PLA composite film containing nisin + EDTA in
this study, such as C5EN1 and C5EN2, will have higher antibacterial activity than the
chitosan-PLA composite film (C5). In short, C5EN1 and C5EN2 have similar mechanical
properties and antibacterial activity. Therefore, we chose PLA, C5, EN2, and C5EN1 for the
subsequent fish fillet preservation test.
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Figure 3. Antibacterial activity of chitosan, EDTA and nisin composite PLA films against Es-
cherichia coli BCRC11634 (A) and Staphylococcus aureus BCRC10451 (B). PLA, PLA film as control; C5,
PLA + 0.5% chitosan; EN2, PLA + 20 mM EDTA + 0.02% nisin; C5EN1, PLA + 0.5% chitosan + 20 mM
EDTA + 0.01% nisin; C5EN2, PLA + 0.5% chitosan + 20 mM EDTA + 0.02% nisin. Data are presented
as mean ± SD (n = 3). Different letters were significant difference (p < 0.05).

3.4. Application of the PLA Composite Film for Preservation of Fish Fillets

In our previous report, the chitosan-PLA composite film showed a better preservation
effect on fish fillets at 4 ◦C than at 25 ◦C [16]. In this study, we attempted to increase the
antibacterial activity of the chitosan-PLA film through the addition of the lower molecular
weight antibacterial agents of nisin and EDTA. After confirming the enhancement effect
of EDTA + nisin on chitosan in vitro (Figure 1) and in the chitosan-PLA composite mem-
brane (Figure 3), we used our previously reported method [16] to evaluate the potential
enhancement of the preservation of fish fillets. As shown in Figure 4A, after storage at
25 ◦C for 6 h, C5EN1 effectively inhibited the increase in mesophilic bacteria count in fish
fillets. After 24 h, the mesophilic bacteria count of the fish fillets covered by C5EN1 was
significantly lower than that of the fish fillets covered by the other three types of film, and
were significantly lower than the uncovered fish fillets (Figure 4A). A similar suppression
of the increase in the psychrotrophic bacteria count of fish fillets covered with C5EN1 was
also observed over the first 6 h of storage (Figure 4B). However, the psychrotrophic bac-
teria counts in the fish fillets covered with the different films were similar, and all were
significantly lower than the uncovered fish fillets during the storage periods of 24 and 48 h
(Figure 4B).
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Figure 4. Changes in mesophilic bacteria count (A), psychrotrophic bacteria count (B), total volatile basic nitrogen content
(TVBN) (C) and pH value (D) of fish fillet (Epinephelus fuscoguttatus x Epinephelus lanceolatus) covered with PLA, C5, EN2,
or C5EN1 film during 25 ◦C storage for 48 h. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA + 20 mM
EDTA + 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA + 0.01% nisin. Data are presented as mean ± SD (n = 3).
* means significantly different, compared to control (p < 0.05).

The TVBN is a quantitative parameter that reflects the degree of fish spoilage [40]. As
shown in Figure 4C, the TVBN value of the fillets was highest for PLA, followed by C5,
EN2, and C5EN1 in order (i.e., lowest in the C5EN1-covered fillets), and all values were
significantly lower than that for the uncovered fillets. The pH values for all groups were
gradually increased from 6.79 to 7.02–7.18. There was no difference in pH between the
test groups (Figure 4D). Hui et al. [30] reported that pH is not reliable as an indicator of
fish quality evaluation. Due to the high buffering capacity of the protein in fish, it can be
observed that the pH difference between treatments is much smaller. Similar results for
the pH changing profiles of tiger tooth croaker [41] and catfish fillet [42] during storage
were obtained.

The cell counts of different microbiomes in fish fillets covered with the test films and
stored at 25 ◦C for 48 h are shown in Figure 5. The numbers of coliforms (Figure 5A),
Aeromonas (Figure 5B), Pseudomonas (Figure 5C), and Vibrio (Figure 5D) in the C5EN1-
covered samples did not increase until after storage for 6 h. After storage for 24 h, the
counts for these different microbial groups in the C5EN1-covered fillets were significantly
lower than the C5-covered fillets, both of which were significantly lower than the control
group (uncovered fillets) (Figure 5).
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Figure 5. Changes in cell counts of coliforms (A), Aeromonas (B), Pseudomonas (C) and Vibrio (D) in 
fish fillet (Epinephelus fuscoguttatus x Epinephelus lanceolatus) covered with PLA, C5, EN2, or C5EN1 
film during storage at 25 °C for 48 h. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA 
+ 20 mM EDTA + 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA + 0.01%nisin. Data are 
presented as mean ± SD (n = 3). * means significantly different, compared to control (p < 0.05). 
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Figure 5. Changes in cell counts of coliforms (A), Aeromonas (B), Pseudomonas (C) and Vibrio (D)
in fish fillet (Epinephelus fuscoguttatus × Epinephelus lanceolatus) covered with PLA, C5, EN2, or
C5EN1 film during storage at 25 ◦C for 48 h. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2,
PLA + 20 mM EDTA + 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA + 0.01%nisin. Data
are presented as mean ± SD (n = 3). * means significantly different, compared to control (p < 0.05).

The changes in the mesophilic bacteria count, psychrotrophic bacteria count, TVBN,
and pH of fish fillet that were not covered with film (the control samples) or were covered
with PLA, C5, EN2, and C5EN1-PLA composite films during storage at 4 ◦C are shown
in Figure 6. Unlike the results from storage at 25 ◦C, the EN2 and C5EN1 films effectively
inhibited the increase in the mesophilic bacteria count in the fish fillets over the first 3 days
of storage at 4 ◦C. After storage for 7 days, the number of mesophilic bacteria in the
C5EN1-covered fillets was significantly lower than that of the C5-covered fillets, and both
were significantly lower than the control. After 9 days of storage, the mesophilic bacteria
count in the control group and the samples covered by PLA-, C5-, or EN2 exceeded the
6 log CFU/g (control limit), whereas the bacteria count in the fillets covered by C5EN1 was
still below this control limit (Figure 6A). Although no psychrotrophic bacteria growth
was observed in any group during the first three days of storage, in the samples covered
with various test films, the influence of the film on the number of psychrotrophic bacteria
and mesophilic bacteria was similar. After 9 days of storage, the psychrotrophic bacteria
count of the samples covered by C5EN1 was significantly lower than that of the samples
covered by C5, and both were significantly lower than the control samples (Figure 6B).
After 9 days of storage at 4 ◦C, the TVBN content of all the tested fish fillets was below
10 mg/100 g. The C5EN1 sample was the lowest (7 mg/100 g), which was far below
the control limit for raw fish fillet (25 mg/100 g) (Figure 6C). After 9 days of storage, no
significant differences were observed in the pH values of all groups (Figure 6D). Although
chitosan coating combined with glycerol monolaurate had been shown to inhibit microbial
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spoilage and delay the formation of alkaline compounds during the refrigerated storage of
grass carp fillets (GCFs) [43]. However, there are no significant differences among all the
treated samples (p > 0.05).
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Figure 6. Changes in mesophilic count (A), psychrotrophic count (B), TVBN content (C) and pH
value (D) of fish fillet (Epinephelus fuscoguttatus × Epinephelus lanceolatus) covered with PLA, C5, EN2,
or C5EN1 film during storage at 4 ◦C. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2,
PLA + 20 mM EDTA + 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA + 0.01% nisin. Data
are presented as mean ± SD (n = 3). * means significantly different, compared to control (p < 0.05).

The changes in cell counts of special microbial groups of Escherichia (A), Aeromonas (B),
Pseudomonas (C), and Vibrio (D) in fish fillets covered by the PLA, C5, EN2, or C5EN1 films
during storage at 4 ◦C are shown in Figure 7. Over the first 3 days, covering the fish fillets
with the C5, EN2, or C5EN1 films effectively inhibited the increase in the numbers of
coliforms (Figure 7A), Aeromonas (Figure 7B), and Pseudomonas (Figure 7C). After 9 days
of storage, the number of coliforms (Figure 7A), Aeromonas (Figure 7B), and Pseudomonas
(Figure 7C) in the samples covered by the C5EN1 film was significantly lower than that of
the samples covered by C5, and they were all significantly lower than those of the control
(uncovered) fillets or PLA-covered fillets. The Vibrio count in the fish fillets covered with
the C5, EN2, or C5EN1 films was not detectable during storage at 4 ◦C, whereas the the
Vibrio count in the control and PLA samples was approximately 2 log CFU/g after storage
at 4 ◦C for 9 days (Figure 7D).

Nisin is the most widely used bacteriocin. It is produced by L. lactis, consists of
34 amino acids, and has a molecular weight of 3500 Da. Although nisin has broad spec-
trum effects on various G(+) bacteria, such as Bacillus, Clostridium, Lactococcus, Listeria,
Mycobacterium, Staphylococcus, and Streptococcus, it cannot inhibit G(−) bacteria owing to
the presence of outer membrane [44]. Belfiore, et al. [45] demonstrated that the metal ion
chelating agent EDTA could bind to the Mg2+ and Ca2+ ions in cell wall (G(+) bacteria) or
in the outer membrane (G(−) bacteria), thereby destroying the stable cell structure, which
favors the pore formation on cell surface by nisin. Therefore, EDTA could increase the
inhibitory effect of nisin on both G(+) and G(−) bacteria [20,46]. Nisin has acid and thermal
stability, but it is sensitive to various proteases [28,47]. Therefore, nisin in the membrane
can protect its activity from degradation by food enzymes [38].
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Figure 7. Changes in cell counts of Escherichia (A), Aeromonas (B), Pseudomonas (C), Vibrio (D) in fish 
fillet (Epinephelus fuscoguttatus x Epinephelus lanceolatus) covered with PLA, C5, EN2, or C5EN1 film 
during storage at 4 °C. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA + 20 mM EDTA 
+ 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA+0.01% nisin. Data are presented as mean 
± SD (n = 3). * means significantly different, compared to control (p < 0.05). 
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membrane (G(−) bacteria), thereby destroying the stable cell structure, which favors the 
pore formation on cell surface by nisin. Therefore, EDTA could increase the inhibitory 
effect of nisin on both G(+) and G(−) bacteria [20,46]. Nisin has acid and thermal stability, 
but it is sensitive to various proteases [28,47]. Therefore, nisin in the membrane can protect 
its activity from degradation by food enzymes [38]. 

Through the results of this study, we have confirmed that the addition of nisin + 
EDTA can greatly enhance the antibacterial activity of chitosan in solution (Figure 1) or in 
a chitosan-PLA composite film (Figure 3). The addition of nisin + EDTA to the chitosan-
PLA matrix significantly enhanced the antibacterial activity of the composite membranes, 
such as C5EN1 and C5EN2. Therefore, compared with C5 (the chitosan-PLA) film, the 

Figure 7. Changes in cell counts of Escherichia (A), Aeromonas (B), Pseudomonas (C), Vibrio (D) in fish
fillet (Epinephelus fuscoguttatus × Epinephelus lanceolatus) covered with PLA, C5, EN2, or C5EN1 film
during storage at 4 ◦C. PLA, PLA film as control; C5, PLA + 0.5% chitosan; EN2, PLA + 20 mM
EDTA + 0.02% nisin; C5EN1, PLA + 0.5%chitosan + 20 mM EDTA+0.01% nisin. Data are presented
as mean ± SD (n = 3). * means significantly different, compared to control (p < 0.05).

Through the results of this study, we have confirmed that the addition of nisin + EDTA
can greatly enhance the antibacterial activity of chitosan in solution (Figure 1) or in a
chitosan-PLA composite film (Figure 3). The addition of nisin + EDTA to the chitosan-PLA
matrix significantly enhanced the antibacterial activity of the composite membranes, such
as C5EN1 and C5EN2. Therefore, compared with C5 (the chitosan-PLA) film, the C5EN1
(chitosan-PLA with nisin + EDTA) film had a better preservative efficacy on fish fillets
stored at 25 ◦C (Figures 4 and 5) or 4 ◦C (Figures 6 and 7). This was consistent with some
other reports. Bhatia and Bharti [48] proposed that nisin + EDTA had a partial synergistic
effect on the antibacterial activities of chitosan-starch packaging film. Divsalar, et al. [49]
fabricated a composite film containing chitosan, cellulose, and nisin for use as antimicrobial
packaging for ultra-filtered cheese. Pure chitosan-cellulose films do not exhibit antimi-
crobial activities against L. monocytogenes, whereas the film added with nisin resulted in
significantly increased inhibition of L. monocytogenes.

In summary, the addition of nisin and EDTA greatly improved the antibacterial
activity of chitosan in solution and in the chitosan-PLA film. The chitosan-PLA film with
nisin + EDTA (C5EN1 in this study) significantly improved the preservation of fish fillets
stored at 25 ◦C or 4 ◦C, and showed better performance than the chitosan-PLA film, which
only had a significant effect for storage at 4 ◦C.

4. Conclusions

The addition of nisin and EDTA to chitosan-PLA matrix significantly increased the
antibacterial activity of chitosan-PLA film and did not significantly affect the mechanical
strength of chitosan-PLA film. Covering fish fillets with the nisin+EDTA added chitosan-
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PLA composite film (C5EN1 in this study) effectively reduced the mesophile, coliform, and
spoilage bacteria counts, as well as the TVBN content during storage at 25 ◦C and 4 ◦C.
Therefore, adding EDTA and nisin to the chitosan-PLA film is a promising solution to meet
consumers’ demand for natural preservatives, and may be a breakthrough technology for
preserving fresh food and extending shelf life.
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