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Abstract 

Forecasts of the trajectory of an infectious agent can help guide public health decision making. A traditional approach 
to forecasting fits a computational model to structured data and generates a predictive distribution. However, human 
judgment has access to the same data as computational models plus experience, intuition, and subjective data. 
We propose a chimeric ensemble—a combination of computational and human judgment forecasts—as a novel 
approach to predicting the trajectory of an infectious agent. Each month from January, 2021 to June, 2021 we asked 
two generalist crowds, using the same criteria as the COVID-19 Forecast Hub, to submit a predictive distribution over 
incident cases and deaths at the US national level either two or three weeks into the future and combined these 
human judgment forecasts with forecasts from computational models submitted to the COVID-19 Forecasthub into 
a chimeric ensemble. We find a chimeric ensemble compared to an ensemble including only computational models 
improves predictions of incident cases and shows similar performance for predictions of incident deaths. A chimeric 
ensemble is a flexible, supportive public health tool and shows promising results for predictions of the spread of an 
infectious agent.
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Introduction
Forecasts of the transmission and burden of COVID-
19 provide public health officials advance warning that 
allows them to make informed decisions about how 
to modify their response to the pandemic [1–9]. The 
COVID-19 pandemic has caused economic burdens to 
the US, overwhelmed hospitals with ill patients, and fur-
ther highlighted social inequity and inequalities in access 
to healthcare [10–15].

In response, several organized modeling efforts were 
started to give public health officials as up to date infor-
mation as possible about the trajectory of COVID-19 in 
the US and in Europe [7, 16–18].

The US COVID-19 Forecast Hub is a unified effort to 
house probabilistic forecasts of incident cases, deaths, 
and hospitalizations due to COVID-19 in a single, cen-
tralized repository [16, 19]. The goal of this repository 
is to collect, combine, and evaluate forecasts of the 
trajectory of COVID-19 and communicate these fore-
casts to the public and to public health officials at the 
state and federal level [20]. This repository is not meant 
to include all possible forecasting targets related to 
COVID-19, and models not included in the COVID-
19 Forecast Hub have forecasted vaccine safety, effi-
cacy, and timing, conditional trajectories of COVID-19 
given public health action, time-varying R0 values, 
hospital bed requirements, among others [21–27]. The 
strength of the COVID-19 Forecast Hub is it’s ability 
to store, evaluate and communicate forecasting efforts 
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systematically and focus modeling efforts that process 
objective, reportable data.

In addition to the US COVID-19 Forecast Hub, there 
are COVID-19 hubs that collect computational fore-
casts for Europe and specifically for Germany and 
Poland [16–18]. The majority of models submitted to 
these hubs are computational: statistical or dynamical 
models trained on structured data.

Statistical models build a forecast by leveraging cor-
relations between the current trajectory of COVID-19 
and a set of covariates [28–37]. Traditional data sources 
that were used to train models include historical counts 
of incident cases, deaths, and hospital admissions. A 
subset of models also train on novel sources of data 
such as self-reported COVID symptom rates and the 
rate of visits to a doctor, data related to mobility or con-
tact among individuals, and social media data [38–41].

Dynamical models first pose a deterministic rela-
tionship for how an outbreak is expected to evolve and 
then typically assume that the observed data follows 
a random process to account for uncertainty between 
the (conjectured to be true) deterministic process and 
what is reported [42–44]. The most common dynami-
cal models of the trajectory of COVID-19 extend com-
partmental models, models that assume individuals are 
in one of a finite set of states through the pandemic, to 
incorporate time varying reproduction numbers, mul-
tiple different data sources, and more complicated spa-
tial structure [45–48]. Dynamical models often excel at 
long term forecasts and generating a predictive density 
over an epidemiological variable of interest in response 
to public health action or potential scenarios [47, 
49–53].

Human judgment forecasting relies on the beliefs and 
activities of a crowd to generate (point or probabilistic) 
predictions over the possibilities of some future event. 
Below we present examples of three types of human 
judgment forecasting: prediction markets, incorporating 
passive human judgment data into a model, and collect-
ing direct human judgment predictions.

Prediction markets have been developed to predict 
infectious diseases such as the 2009 swine flu, seasonal 
influenza, enterovirus, and dengue fever [54–56]. A pre-
diction market provides participants an initial amount 
of “money” to spend on future events and allows partici-
pants to place higher bids on events they think are more 
likely to occur. After bidding is complete, a model maps 
the “market price” for each event to a probability which 
is interpreted as the crowd’s belief that event will occur 
[57]. Prediction markets rely on a large and diverse par-
ticipant pool and the model that connects market price 
to predictive probability to make accurate predictions 
[58, 59].

Passive human activity and behavior from social media 
outlets like Twitter and Facebook, and internet search 
history have been used as inputs to a model and have 
shown improved accuracy compared to a model that 
uses only epidemiological data for infectious agents like 
influenza, dengue fever, ZIKA, and COVID-19 [60–65]. 
Most models (i) extract features from these social media 
outlets, (ii) transform the extracted social media data and 
include objective epidemiological data, and (iii) train a 
predictive model on this combination of objective, sub-
jective data. Models using social media data are usually 
statistical or machine learning models, exploiting cor-
relations between these data sources and the target of 
interest.

Direct predictions—either point predictions or prob-
ability densities—of the trajectory of an infectious agent 
have been elicited from individuals and aggregated for 
diseases such as influenza and COVID-19 [21, 66–68]. 
Point forecasts have been elicited from experts from plat-
forms like Epicast [67]. Epicast asks participants to pre-
dict the entire trajectory of influenza-like illness  (ILI), a 
marker for the severity of seasonal influenza, by viewing 
the current ILI time series and then drawing a proposed 
trajectory from the present week to the end of the influ-
enza season. The aggregate model assigns a probability to 
an ILI value belonging in the bounded interval [x, x + δ] 
as the proportion of individual trajectories that fall within 
those bounds. The Epicast model was routinely one of the 
top performing models among several computational 
models submitted to the CDC sponsored FluSight chal-
lenge [67].

Three projects to date have collected direct, probabil-
istic predictions from humans about the transmission 
and burden of the COVID-19 pandemic [66, 68, 69]. 
As early as February 2020, human judgment platforms 
have made predictions of the trajectory of COVID-19 by 
enrolling experts in the modeling of infectious disease 
and asking them questions related to reported and true 
transmission, hospitalizations, and deaths due to SARS-
CoV-2 [66]. Experts were also asked to make predic-
tions of transmission conditional on future public health 
actions. An equally weighted average of expert predic-
tions was used to combine individual predictions into 
consensus predictions and reports from this work were 
generated from February 2020 to May 2020. This work 
found that, although there was considerable uncertainty 
assigned to confirmed cases and deaths, a consensus of 
expert predictions was robust to poor individual predic-
tions, able to make accurate predictions of confirmed 
cases one week into the future, and gave an early warning 
signal of the severity of SARS-CoV-2. The second project 
compared predictions of rates of infection and number 
of deaths between those who were considered experts 
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and laypeople in the United Kingdom [69]. Participants 
were asked to assign a 12.5th and 87.5th percentile to 
four questions related to COVID-19—one question with 
ground truth and three with estimated values for the 
truth. Expert predictions were more accurate and cali-
brated than non-expert predictions, however expert pre-
dictions still underestimated the impact of COVID-19. A 
third project solicited from experts in statistics, forecast-
ing, and epidemiology direct predictions of one through 
four week ahead incident and cumulative cases and 
deaths for Germany and Poland (at the national level) 
and aggregated these predictions into a “crowd forecast” 
[68]. The crowd was able to produce more accurate, cali-
brated—as measured by the weighted interval score—
predictive forecasts of cases in both countries compared 
to computational models, however computational mod-
els made more accurate predictions of deaths.

Human judgment predictions have been applied to a 
numerous number of fields beyond infectious disease and 
interested readers can find comprehensive reviews on the 
status and applications of human judgement forecasting 
[21, 70, 71]. Select foundational works on aggregating 
human judgment may be found in the following citations 
[71–75].

We propose an ensemble algorithm designed to gener-
ate forecasts of the trajectory of an infectious agent by 
combining direct, probabilistic predictions from compu-
tational models and human judgement models. We call 
this ensemble a chimeric ensemble. There exists in the 
literature many recipes for combining computational 
models and models of human judgment, and we include 
here only a small number of past works on this topic that 
we feel will provide the reader an introduction to the dis-
cipline [76–85].

In this first hypothesis-generating work we: (i) explore 
the advantages and challenges when combining compu-
tational and human judgment models, (ii) compare the 
performance of a chimeric ensemble to a computational 
model only ensemble on six forecasts of incident cases 
and six forecasts of incident deaths due to COVID-19 
at the US national level between January 2021 and June 
2021, (iii) compare and contrast an algorithm that assigns 
different weights to computational models and human 
judgement based on past performance to an equally 
weighted combination of models, and (iv) finally shows 
how a chimeric ensemble can leverage human judgement 
data to improve predictive performance of an outbreak.

Methods
Forecasting logistics
Survey timeline
Six monthly surveys were sent to experts and trained 
forecasters from January to June 2021 on the Metaculus 

forecasting platform  https://​www.​metac​ulus.​com/ and 
five monthly surveys from February to June 2021 were 
sent to the Good Judgment Open (GJO) platform https://​
www.​gjopen.​com/. Participants had approximately ten 
days to add probabilistic predictions, and were encour-
aged to include a rationale alongside their quantitative 
forecasts to provide insight into how they made their 
predictions. Participants on both platforms were allowed 
to revise their original predictions as many times as they 
wished between when the survey was open and when it 
closed (often ten days later). During the course of all six 
surveys, participants could revisit their past predictions 
but could no longer revise predictions for those surveys 
that were closed. A list of survey open and close times, 
questions that were asked, and how the truth was deter-
mined for each question can be found in supplement A.

We note that the survey period from January to June, 
2021 was during a time when incident cases and deaths 
was declining which may limit how our analysis gener-
alizes to epidemic trajectories that increase or increase, 
peak, and then decrease.

Forecaster elicitation
All subscribers to the Metaculus platform and to the GJO 
platform were invited to make anonymous predictions of 
epidemiological targets related to COVID-19. Subscrib-
ers to Metaculus were sent email invitations and all ques-
tions related to this project were grouped together and 
posted on the Metaculus website as a tournament titled 
Consensus Forecasting to Improve Public Health: Map-
ping the Evolution of COVID-19 in the U.S. which can be 
found at https://​pande​mic.​metac​ulus.​com/​quest​ions/?​
search=​conte​st:​conse​nsus--​forec​asting. Subscribers to 
GJO were invited to participate via email and questions 
for this project were posted on the GJO website as “Fea-
tured Questions”. A convenience sample of 16 experts 
were invited to participate on the Metaculus platform. 
We defined an expert as one who has several years of 
experience in the study or modeling of infectious disease 
and have kept up to date on scientific literature, and pub-
lic health efforts related to COVID-19.

Both the Metaculus and GJO platforms offer training 
and prediction resources on their websites (https://​www.​
metac​ulus.​com/​help/​predi​ction-​resou​rces/ and https://​
goodj​udgme​nt.​com/​servi​ces/​online-​train​ing/) that 
allows a subscriber to familiarize themselves (i) with how 
to make calibrated and accurate predictions and (ii) how 
to use the tools and features of the platform.

Forecasters on Metaculus and Good Judgment receive, 
for each question they answer on the website, immediate 
feedback from a visualization of the present consensus 
forecast and longer term feedback by receiving an email 
when the ground truth for a question resolves and a score 

https://www.metaculus.com/
https://www.gjopen.com/
https://www.gjopen.com/
https://pandemic.metaculus.com/questions/?search=contest:consensus--forecasting
https://pandemic.metaculus.com/questions/?search=contest:consensus--forecasting
https://www.metaculus.com/help/prediction-resources/
https://www.metaculus.com/help/prediction-resources/
https://goodjudgment.com/services/online-training/
https://goodjudgment.com/services/online-training/
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that determines the accuracy of their prediction for a 
specific question.

How predictions were collected from humans
Forecasters submitted monthly predictions in a format 
that depended on if they used the Metaculus platform or 
the Good Judgment Open platform.

Participants on Metaculus generate predictions over 
a continuous bounded interval as a combination of up 
to five logistic distributions  (Additional file  1: Fig. S1). 
When a participant decides to form a prediction they are 
presented with a single logistic distribution and a slider 
bar underneath this distribution. The slider contains a 
square indicating the distribution median and two cir-
cles to the left and right of the square that help identify 
the distribution’s 25th and 75th quantiles. Participants 
can shift this distribution left, over smaller values, or 
right, over larger values, by moving the square and they 
can scale this distribution by expanding or contracting 
the circles to the left and right of the square. If a partici-
pant decides to include a second (third, fourth, and fifth) 
logistic distribution they can select “add component”. A 
second predictive density is overlaid over the first and 
the participant can control that second density by using 
a second slider that appears below the first. In addition to 
the two sliders, an additional two slider bars appear that 
allow the participant to assign weights to the first and 
second (third, fourth, fifth) predictive densities.

Participants on GJO assign probabilities to a set of 
intervals I1, I2, · · · , In that partition an open inter-
val  Additional file  1: Fig. S2). For each interval Ii , par-
ticipants are presented a slider bar controlling the 
probability assigned to Ii and that can be at minimum 
zero and maximum one. To the right of each slider bar is 
a text box that contains the current probability the par-
ticipant has assigned to Ii . The probabilities assigned to 
all intervals must sum to one, and as a participant selects 
probabilities to assign to each interval the total prob-
ability is computed and displayed. A participant can only 
submit a probability distribution when the total probabil-
ity equals one.

COVID‑19 Forecast Hub
The COVID-19 Forecast Hub collects prospective fore-
casts of the trajectory of COVID-19 in the United States 
from more than 80 computational models [16, 20, 86]. 
Forecasts of weekly incident cases are produced at the 
national, state, and county level, and forecasts of weekly 
incident and cumulative deaths and daily hospitalizations 
are produced at the national and state levels. Forecasts of 
cases are submitted to the COVID-19 Forecast Hub as a 
set of 7 quantiles and forecasts of deaths are submitted 
as a set of 23 quantiles. Models produce predictions of 

weekly cases and deaths one, two, three, and four weeks 
ahead. A GitHub repository  (https://​github.​com/​reich​
lab/​covid​19-​forec​ast-​hub)  is used to keep track of indi-
vidual submissions and an ensemble model.

Human judgement forecasting targets
Members of the Metaculus and GJO crowd were asked 
to predict the number of incident cases and incident 
deaths due to COVID-19 that would be observed at the 
US national level over the course of one epidemic week. 
These “core” questions were asked for all six surveys, 
were presented to humans in the same format for all 
six surveys, and were meant to match, as much as pos-
sible, to the corresponding forecast targets used by the 
COVID-19 Forecast Hub.

In addition to these core questions, we asked the 
Metaculus crowd only extra questions of public health 
relevance. Example questions include the cumulative 
number of first and full dose vaccinations by a given date, 
cumulative deaths by year end, the 7-day moving aver-
age of the percent of B.1.1.7 in the US, and the incident 
number of weekly hospitalizations. A list of all questions 
asked throughout the six surveys can be found in the 
supplement (Additional file 1).

Matching COVID‑19 Forecast Hub and human judgement 
forecasting targets
How questions were posed to human judgement crowds 
and how the truth was determined for questions related 
to incident cases and incident deaths at the US national 
level matched how the ground truth was determined by 
the COVID-19 Forecast Hub. When we described the 
resolution criteria for forecasts of incident cases and 
deaths, we matched, as close as possible, the ground truth 
document sent to modeling teams who submit computa-
tional forecasts to the COVID-19 Forecast Hub (techni-
cal readme for COVID-19 Forecast Hub: https://​github.​
com/​reich​lab/​covid​19-​forec​ast-​hub/​blob/​master/​data-​
proce​ssed/​README.​md).

The COVID-19 Forecast Hub allows computational fore-
casts to be submitted at any time, but only computational 
forecasts that are submitted on Mondays of each week are 
included in the weekly COVID-19 forecast hub ensem-
ble. Each survey sent to Metaculus and GJO crowds was 
open for submission before a COVID-19 Forecast Hub 
due date. In January surveys closed six days after the Mon-
day due date, in February and March surveys closed on a 
Monday deadline, in April and May surveys closed one day 
after a COVID-19 Forecast Hub due date, and in June two 
days after a due date. Individual predictions submitted to 
Metaculus and to GJO were cut at the same due date as 
the one asked of computational models submitted to the 
COVID-19 Forecast Hub  Fig. 1A. Counts of the number of 

https://github.com/reichlab/covid19-forecast-hub
https://github.com/reichlab/covid19-forecast-hub
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/README.md
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/README.md
https://github.com/reichlab/covid19-forecast-hub/blob/master/data-processed/README.md
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computational and human judgement models can be found 
in supplemental  III. The goal with cutting individual pre-
dictions at the same time as computational model was for 
a fair comparison, and a fair combination of computational 
and human judgement forecasts.

Forecast scoring
Individual, consensus, ensemble, and chimeric forecasts 
were scored using the weighted interval score (WIS) over K 
central quantiles [87].

where the interval score (ISαk ) is

and where F is a predictive cumulative distribution func-
tion, 11(x) is an indicator function, the value u represents 

WISα{0:K }
(F , y) =

1

K + 1/2
w0 × |y−m| +

K

k=1

{wk × ISαk (F , y)}

IS(α)(F , y) = (u− l)+
2

α
(l − y)11(y < l)+

2

α
(y− u)11(y > u)

the (1− α/2) quantile of F, l represents the α/2 quantile 
of F, and m represents the median or 0.50 quantile, and y 
is eventually reported truth [88]. Weight w0 equals 12 and 
wk =

αk
2 .

The weighted interval score (and interval score) are 
negatively sensed—larger values indicate worse predic-
tive performance compared to smaller values. The best 
possible weighted interval score is zero and the worst 
possible weighted interval score is positive infinity.

WIS is a discrete approximation of the continuous 
rank probability score

where the WIS score converges to the same value as 
the CRPS as the number of equally spaced intervals (K) 
increases given a fixed cumulative density F and true 
value y [87].

CRPS(F , y) =

∫ ∞

−∞

{F(x)− 1(x ≥ y)}2 dx

Fig. 1  A A timeline of the six surveys that collected human judgment predictions from January to June of 2021, showing when surveys were open 
and closed (blue dashed lines), when computational predictions submitted to the COVID-19 Forecast Hub were due (black dashed line), human 
judgment predictions excluded in formal analysis (dark blue), for what week each forecast was made (red dash line), and the reported number of 
weekly incident COVID-19 cases at the US national level (black solid line).  B Forecasts of weekly incident cases submitted to the COVID-19 Forecast 
Hub (orange) were formatted as seven quantiles, and we similarly formatted human judgment predictions from Metaculus (blue) and Good 
Judgment Open (red). C Forecasts of weekly incident deaths submitted to the COVID-19 Forecast Hub were formatted as twenty three quantiles 
and we formatted human judgment predictions the same. We collected more than 3000 original and revised human judgement predictions of 
incident cases and deaths of the spread of SARS-CoV-2 and burden of COVID-19 in the US
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The WIS is the score adopted by the Centers for Disease 
Control and Prevention  (CDC) to evaluate forecasts of 
incident cases, deaths, and hospitalizations submitted as a 
set of set of central quantiles.

The WIS and CRPS are examples of negatively sensed 
proper scoring rules [88, 89]. A negatively sensed proper 
scoring rule is a function S that takes as input a density F 
and true value y and returns a non-negative real number 
that is minimized when the input density F is distributed 
the same as the true data generating process Y that pro-
duced the true, realized value y [88, 89].

Consensus algorithm strategies
Data setup
Ensemble forecasting of infectious targets involves three 
related data sets: (i) data collected about epidemiological 
quantities of interest, D , (ii) predictive densities over these 
targets submitted by individual models (either computa-
tional or human), F, and (iii) a score given to each model 
forecast about a collected data point, S.

We suppose an epidemiological target, or quantity of 
interest (incident cases, deaths, etc.) at time t can be rep-
resented by a random variable Tt , and further assume true 
values D = [t1, t2, · · · , tN ] were generated by random 
variables T1,T2, · · · ,TN where Tt is specific to a single 
target, point in time, and location. We make no additional 
assumptions about whether targets are dependent or inde-
pendent and do not assume a specific distribution over 
potential target values.

A model produces a forecast for a target Tt in the form 
of a set of K quantiles. We can organize forecasts F over all 
targets from M models that submitted K quantiles into a 
matrix where a forecast from a single model corresponds to 
one row and one column corresponds to a quantile about 
one target. For example, a forecast matrix with 3 models, K 
quantiles, and T targets can be formed as follows

No assumptions about a predictive density are placed on 
models beyond requiring a list of K quantile values.

A matrix S can also be built

where the Sij entry of this matrix, sij , corresponds to the 
score for model i about target j

F =









Model Target 1 Target 2 · · · Target T

M1| q11,1 q11,2 · · · q11,K q12,1 q12,2 · · · q12,K · · · q1T ,1 q1T ,2 · · · q1T ,K

M2| q21,1 q21,2 · · · q21,K q22,1 q22,2 · · · q22,K · · · q2T ,1 q2T ,2 · · · q2T ,K

M3| q31,1 q31,2 · · · q31,K q32,1 q32,2 · · · q32,K · · · q3T ,1 q3T ,2 · · · q3T ,K









S =









s1,1 s1,2 · · · s1,N
s2,1 s2,2 · · · s2,N
...

. . .
...

sM,1 sM,2 · · · sM,N









Model combination and optimization
We chose to combine individual forecasts for our con-
sensus and chimeric ensembles using a quantile average. 
We define a quantile average as a convex combination of 
individual forecast quantiles

where f is a row vector of length KN and 
π = [π1,π2, · · · ,πM] is a vector of length M. The weight 
vector π is further constrained to have non-negative 
entries and to sum to one.

We will estimate weights for each model by finding a 
vector π such that the ensemble forecast f minimizes in-
sample mean WIS scores (W) over all targets with ground 
truth available. Given a sample of T realized true values 
D = [t1, t2, · · · , tT ]

where 11 is a vector of ones, W(f) is a vector of WIS scores 
for f, and W (f ) is the average WIS score for an ensemble 
density f over all targets. Because we choose weights π to 
assign to out of sample probabilistic predictions which 
minimize an objective function, this process can be 
framed as a specific case of stacked generalization [90].

The algorithm we chose to optimize the weights 
assigned to computational and human judgment models 
is a population based optimization strategy called dif-
ferential evolution. Differential evolution  (DE) is a sto-
chastic direct search method that is often robust to high 
dimensional parameter spaces and multi-modal objec-
tives [91].

Given a set of M computational and human judgment 
forecasts at survey time T, the goal of this DE algorithm 
is to find a M × 1 vector used to weight individual models 
that minimizes the mean WIS over all past survey time 
points for which we have the truth. To begin, DE chooses 
at random 4 M × 1 vectors and evaluates the mean WIS 
score for each of the four weight vectors. At the next 
iteration each of the potential vector solutions, in turn, 
is compared to a new candidate vector solution. The 
candidate vector solution to be compared is generated 

f = F ′π

(1)

min
f

W (f ) s.t.

π ′11 = 1

0 ≤ πm ≤ 1
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by “mutation” and “crossover”  (details can be found in 
[91]). Mutation and cross over have associated parameter 
values, and we chose a value of 0.8 for mutation and 0.9 
for cross over. If the candidate solution reports a smaller 
mean WIS score than the original vector, the original 
vector is replaced with this new solution. This iteration is 
complete after all original solutions have been compared 
to new candidate solutions. Then the next iteration starts. 
All solutions were normalized by dividing the M × 1 
potential vector solution by the sum of all the entries to 
guarantee the final, minimal solution assigned weights 
that sum to one. Differential evolution was implemented 
by using the python package mystic [92, 93].

Methods to account for missing forecasts
We took three approaches to impute missing forecasts: 
(i) a complete case approach, (ii) an available forecast 
approach we call “spotty memory”, and (iii) an approach 
we call “defer to the crowd”.

The complete case approach combines models that 
have made forecasts for all targets asked for the present 
survey and all past surveys. If a model missed a forecast, 
past or present, they are removed from the ensemble. 
The “spotty memory” approach combines models if they 
have made forecasts for all targets in the present sur-
vey. If a model missed a forecast in the past they are still 
included. If a model missed a forecast for the present sur-
vey for either cases or deaths than they are removed from 
the ensemble. The “defer to the crowd” approach com-
bines models that have made at least one forecast for any 
past or present survey. A model without a forecast for the 
present survey, but a model that has made a forecast on 
any previous survey is included and their present forecast 
is set to missing.

The complete case approach will have no missing 
forecasts, however we must impute missing forecasts 
for both the “spotty memory” and “defer to the crowd” 
approach. To impute a missing forecast, we considered 

each quantile a function of K quantiles submitted by M 
models about a single target. We only allow predictions 
of the same target to inform missing forecasts.

Define a matrix Q by selecting only those quantiles 
from F that correspond to a single target. The rows of Q 
correspond to models and the columns correspond to K 
quantiles where the smallest quantile is the first column, 
the second smallest quantile is the second column, up 
until quantile K. We denote Q−k as the matrix Q with col-
umn k removed and Qk as the kth column vector of Q.

Then we can impute Qk as a function g which takes as 
input Q−k and potentially some parameter set θ

We chose to test the following 5 approaches to impute 
missing forecasts: mean imputation, median imputation, 
bayesian ridge regression, decision tree regression and 
extremely randomized trees  (see Table 1 for a summary 
of these methods).

For the last three regression approaches, missing quantiles 
were imputed using a chained equation process. The chained 
equation process imputed missing values in four steps. Step 
one, replace missing quantiles in Qk with the mean over all 
present quantiles in column k. Step two, choose the column 
with the fewest missing values, set the values imputed with 
the mean back to missing. Step 3, impute missing values for 
column k using g(Q−k , θ) . Step 4, repeat the above process 
on the quantile with the second fewest number of missing 
values. The above steps are iterated until convergence. We 
used the “IterativeImputer” function from scikit-learn to per-
form this chained equation imputation [94].

Results
Survey logistics and participation
A total of six surveys were run from January 2021 to 
June 2021. Each survey asked on average 7.5 questions 
related to national level incident cases, incident deaths, 
incident hospitalizations, the cumulative number of 

Qk = g(Q−k , θ)

Table 1  Five procedures were chosen to impute missing forecasts

Mean and median imputation only use information about a single quantile to impute missing forecasts, while the three regression approaches use all the quantiles 
from all present forecasts to impute missing forecasts

Imputation technique G Summary

Mean I−1
∑

i qi,k Take the mean of all present quantiles where the set I is an index for present forecasts

Median minx {F(x)− 1/2} Take the median of all present quantiles where F is the empirical cdf over all I quantiles

Bayesian Ridge regression E(X) where X ∼ N (Q−kβ , σ
2)  β ∼ N (0, �−1I) σ 2 ∼ Ŵ(α, γ )   The matrix Q−k has two columns: a column of ones and a second column of quantiles 

from present forecasts.

Decision Tree regression – The missing quantile value is imputed by the mean of quantiles in the same partition.

Extremely Randomized Trees – Multiple decision trees (Di) are fit to random subsets of quantiles and the missing 
forecast is imputed as the average over Di.
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first dose and fully vaccinated individuals, and addi-
tional questions of immediate public health importance 
such as the proportion of sequences classified as B.1.17 
among all sequenced viruses. A list of all questions asked 
for each survey can be found in  Additional file  1:  sec-
tion A. At the end of each month a summary report was 
generated and posted online  (summary reports can be 
found at the following link=https://​github.​com/​compu​
tatio​nalUn​certa​intyL​ab/​aggSt​atMod​elsAn​dHuma​nJudg​
ment_​PUBL).

We collected from the Metaculus platform predictions 
from 68 unique members who made a total of 1062 origi-
nal and revised predictions across all twelve questions 
related to cases and deaths. From GJO we collected pre-
dictions from 323 unique members who made 3319 orig-
inal and revised predictions.

From the COVID-19 Forecast Hub we collected a total 
of 364 predictions of incident cases and incident deaths 
at the national level generated by 46 computational mod-
els between January and June of 2021. Computational 
models used a variety of techniques to build predictions 
of incident cases and deaths such as traditional statistical 
time series models like ARIMA and state space models, 
machine learning techniques such as deep artificial neu-
ral networks, and compartmental models. A list of the 
computational models included in this analysis can be 
found in supplement C.

The number of weeks between when a forecast was gen-
erated  (the forecast date) and the week when the truth 
would be determined  (the target end date) was 2 weeks 
for January, February, March, and April, and 3 weeks for 
May and June. There were more than one forecast date we 
could have chosen between the start and close date of each 
survey. We decided to chose the earliest forecast date that 
was the same as the COVID-19 forecast date (Fig. 1A.).

Analyses below focus on predictions of incident cases 
which were formatted as 7 quantiles: 0.025, 0.100, 0.250, 
0.500, 0.750, 0.900, 0.975  (Fig.  1B.) and incident deaths 
which were formatted as 23 quantiles: 0.01, 0.025, quan-
tiles from 0.05 to 0.95 in increments of 0.05, 0.975, and 
0.99 at the national level (Fig. 1C.). These 12 predictions 
were made by both human judgment and computational 
models at overlapping times.

Ensemble and individual performance
An ensemble of human judgment models made similar 
two and three week ahead predictions of weekly incident 
cases and deaths at the national level when compared to 
a computational ensemble  (Fig. 2A, C) despite individual 
human judgement predictions performing slightly worse 
on average (Fig. 2B, D).

The median prediction of incident cases was closer 
to the truth on more occasions for human judgement 

compared to computational models  (Fig.  2A). Human 
judgement and computational ensembles both overesti-
mated incident cases in late January and to a lesser extent 
they overestimated the number of cases in February and 
May. For all six surveys the median prediction for com-
putational models and human judgment were both larger 
or smaller than the truth. Though the human judgement 
ensemble median prediction is at times closer to the 
truth than the compuational ensemble, the mean WIS 
score for individual predictions across all but one sur-
vey is smaller for computational models than for human 
judgement (Fig. 2B).

The median prediction of incident deaths was at times 
closer to the truth for computational models and at other 
times closer for a human judgement ensemble (Fig. 2C). 
January to May median predictions for computational 
models assumed a shallower decline in the number of 
deaths when compared to human judgement predic-
tions for which the median prediction remained higher 
than the truth for predictions in January, February, and 
March, and then smaller than the truth in April. For one 
time point, the week beginning April 25th and ending 
May 1st, the median prediction from a computational 
ensemble was above the truth and the median predic-
tions for human judgement was below the truth. Again, 
the mean WIS score for individual computational models 
is smaller when compared to human judgement, though 
the median prediction is at times closer to the truth for 
computational models and at times closer for human 
judgement (Fig. 2D)

Pattern of missing forecasts for computational and human 
judgment models
The mean proportion of missing forecasts per model is 
higher for human judgment forecasts that submitted pre-
dictions at or before the forecast date set by the COVID-19 
Forecast Hub  (71%) versus computational models  (34%): 
t-stat = 8.92, pvalue <0.001 (Fig. 3). The mean proportion 
of missing human judgment forecasts per model made by 
the survey deadline was smaller  (66%) than was made by 
the COVID-19 Forecast Hub deadline (71%).

The proportion of surveys submitted by human judg-
ment models compared to computational models that 
included both a prediction for cases and deaths was 23% 
vs 49%, that included a prediction for either cases or 
(exclusive) deaths is 11% vs 33%, and that did not submit 
both cases and deaths was 65% vs 17%.

Comparison of a chimeric and computational ensemble 
and the impact of imputation
A chimeric ensemble improved predictions of inci-
dent cases compared to an computational model only 
ensemble. The mean WIS score assigned to predictions 

https://github.com/computationalUncertaintyLab/aggStatModelsAndHumanJudgment_PUBL
https://github.com/computationalUncertaintyLab/aggStatModelsAndHumanJudgment_PUBL
https://github.com/computationalUncertaintyLab/aggStatModelsAndHumanJudgment_PUBL
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of incident cases for a chimeric ensemble minus the 
WIS score for a computational model paired by survey 
was negative  (i.e. was improved) when using specific 
imputation techniques and strategies, and for the com-
plete case  (Fig.  4A). Imputing forecasts with a median 
imputation  (MI) and “spotty memory” strategy had the 
smallest mean paired WIS score (mean: − 8624). Imput-
ing missing predictions using a Bayesian ridge regres-
sion  (BR) also performed well. A complete case equally 
weighted (CCEW in Fig. 4) chimeric ensemble reported 
similar predictive performance compared to an equally 
weighted computational ensemble using a “defer to the 
crowd” approach (mean, paired WIS: − 2835) and when 
using a “spotty memory” strategy  (mean, paired WIS: 
-2,782). Weighting a combination of computational 
and human judgment models, coupled with an imputa-
tion strategy, may better predict incident cases at the US 
national level compared to a computational model only 
ensemble.

In contrast to incident cases, the paired mean WIS 
score for incident deaths was positive  (i.e. performed 
worse) or close to zero for the majority of spotty memory 
imputation strategies, the complete case dataset, and a 
complete case data set where equal weights are assigned 
to all models, and were not significantly improved for the 
“defer to the crowd” strategy (Fig. 4B). A chimeric ensem-
ble may not improve predictions of incident deaths com-
pared to an ensemble of computational models alone.

Performance based vs equal weighting
A performance based ensemble (PB) compared to assign-
ing to all models equal weights  (EW) decreases median 
WIS score for predictions of US national incident deaths 
when considering a computational ensemble, but not a 
chimeric or human judgement ensemble using a spotty 
memory imputation strategy. For all three ensembles 
WIS scores for predictions of cases show similar perfor-
mance weights compared to equal weights  (Fig. 5).

Fig. 2  A Forecasts of weekly incident cases at the national level by an ensemble of computational models (blue) and ensemble of human 
judgement (red). The dot represents the median forecast and the shaded bars represent the 25th and 75th, and the 2.5th and 97.5th prediction 
intervals.  B A mean and 95% confidence interval of the weighted interval score (WIS) for forecasts of incident cases made by individual 
computational and human judgement models. C Forecasts of weekly incident deaths and forecasts from computational models and human 
judgement. D Mean and 95% confidence intervals of the WIS for individual predictions of incident deaths. Though individual human judgement 
forecasts tend to perform worse than computational models, a human judgement ensemble performed similar to an ensemble of computational 
models for predictions of both cases and deaths over a 6 month period
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For predictions of incident cases with a spotty memory 
imputation strategy  (Fig.  5A), the median difference in 
WIS score across all imputation techniques is negative, 
and the 25th to 75th percentiles include zero, indicating 
that performance based weighting is similar for predic-
tions of incident cases. A defer to the crowd approach 
plus performance weighting improves predictions for 
a human judgement ensemble and for a computational 
ensemble, but weakens predictive performance for a chi-
meric ensemble (Fig. 6A).

For predictions of incident deaths, a performance 
based ensemble plus spotty memory approach improves 
WIS scores for a computational ensemble, shows similar 
performance for a chimeric ensemble, and weakens per-
formance of a human judgement ensemble  (Fig.  5B). A 
defer to the crowd approach plus performance weights 
improves human judgement and chimeric ensemble per-
formance and weakens the performance of a computa-
tional ensemble  (Fig.  6B) A complete case strategy plus 
performance weights shows similar WIS scores when 

using a human judgement and chimeric ensemble and 
improves predictions when using a computational and 
chimeric ensemble. The interquartile range for  WISPB–
WISEW is above or covers zero for most chimeric and 
human judgment ensembles and is below zero for a 
computational ensemble when using a complete case 
approach.

Chimeric ensemble’s ability to leverage human 
judgement
When stratified by survey, the WIS score for a chi-
meric ensemble’s prediction of incident cases is similar 
or improved vs a computational ensemble and, except 
for one survey, outperforms a human judgment ensem-
ble (Fig. 7A). For incident deaths the WIS score is simi-
lar between a chimeric ensemble and computational 
ensemble. This similar predictive performance between 
the chimeric and computational ensemble is despite the 
poorer performing human judgement predictions in 

A B C

Fig. 3  Submitted and missing forecasts made by A computational forecasts,  B human judgment forecasts submitted before the COVID-19 
deadline, and C human judgment forecasts submitted by the survey deadline. Forecasts that were submitted are shown in blue and forecasts not 
submitted (missing) are shown in yellow. Rows represent a single model and columns are broken into six pairs—the left column (with the tick 
mark) corresponds to submissions of incident cases and the second column in the pair corresponds to submissions of incident deaths—which 
represent the six surveys from January 2021 to June 2021. The high proportion of missing forecasts made by human judgement models presents a 
methodological challenge when building a chimeric ensemble
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surveys two and four that are included in the chimeric 
ensemble (Fig. 7B).

Discussion
We presented a first effort to combine direct probabil-
istic predictions of the spread and burden of an infec-
tious agent generated by both computational models and 
human judgement.

A chimeric ensemble—a combination of forecasts gen-
erated by computational models and human judgment 
models—is capable of producing predictions that outper-
form an ensemble of computational models only. Though 
a chimeric ensemble has the potential to outperform 
a computational ensemble this is not always the case. 
Throughout these six surveys, a chimeric ensemble was 
also able to leverage at times poorer performing human 
judgement predictions to (i) outperform a computational 
ensemble and (ii) guard against relying too heavily on 
human judgement. Chimeric ensemble modeling is still 
in early stages and the reader should consider this work 
hypothesis generating.

There are several challenges to overcome when adding 
human judgment predictions.

Human judgment data must first be collected before 
predictions can be combined to produce a forecast. Data 
collection requires a team to pose questions to an audi-
ence of forecasters. Questions should be written as clear 
and concise as possible, to minimize bias, and written 
so that the forecaster understands how the truth will be 
determined  (often called the resolution criteria). After 
questions are drafted they must be submitted to a pre-
diction platform. A prediction platform should allow 
forecasters to easily view the question and resolution cri-
teria, and allow the forecaster to submit their prediction 
with minimal effort. An immense amount of time and 
effort is needed to draft questions, and build and host a 
prediction platform. Organizing computational mod-
eling efforts too requires an immense amount of effort 
to build [16, 95, 96]. However, the time needed to host 
computational efforts and answer questions throughout 
the prediction period may be less burdensome than with 
a human judgement platform.

After data collection there continue to be challenges 
with human judgment predictions. In our opinion, the 
most pressing issue is missing forecasts. Compared to 
computational models, we found that human forecasters 

Fig. 4  Mean difference in WIS for incident cases (A) and deaths (B) at the US national level between a chimeric ensemble and a computational 
ensemble paired across six different surveys from Jan 2021 to June 2021 for two strategies to impute missing values (“spotty memory” and “defer to 
the crowd”) and, within each strategy, 5 different techniques to impute missing forecasts. A chimeric ensemble—a combination of computational 
and human judgment models—improves WIS scores when the target is cases but weakens or maintains similar WIS scores when the target is 
deaths. There are negligible differences in mean WIS between a “defer to the crowd” and “spotty memory” imputation strategy for prediction of cases 
and a defer to the crowd approach appears to improve predictions compared to a spotty memory approach for predictions of incident deaths. 
Bayesian Ridge Regression (BR) and Median imputation (MI) are promising strategies to impute missing forecasts for incident cases
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have a much higher rate of missing forecast submissions, 
and if one wishes to use only models that submitted all 
forecasts (a complete case approach) it may not be feasi-
ble to include human judgment. Instead, an imputation 
strategy should be used to account for missing human 
judgment forecasts. Here we proposed two potential 
strategies to account for missing forecasts: a “defer to the 
crowd” and “spotty memory” approach, and we found 
that both methods resulted in similar predictive perfor-
mance of incident cases and deaths for most imputation 
functions, though the “defer to the crowd” strategy may 
produce more accurate predictions of cases when using 
a bayesian regression function to impute missing val-
ues and a spotty memory approach produced the most 
accurate forecasts when using median imputation. Both 
methods were able to incorporate more human judg-
ment models in an ensemble than a complete case anal-
ysis. That said, the chimeric ensemble using a complete 
case approach with equal weights—the most natural 
approach— showed improved performance compared to 
a computational ensemble and is one of the best pieces 
of evidence that adding human judgement can improve 
forecasts of an infectious agent.

An additional challenge when incorporating human 
judgement into an ensemble is the time needed to collect 

these human judgement forecasts  (See Additional file 1: 
Fig.  S5). We’ve found in this work that the majority of 
forecasts are collected close to when the survey closes. 
This is likely because forecasters wait to collect as much 
information about a question as possible until submit-
ting a prediction. Though in this work the time to collect 
human judgment forecasts did not pose challenges to 
building an ensemble, this may pose a problem to future 
human judgement forecasting tasks that must produce 
forecasts rapidly.

The need to couple ensemble modeling with an impu-
tation strategy is not unique to chimeric forecasts, but 
we feel the proportion of missing forecasts is unique [97]. 
Because the imputation strategies often fill in missing 
forecasts for a specific target with similar quantile values, 
one could consider the imputation approach we took to 
be a type of regularization and in past literature regulari-
zation was found to improve computational and human 
judgement ensembles [98, 99].

Whether to use a performance based or equal weight-
ing for a chimeric ensemble is still unclear. A perfor-
mance based chimeric ensemble compared to an equally 
weighted ensemble showed improved performance for 
some surveys and weakened performance for other 
surveys using a spotty memory approach  (Additional 

Fig. 5  Median, 25th and 75th, and interquartile ranges for the difference between WIS scores when fitting a performance based ensemble (PB) 
and equally weighted ensemble (EW) paired by survey for three different ensembles: an ensemble that includes only computational models (blue), 
only human judgment (red), and a chimeric ensemble that includes both computational and human judgement models (gold). A “spotty memory” 
strategy was used along with five imputation techniques for training. Ensemble predictions are stratified by A  incident cases and B deaths. For 
the majority of imputation techniques used for predictions of incident cases, training a performance based ensemble shows similar results for 
a chimeric, computational, and human judgement ensemble. For deaths, performance based training improves predictions of a computational 
ensemble, shows little improvement to a chimeric ensemble, and weakens predictions of a human judgment ensemble
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file  1: Fig.  S3), and showed improved performance as 
additional data was collected for a defer to the crowd 
approach coupled with a chimeric ensemble when pre-
dicting cases  (Additional file  1: Fig. S4). A challenge 
when ensemble modeling, in addition to choosing an 
algorithm to assign different weights to models, is to 
know in advance whether or not differential weighting 
will improve predictive performance and whether or 
not human judgement will improve or weaken predic-
tive performance. Some factors that may help determine 
if differential weighting is useful or if human judgement 
should be included could be the difference in predicted 
median between a computational ensemble and human 
judgement ensemble, or potentially the difference in 
uncertainty in predictions. More work should focus on a 
three step approach to ensemble modeling: (i) predicting 
whether human judgement will improve predictive per-
formance, (ii) predicting if differential weighting would 
benefit a set of models, and (iii) then either choosing 
equal weights or differential weights.

A chimeric and human judgement ensemble’s ability to 
improve predictions of incident cases is consistent with 
past work studying predictions of exclusively human 

judgment [68]. Computational models often make more 
accurate predictions of deaths because they incorporate 
into their models reported cases, a signal for upcoming 
deaths. We are not sure whether or not humans consid-
ered the time series of incident cases when submitting 
predictions of deaths. Questions presented to forecast-
ers did not suggest that cases could be a strong signal to 
consider when building a forecast for deaths. The ques-
tion of how forecasters use time series information could 
lead to a controlled experiment to test human judgment’s 
ability to predict one time series by using a second, cor-
related time series. Previous literature suggests humans 
may make strong predictions that are short term, when 
there exists linear correlations between two concepts, 
and focus on information that most differed from their 
expectations [100–102]. But to the best of our knowledge 
no work has been done in the area of multi-cue probabil-
ity theory and judgemental forecasting of time series by 
providing a second correlated time series.

Because the effort a human can spend on prediction is 
finite, and because of the above results that show human 
judgement improves predictions of cases the most, we 
recommend asking crowds to predict cases or similar 

Fig. 6  Median, 25th and 75th, and interquartile ranges for the difference between WIS scores when fitting a performance based ensemble (PB) 
and equally weighted ensemble (EW) paired by survey for three different ensembles: an ensemble that includes only computational models (blue), 
only human judgment (red), and a chimeric ensemble that includes both computational and human judgement models (gold). A “defer to the 
crowd” strategy was used along with five imputation techniques for training. Ensemble predictions are stratified by A  incident cases and B deaths. 
For the majority of imputation techniques used for predictions of incident cases, training a performance based ensemble improves the WIS score 
of a human judgement ensemble and weakens the performance of a computational and chimeric ensemble. For deaths, performance based 
training improves predictions of a a chimeric and human judgement ensemble, but for some imputation techniques weakens predictions of a 
computational ensemble. An algorithm that assigns different weights based on past performance, coupled with a “defer to the crowd” imputation 
strategy, may improve predictive performance of a chimeric ensemble
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targets that are strongly correlated to others (such as inci-
dent deaths) which may (i) improve predictions of cases 
and (ii) improve predictions of deaths if these human 
judgement predictions were used as input to a computa-
tional forecasting model.

This work has several limitations. We only evaluated 
twelve targets in common with the COVID-19 Fore-
cast hub and so the results above should be consid-
ered exploratory rather than confirmatory. The limited 
number of targets brings up the broader limitation that 
human judgement cannot be applied to a large number 
of targets, locations, and forecast horizons like computa-
tional models. The ensemble model we chose to optimize 
average WIS was deterministic, made no attempt to reg-
ularize weights assigned to models, and is just one type 
of method to aggregate computational and human judge-
ment models. The number of human judgement partici-
pants, while excellent, was still a limitation at times. The 
empirical nature of this work, versus a controlled labora-
tory experiment, as well makes it difficult to draw strong 
conclusions about the performance of human judgement, 
computational models, and their combined performance.

In the future we plan to focus on methodology: (i) 
by building more advanced ensemble algorithms to 
combine computational and human judgement mod-
els, (ii) methods to determine for which targets human 

judgement is needed and which targets it is not needed, 
(iii) imputation procedures that take into account the 
uncertainty when filling in missing forecasts, and (iv) 
strategies that allow the ensemble builder to preferen-
tially assign higher weights to either humans or com-
putational models perhaps via a prior distribution; 
data collection: (i) by proposing strategies to reduce 
the number of missing human judgement forecasts; 
explore the limits of human judgement: (i) by testing to 
what degree humans can use one time series to predict 
another, (ii) how humans construct mental models and 
generate predictions, and (iii) what additional informa-
tion can human judgement provide that is supportive of 
public health efforts.

We envision a chimeric ensemble as a flexible aggre-
gation technique that can manage and combine predic-
tions throughout the evolution of an infectious agent 
and as a supportive tool for public health. A chimeric 
ensemble can begin to support primary and secondary 
preventive measures by relying on fast acting human 
judgment to forecast targets while data is collected and 
computational models are trained. Once computational 
models begin to forecast, a chimeric ensemble can inte-
grate these forecasts with no down time. As computa-
tional models become accurate for specific targets then 

Fig. 7  WIS scores for predictions of A incident cases and B incident deaths for a performance weighted computational ensemble (blue circle), 
human judgement ensemble (red square), and chimeric ensemble (yellow triangle) over all imputation techniques for a “defer to the crowd” 
imputation strategy. The mean WIS and 95% confidence interval over all imputation techniques is plotted. For incident cases, the predictive 
performance for a chimeric ensemble is similar to or improved when compared to a computational ensemble and despite poorer performance 
from human judgement alone. For incident deaths, though a computational ensemble has improved performance a chimeric ensemble 
outperforms a computational ensemble on two surveys and again is able to leverage human judgement to make improved forecasts
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human judgement can be used to predict noisier targets 
which can be included in this type of ensemble.
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