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Abstract

Borna disease virus (BDV) is a neurotropic, enveloped, non-segmented, negative-stranded RNA virus that infects a wide
variety of vertebrate species from birds to humans across a broad global geographic distribution. Animal symptomatology
range from asymptomatic infection to behavioral abnormalities to acute meningoencephalitis. Asymptomatic BDV infection
has been shown to be more frequent than conventionally estimated. However, the molecular mechanism(s) underyling
asymptomatic BDV infection remain largely unknown. Here, based on real-time quantitative PCR and Western blotting, a
total of 18 horse hippocampi were divided into BDV-infected (n = 8) and non-infected control (n = 10) groups. A gas
chromatography coupled with mass spectrometry (GC-MS) metabolomic approach, in conjunction with multivariate
statistical analysis, was used to characterize the hippocampal metabolic changes associated with asymptomatic BDV
infection. Multivariate statistical analysis showed a significant discrimination between the BDV-infected and control groups.
BDV-infected hippocampi were characterized by lower levels of D-myo-inositol-1-phosphate, glutamate, phosphoethano-
lamine, heptadecanoic acid, and linoleic acid in combination with a higher level of ammonia. These differential metabolites
are primarily involved in glutamate and lipid metabolism. These finding provide an improved understanding of
hippocampal changes associated with asymptomatic BDV infection.
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Introduction

Borna disease virus (BDV), the causative agent of Borna disease

(BD) that owes its name to the German town of Borna, Saxony

where a large number of horses died of a fatal neurologic disease

during an 1885 epidemic [1], is a neurotropic, non-cytolytic,

enveloped, non-segmented, negative-stranded RNA virus with a

genome size of approximately 8.9 kb and replicates and

transcribes itself in the nuclei of infected cells [2]. Although

classical BD has traditionally occurred in geographically restricted

areas in Germany, Austria, Switzerland, and Lichtenstein [3–5],

signs of BDV infection have been reported in horses and several

other mammalian species across a broader range of countries,

including Israel, Iran, Japan, Australia, the U.S., and several other

European countries [6], suggesting that BDV is more widespread

than conventionally believed. Human BDV infection is generally

accepted, but BDV’s association with psychiatric illness remains

controversial [7–13].

Clinical manifestations after BDV infection in both naturally-

and experimentally-infected animals is species-dependent and

virus strain-dependent yet lack uniformity even within a particular

host species. BDV infection in horses can result in peracute, acute,

or subacute BD with meningoencephalitis. Typical clinical signs of

equine BD include simultaneous or consecutive changes in

behavior, sensibility, mobility, and autonomic nervous system

function [4,14]. Equine BD histopathology has revealed a severe,

non-purulent meningoencephalomyelitis with massive perivascular

and parenchymal infiltration [15–17] caused by an antiviral CD8

T cell–mediated immune response that results in neurological

disease [18,19]. Since BDV-specific antibodies or RNAs have been

found in clinically healthy horses in many geographic areas

including China [20–24], asymptomatic infection appears to be

more frequent than conventionally estimated. However, the

underlying mechanism(s) of asymptomatic BDV infection in the

horse central nervous system (CNS) have not been adequately

characterized.

Metabonomics enables the simultaneous quantitative measure-

ment of numerous low molecular weight molecules within a

particular biological sample [25,26]. Metabolic profiling tech-

niques, such as gas chromatography-mass spectrometry (GC-MS),

liquid chromatography-mass spectrometry (LC-MS) [27], and

nuclear magnetic resonance (NMR) coupled with multivariate
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statistical modeling, have been used to analyze the changes in

whole metabolic patterns in response to non-physiological

challenges such as viral infection [28–30]. Our group previously

applied a 1H-NMR-based metabonomic approach to analyze

intracellular metabolic changes in BDV-infected cells [31], which

has improved our understanding of the pathogenic mechanisms of

BDV.

In this study, a GC-MS-based metabolomic approach was

employed to profile and characterize the significantly altered

metabolites in the hippocampi of asymptomatic BDV-infected

horses relative to non-infected healthy control horses. These

finding should provide an improved understanding of the

hippocampal changes associated with asymptomatic BDV infec-

tion.

Materials and Methods

Ethics Statement
This study was performed strictly according to the recommen-

dations of Guide for the Care and Use of Laboratory Animals [32]. The

sampled animals were restrained humanely by experienced animal

care technicians. Euthanasia was performed using a lethal dose of

sodium pentobarbital (150 mg/kg) administered intravenously

according to the methods described by AVMA Guidelines on

Euthanasia [33]. All hippocampal samples involved in this study

were collected during our previous BDV infection epidemiological

study of healthy domestic animals in western China [34]. This

study was approved by the Ethics Committee of Chongqing

Medical University (Permit number: 20070012).

Horse Subjects
A total of 18 horses were enrolled in this study and were grazed

at the same grassland in Xinjiang, China. The asymptomatic

BDV-infected group consisted of eight horses that were both BDV

RNA-positive and protein-positive in hippocampal tissues and

simultaneously BDV RNA/antibody-positive in blood. The

healthy control group consisted of ten horses that were free of

BDV RNA and proteins in both hippocampal tissues and blood. In

addition, all horses tested negative for common viral infections,

including equine herpes virus 1 (EHV-1), rabies virus, and West

Nile virus. The healthy control horses were matched by age and

sex to the asymptomatic BDV-infected horses. No horse showed

neurological abnormalities at the time of sampling.

Hippocampal Tissue Preparation
Hippocampal samples were obtained from horses post-eutha-

nasia. Briefly, the brain was removed by handsaw with a three-cut

technique to remove the calvaria. The skull was pried off using a

screwdriver. The horse’s nose was elevated, and the olfactory bulbs

and cranial nerves were severed while tipping the brain out of the

braincase. All removed brain tissue specimens were dissected on

dry ice. Isolated hippocampal samples were immediately im-

mersed in liquid nitrogen until they were transferred to a freezer

(280uC).

Reverse Transcription Real Time Quantitative PCR (RT-
qPCR) Detection of BDV p24 and p40 RNA

Total RNA was extracted from hippocampal samples with

Trizol reagents (Life Technologies, Gaithersburg, USA) according

to the manufacturer’s protocols. RNA were simultaneously

isolated from hippocampal tissues of persistently BDV strain V-

infected rats and healthy rats that served as positive and negative

controls, respectively. RNA samples were dissolved in 25 ml of

Dnase/RNase-free H2O and stored at 280uC until later use.

Isolated RNA was reverse transcribed into cDNA using the

Reverse Transcriptase System (Promega, Madison, USA). Real-

time quantitative PCR (RT-qPCR) was performed as previously

described [35] for detection. Briefly, PCR amplification was

performed in 25 ml volumes per well, and the PCR procedural

steps were followed as previously described. All reactions were run

in a Corbett Research Rotor-Gene 6000 thermo cycler (Corbett

Research, Mortlake, Australia). Cq values greater than 35 were

deemed negative. Finally, the positive RT-qPCR products were

cloned to the pGEM-T Easy vector system (Promega, Madison,

USA), and the cloned products were sequenced at a commercial

facility (Invitrogen Corp., Shanghai, China) by the Applied

Biosystems Prism dye-terminator dideoxy system. The sequencing

result was used as a query sequence in a BLAST search at

GenBank to confirm the specificity of RT-qPCR.

Western Blot Detection of BDV p24 and p40 Proteins
Total proteins were extracted from homogenated hippocampal

tissues using a total protein extraction kit (KeyGEN Biotech,

Nanjing, China). Hippocampal protein samples were diluted with

0.1 M phosphate-buffered solution (PBS) and 56 loading buffer to

a protein concentration of 1 mg/ml and then heated at 99uC for

5 min. Samples (20 mg/lane) were run on a 16% tricine gel as

previously described [36], and the proteins were transferred to

polyvinylidene fluoride (PVDF) membranes (Millipore). Then, the

membranes were blocked in a 5% (w/v) skimmed milk solution for

3 h at room temperature and incubated overnight at 4uC with

mouse monoclonal anti-p24 or anti-p40 (diluted 1:300, Genscript,

Nanjing, China). After three 30-min washings in 100 mM Tris–

HCl buffer (pH 7.5) with 150 mM NaCl and 0.05% Tween 20

(TTBS buffer), the membranes were incubated at 37uC for 60 min

with goat anti-mouse immunoglobulin G (IgG) (1:10000; KPL,

Gaithersburg, MD,USA) and washed three times for 30 min with

TTBS buffer. The membranes were developed with the enhanced

chemiluminescence (ECL) reagent Luminata Crescendo Western

HRP Substrate (Millipore Corporation, Billerica, USA), and the

chemiluminescence signal was then visualized with X-ray film.

Hippocampal tissues from persistently-infected BDV strain V rats

and healthy rats processed in the same manner were used as

positive and negative controls, respectively.

Tissue Sample Processing for GC/MS Analysis
The homogenized hippocampal samples were submerged in a

solution consisting of chloroform–methanol–water (2:5:2, v/v/v).

The whole mixture was sonicated for 60 min. Subsequently, the

samples were centrifuged at 18000 g for 15 min, then 50 ml of
13C6-leucine was added as an internal standard to 100 ml of

supernatant. The collected supernatant was evaporated under a

stream of nitrogen gas to complete dryness. A total of 30 ml

methoxamine hydrochloride pyridine (20 mg/ml) was added to

each dried residue sample, vortex-mixed for 30 s, and incubated at

37uC for 90 min with persistent shaking. Then, we added 30 ml of

bis-(trimethylsilyl)–trifluoroacetamide (BSTFA) with 1% trimethyl-

chlorosilane (TMCS) to each sample, and the mixture was left to

incubate for 1 h at 70uC.

GC/MS Analysis
The procedure of GC/MS analysis was performed as previously

described [37]. Briefly, the analysis was performed on an Agilent

7890A/5975C GC/MS system (Agilent, Santa Clara, CA, USA)

equipped with a HP-5MS fused silica capillary column

(30 m60.25 mm60.25 mm; Agilent J&W Scientific, Folsom, CA,

USA). The ultra-pure helium was used as carrier gas at a constant

flow rate of 1 ml/min through the column. The injector
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temperature was set at 280uC. The column temperature was

initially maintained at 80uC for 2 min and then increased from 80

to 320uC at 10uC/min with a hold time of 6 min. The column

effluent was introduced into the ion source of an Agilent 5973

mass selective detector (Agilent Technologies). The MS quadru-

pole temperature was set at 150uC and the ion source temperature

at 230uC. The electron energy was 70 eV, and mass data were

collected in full scan mode (m/z 50–600).

Statistical Analysis
All raw files from GC/MS were converted into NetCDF

(network Common Data Form format) via TagFinder [38]. This

processing enabled deconvolution, alignment, and data reduction

to produce a list of mass and retention time pairs with

corresponding intensities for all detected peaks from each data

file in the data set. Normalization was performed in Microsoft

Excel prior to multivariate analysis. The resulting three-dimen-

sional matrix, involving peak index (RT-m/z pair), sample names

(observations), and normalized peak area percent, were introduced

into the SIMCA-P 11.0 software package (Umetrics AB, Umeå,

Sweden) in order to utilize principal component analysis (PCA) to

display natural separation between the experimental and control

groups by visual inspection of score plots.

Then, pair-wise orthogonal projections to latent structures

discriminant analyses (OPLS-DA) [39] was performed to identify

metabolites contributing to the differences between the two

groups. Subsequently, a two-tailed Student’s t-test was performed

for validation at the univariate analysis level while the discrimi-

nating metabolites were obtained using a statistically significant

threshold of variable influence on projection (VIP) values. A p,

0.05 and VIP.1.0 were considered statistically significant. Finally,

the selected metabolites were identified by comparing the mass

fragments with those present in the commercial mass spectral

databases for qualitative analysis.

Results

Identification of BDV Infection in Hippocampal Tissue
For RT-qPCR assays, negative control samples in each assay

were consistently negative, and Cq values of positive control

samples were less than 25 cycles. These findings indicate that the

RT-qPCR system functioned normally. All sequencing results of

amplicon revealed a greater than 95% identity with GenBank’s

BDV p24 or p40 fragment. As a result, RT-qPCR and Western

blot assays indicated that the eight BDV-infected horses’

hippocampal tissues were both BDV p24 and p40 RNA-positive

and protein-positive. The ten horses in the healthy control group

all tested negative for BDV p24 and p40 RNA and protein (Fig. 1)

Metabolomic Analysis
Representative GC/MS total ion current (TIC) chromatograms

of hippocampal samples from the BDV and control group are

displayed in Fig. 2. Initially, we took advantage of 2D-PCA scores

plot (principal components 1 versus principal components 4) in

order to reflect the metabolic differences associated with BDV

infection. Although the clusters of the BDV and control groups

partially overlapped, distinct clustering of metabolic profiles was

still obtained (Fig. 3a). The OPLS-DA model, a supervised

projection method, verified a better class separation (Fig. 3b), and

Figure 1. BDV Detection in Horse Hippocampal Tissues by RT-qPCR and Western Blotting. Amplification plots of RT-qPCR for BDV p24
RNA from all samples are showed (A). The cycle number on the horizontal axis is plotted against the normalized fluorescence on the vertical axis.
Signals were regarded as positive if and only if the fluorescence intensity exceeded 10 times the standard deviation of the baseline fluorescence
(threshold). Cq values greater than 40 were regarded as negative. BDV p24 proteins in all hippocampal samples were detected by Western blotting
(B). Lanes 1–8, p24 protein positive tissue. PC: positive control sample, hippocampal tissue from persistently BDV-infected rat. NC: negative control
sample, hippocampal tissue from healthy rat.
doi:10.1371/journal.pone.0099752.g001
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R2Y and Q2 demonstrated high robustness (R2Y = 0.918,

Q2 = 0.732).

Significantly Differentiated Metabolites
In the current study, a GC/MS-based metabolomic approach

was utilized to independently distinguish the hippocampal metabolic

signatures of asymptomatic BDV-infected horses and healthy controls.

Based on the VIP threshold of the OPLS-DA model, a total of six

significant variables were ultimately obtained (Table 1). Subsequently,

a two-tailed Student’s t-test with a threshold p-value of 0.05 was

performed to determine significant differences on a metabolite-by-

metabolite basis. Compared to the control group, the BDV-infected

group was characterized by lower levels of D-myo-inositol-1-

phosphate, glutamate, phosphoethanolamine, heptadecanoic acid,

Figure 2. Representative GC-MS Total Ion Current Chromatograms from BDV-Infected and Control Horses.
doi:10.1371/journal.pone.0099752.g002

Figure 3. 2D-PCA Scores Map (PC1 versus PC4) (A) and 2D Cross-Validated OPLS-DA Score Map (B) of GC-MS Data. Each dot denotes
an individual sample (BDV-infected, n = 8; control, n = 10). The ellipse represents the Hotelling’s T2 with 95% confidence in score plots.
doi:10.1371/journal.pone.0099752.g003
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and linoleic acid in combination with higher level of ammonia,

revealing that BDV infection primarily alters glutamate and lipid

metabolism in the hippocampi of the asymptomatic BDV-infected

horses.

Discussion

D-myo-inositol-1-phosphate
D-myo-inositol-1-phosphate is an intermediate of the inositol

phosphate metabolism pathway. Under the action of phosphohy-

drolase, D-myo-inositol-1-phosphate is converted into myo-inosi-

tol. Alzheimer’s disease researchers have reported that increased

myo-inositol accompanies inflammation expressed as reactive

microglial activation and reactive astrocytosis, which is a well-

known pathological response typically observed in neurodegener-

ative diseases and also a hallmark of BDV-infected neonatal

rodent and equine brains [40–43,17]. Thus, the decreased levels of

D-myo-inositol-1-phosphate observed in the BDV-infected group

here may be associated with increased myo-inositol consumption

during glial activation.

Glutamate
Glutamate, a primary excitatory neurotransmitter in the

mammalian CNS, was found to be significantly decreased in the

BDV-infected group relative to the control group. BDV’s affinity

for glutamatergic neurons, including the granule neurons of the

dentate gyrus, has been previously reported [44,45]. The axons of

CA3 pyramidal neurons carry viral antigens to the stratum oriens

and stratum radiatum of the CA1 region, but the BDV does not

appear to spread from the axon terminals to the CA1 neurons. As

these neurons are heavily loaded with BDV proteins, severe

morphological and functional damage of the glutamatergic system

may ensure, resulting in decrease of intracerebral glutamate

synthesis. Based on the glutamate deficiency hypothesis, this

phenomenon may explain why persistent human BDV infection

may contribute to the development of depressive symptoms

[46,47].

Lipid Metabolites
Phosphoethanolamine – a precursor of phosphatidylethanol-

amine, a major component of the lipid membrane [48] – was

significantly decreased in the BDV-infected group relative to the

control group. We also observed significant decreases in two fatty

acids, heptadecanoic acid and linoleic acid, in the BDV-infected

group relative to the control group. Similarly, our previous GC-

MS metabolomic study of BDV Hu-H1 infection in the rat

hippocampus revealed significant perturbations in several lipid

metabolites including cholesterol, myristic acid, and 1-monopal-

mitoylglycerol [49].

Conclusions

This study reveals that changes in glutamate and lipid

metabolism occur in the hippocampus of asymptomatic BDV-

infected horses. These finding provide an improved understanding

of hippocampal changes occurring in asymptomatic BDV

infection. Further study on the mechanism(s) underlying transfor-

mation from asymptomatic BDV infection to symptomatic BDV

infection are necessary.
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