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The yes-associated protein (YAP) is associated with resistance to anti-GD2 
immunotherapy in neuroblastoma through downregulation of ST8SIA1
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ABSTRACT
Pediatric patients with high-risk neuroblastoma often relapse with chemotherapy-resistant, incurable 
disease. Relapsed neuroblastomas harbor chemo-resistant mesenchymal tumor cells and increased 
expression/activity of the transcriptional co-regulator, the Yes-Associated Protein (YAP). Patients with 
relapsed neuroblastoma are often treated with immunotherapy such as the anti-GD2 antibody, dinutux-
imab, in combination with chemotherapy. We have previously shown that YAP mediates both chemother-
apy and MEK inhibitor resistance in relapsed RAS mutated neuroblastoma and so posited that YAP might 
also be involved in anti-GD2 antibody resistance. We now show that YAP genetic inhibition significantly 
enhances sensitivity of mesenchymal neuroblastomas to dinutuximab and gamma delta (γδ) T cells both 
in vitro and in vivo. Mechanistically, YAP inhibition induces increased GD2 cell surface expression through 
upregulation of ST8SIA1, the gene encoding GD3 synthase and the rate-limiting enzyme in GD2 biosynth-
esis. The mechanism of ST8SIA1 suppression by YAP is independent of PRRX1 expression, a mesenchymal 
master transcription factor, suggesting YAP may be the downstream effector of mesenchymal GD2 
resistance. These results therefore identify YAP as a therapeutic target to augment GD2 immunotherapy 
responses in patients with neuroblastoma.
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Introduction

Clinical outcomes for children with the extracranial solid 
tumor neuroblastoma remain unsatisfactory. Following inten-
sive multimodal treatment, greater than half of patients with 
high-risk neuroblastoma relapse with a substantially reduced 
chance for cure.1–4 To improve outcomes for these patients 
requires a greater understanding and therapeutic targeting of 
pathways regulating disease recurrence. Relapsed neuroblas-
toma is characterized by an increased frequency of genomic 
alterations that activate the RAS-MAPK pathway, such as acti-
vating mutations in ALK, KRAS, NRAS, HRAS, PTPN11 and 
inactivating mutations of NF1 and PTPN14.5–7 In its active 
state, PTPN14 inhibits the nuclear localization of the Yes- 
associated protein (YAP) to prevent YAP-mediated 
transcription.6–10 Accordingly, the same genome-wide associa-
tion studies of relapsed neuroblastomas also identified 
a significant increase in YAP transcriptional activity, suggest-
ing a potential role for YAP in recurrent neuroblastoma.10

YAP is a transcriptional co-regulator that primarily binds to 
TEAD family transcription factors.11,12 YAP and TEAD tran-
scriptionally activate or repress downstream target genes, con-
tributing to cell proliferation, self-renewal and survival in many 
cancers, including neuroblastoma.13,14 YAP is highly expressed 
in neuroblastoma cells that demonstrate an undifferentiated 
mesenchymal phenotype, which is characteristically chemother-
apy resistant.10,15 Using paired high-risk neuroblastoma tumors 

derived from the same patient at diagnosis and at tumor recur-
rence following chemotherapy, we have previously shown 
increased YAP expression and transcriptional activity at 
relapse.16 Genetic inhibition of YAP delayed tumor growth 
and sensitized NRAS-mutated neuroblastoma xenografts to 
cytotoxic chemotherapy and MEK inhibitor treatment in vivo, 
yet failed to have the same effects in vitro, suggesting YAP plays 
a crucial role driving therapy resistance within the solid tumor 
microenvironment (TME).16,17 RNA sequencing of neuroblas-
tomas with and without YAP genetic knockdown revealed that 
YAP suppresses the BH3 pro-death gene, HRK, to attenuate 
chemotherapy and MEK inhibitor responses in vivo. 16 

Therefore, YAP upregulation following chemotherapy and 
relapse promotes therapy resistance in high-risk neuroblastoma 
through transcriptional repression of genes that play a role in 
the TME.

A common approach to treating patients with chemother-
apy resistant, relapsed neuroblastoma uses immunotherapies 
targeting neuroblastoma-specific tumor antigens. The glyco-
sphingolipid GD2 is expressed on the surface of 
neuroblastomas,18–21 and the introduction of humanized 
monoclonal antibodies targeting GD2 (i.e. dinutuximab) sig-
nificantly improved survival for newly diagnosed patients with 
high-risk disease.22,23 Anti-GD2 antibodies have also been 
combined with cytotoxic chemotherapy (“chemoimmunother-
apy”), which demonstrated impressive response rates for 
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relapsed neuroblastoma and resulted in GD2 chemoimmu-
notherapy becoming the most widely used salvage therapy for 
patients with refractory or relapsed disease.3,24 Unfortunately, 
not all patients respond to GD2-targeting immunotherapies 
and robust biomarkers of response are so far lacking, leaving 
many to suffer toxicities with no clinical antitumor 
benefit.23,25,26

Resistance to immunotherapy can be caused by lack of 
expression or downregulation of the cell surface target of 
interest.27 Indeed, GD2 can become downregulated following 
therapy and neuroblastoma recurrence.28–30 Recent studies 
also suggest that mesenchymal neuroblastomas resist GD2- 
targeted therapies via inhibition of GD2 synthesis, yet the 
role for YAP, a canonical mesenchymal marker, has not been 
explored.31 Given the increased expression and activity of YAP 
in relapsed neuroblastoma, and its role in mediating cytotoxic 
and targeted therapy resistance, we posited that YAP plays 
a role in GD2 immunotherapy response. Here, we demonstrate 
for the first time that YAP genetic inhibition sensitizes neuro-
blastomas to anti-GD2 antibody in vitro and in vivo. We 
further show that YAP transcriptionally suppresses ST8SIA1 
that encodes GD3 synthase, the rate-limiting enzyme for GD2 
synthesis, supporting that YAP inhibition can be leveraged 
therapeutically to enhance patient responses to immunother-
apeutic approaches targeting GD2.

Materials and methods

Cell culture

Human-derived neuroblastoma cell lines, CHLA-255, NLF, 
and SK-N-AS were cultured in RPMI supplemented with 
10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 
at 37°C, 5% CO2. Cell lines were routinely STR genotyped and 
resulting identities were confirmed to match the COG cell line 
database (cccells.org). Cells were also verified to be free of 
Mycoplasma contamination using the MycoAlert contamina-
tion kit (Lonza).

Generation of stably transduced cell lines

YAP was stably inhibited genetically through short hairpin 
RNA (shRNA) as previously described.16 ST8SIA1 was geneti-
cally inhibited stably in shYAP SK-N-AS cells as previously 
published using two independent constructs expressing 
ST8SIA1-targeting shRNAs (Genecopoeia LVRU6H-b 
(shGD3S–1) and LVRU6H-c (shGD3S–2)) and a hygromycin 
selection marker.16 The equivalent non-targeting control vec-
tors were transduced appropriately (Sigma SHC016 (control) 
and Genecopoeia CSI-neg-LVRU6H (LV control)). Cells with 
successful lentiviral transduction were selected with 2ug/mL 
puromycin (YAP constructs) and 150ug/mL hygromycin 
(ST8SIA1 constructs).

Western blot analysis

Neuroblastoma cells were harvested with versene 
(ThermoFisher Scientific) and lysed in CHAPS buffer (10  
mM HEPES, 150 mM NaCl, 2% CHAPS) supplemented with 

1% PMSF, 1% Protease Inhibitor Cocktail (Roche), and 4% 
sodium orthovanadate on ice for 2 hours. Debris was cleared 
from resulting lysates by centrifugation at 8000 rcf for 15 mins. 
Protein concentration was quantified by Bradford assay. 25 ug 
of total protein was loaded on 4–12% NuPage Bis-Tris gels 
(ThermoFisher Scientific) and electrophoresed at 200 V for 35  
mins. Separated proteins were transferred onto polyvinylidene 
difluoride (PVDF) membranes at 30 V for 90 minutes. Primary 
antibodies were diluted in 5% blocking buffer (Bio-Rad) in tris- 
buffered saline with Tween 20 (TBST) overnight and secondary 
anti-rabbit or anti-mouse HRP for 2 hours as appropriate. 
Membranes were imaged by chemiluminescence using Pierce 
ECL substrate (Thermofisher Scientific). See Supplemental 
Table S1 for antibody information.

Gamma delta (γδ) T cell expansion

γδ T cells were expanded under our 12-day protocol as pre-
viously described with αβ T cell depletion on day 6 of culture 
from healthy donor peripheral blood mononuclear cells.32 The 
expanded γδ T cell population was profiled by flow cytometry 
with antibodies: CD3-BV421, CD56-APC-R700, CD16-BV480, 
and αβ-TCR-PE or γδ-TCR-PE and used between days 12 and 
14 in the cytotoxicity assays described below.32 See 
Supplemental Table S2 for antibody information.

Cytotoxicity assays

Bioluminescence-based
GFP-luciferase-tagged neuroblastoma cell lines were plated at 
34,000/well in RPMI supplemented with 10% heat-inactivated 
FBS in 96-well plates and allowed to adhere overnight. The 
following day, γδ T cells were added at increasing effector-to- 
target (E:T) ratios (0:1, 1:1, and 5:1), with and without 5ug/mL 
dinutuximab. Co-cultures were incubated for 4 hours prior to 
the addition of luciferin (75ug/mL, PerkinElmer) for detection 
of viable target (NB) cells. Luminescent signal was detected 
using the Promega GloMax™-Multi Detection System. The 
calculation of death was performed using the following for-
mula: %specific lysis = 100 × (spontaneous death RLU – test 
RLU)/(spontaneous death RLU – maximal killing RLU) where 
RLU is an abbreviation for relative luminescence units.

Flow cytometry-based
Neuroblastoma cells were labeled with Violet Proliferation Dye 
450 (VPD450, BD Biosciences) and plated in RPMI supplemen-
ted with 10% heat-inactivated FBS at 200,000 cells/well in 24-well 
plates and allowed to adhere overnight. The following day, fresh 
γδ T cells from expansion day 12 or 14 were added to neuro-
blastoma cells for co-culture at increasing E:T ratios (γδ T cells-to 
-neuroblastoma cells) (0:1, 1:1 and 5:1) in the presence and 
absence of dinutuximab (5 ug/mL, United Therapeutics). Cells 
were incubated together for 4 hours and then harvested with 
accutase (GeminiBio). Cells were washed with PBS and resus-
pended in Annexin V binding buffer (Biolegend), stained with 
Annexin V-APC antibody (Biolegend) and analyzed immediately 
on the Aurora Cytek spectral flow cytometer. Prior to acquisi-
tion, BD Via-Probe cell viability solution (BD Biosciences) was 
added to the cell suspension. Unmixing of flow cytometry data 
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was performed at the cytometer with further data analysis and 
gating performed using FlowJo v10.8.1 (FlowJo, LLC) software. 
See Supplemental Figure S1 for gating strategy.

Detection of human IFNγ by enzyme-linked 
immunosorbent assay (ELISA)

Human IFNγ was detected using a commercial kit (Biolegend). 
Supernatants were harvested from cytotoxicity assays in which 
SK-N-AS control, shYAP1 and shYAP2 neuroblastoma cells 
were co-cultured with γδ T cells at E:T ratios of 0:1, 1:1, and 5:1 
for 4 hours. Briefly, supernatants were centrifuged to remove 
cell debris. IFNγ standards were generated by reconstituting 
recombinant IFNγ (Biolegend) in sterile deionized water. 
Concentrations of IFNγ in samples and standards were deter-
mined per manufacturer’s instructions. The BioTek Synergy 
Mx Microplate reader was used to read absorbance at 450 nm.

Flow cytometry

GD2 staining of neuroblastoma cell lines and xenografts
Cells were harvested with versene (Gibco), washed in phos-
phate-buffered saline (PBS), followed by resuspension in FACs 
buffer (PBS, 10% FBS, 0.1% sodium azide, 5 mM EDTA), and 
then stained with the live-dead stain, fixable viability stain 780 
(BD Biosciences), by incubation at room temperature protected 
from light. Cells were then washed and stained with Isotype- 
BV421/GD2-BV421 only for in vitro GD2 characterization and 
CD45-PerCP-Cy5.5, CD56-PE, CD81-FITC, Isotype-BV421 
/GD2-BV421, for in vivo GD2 characterization at room tem-
perature, washed twice in FACs buffer and resuspended for data 
acquisition on the Cytek Aurora 5-laser spectral flow cytometer. 
Negative controls were fluorescence minus one (FMO) controls 
for NBx28r and SKNAS CDX, unstained for NBx14r, NBx27, 
NBx 34r (due to lack of tissue availability). All neuroblastoma 
patient-derived xenografts (PDXs) were passage 2 or less. Data 
were analyzed using FlowJo version 10.9.0. See gating strategy 
(in vitro) in Supplemental Figure S2. See Supplemental Table S3 
for antibody information.

Determination of γδ T cell activation state (CD107a staining)
Neuroblastoma cells (SK-N-AS control, SK-N-AS shYAP1, and 
shYAP2) were co-cultured with γδ T cells at an E:T ratio of 1:1 
as described in the flow cytometry-based cytotoxicity assay 
protocol above. CD107a-PE Cy7 antibody was added to each 
well 30 minutes after the cytotoxic assay was started. GolgiStop 
(BD Biosciences) was added one hour later at a final concen-
tration of 0.7uL/mL. At the endpoint, γδ T cells were harvested 
and stained with CD3-BV421, CD56-APC-R700, and γδ TCR- 
PE, washed twice in FACs buffer and resuspended for data 
acquisition on the Cytek Aurora 5-laser spectral flow cyt-
ometer. See Supplemental Table S2 for antibody information. 
Data were analyzed using FlowJo version 10.8.1.

Extensive characterization of γδ T cells pre- and post- 
cytotoxicity assay
Neuroblastoma cells (SK-N-AS control, SK-N-AS shYAP1, and 
shYAP2) and γδ T cells were co-cultured at a 1:0 or 1:1 E:T ratio 

for 24 hours. The γδ T cells were harvested at 24 hours and 
profiled using our previously published extensive characterization 
panel.32 See Supplemental Table S4 for antibody information.

RT-qPCR

RNA was extracted from neuroblastoma cell lines using the 
TRIzol (Ambion)-chloroform (Millipore Sigma) extraction 
method and quantified using a NanoDrop 2000 (Thermo 
Scientific). cDNA was prepared from 2ug RNA by using the 
high-capacity cDNA reverse transcription kit (Applied 
Biosystems) per manufacturer’s protocol. For real-time 
qPCR, SYBR green reagent (Applied Biosystems) was used 
with the primers listed in Supplemental Table S5. Gene expres-
sion was normalized to GAPDH and HPRT using the CFX96 
Touch Real-Time PCR Detection System software (Bio-Rad).

Mouse xenograft in vivo studies

All animal studies were conducted in accordance with policies 
set forth by the Emory University Institutional Animal Care and 
Use Committee (IACUC). Our protocol was approved by the 
Emory IACUC (PROTO201700089). Euthanasia was performed 
by asphyxiation with CO2 and cervical dislocation. 4 × 106 SK- 
N-AS cells were combined at a 1:1 ratio (by volume) with 
Matrigel (Corning) and injected subcutaneously into the flank 
of 4–6-week-old female and male NOD-scid IL2Rgammanull 

(NSG) mice (The Jackson Laboratory). Tumor volume was 
calculated using the formula: length x width x height x p/6. 
When tumors grew to a volume of 100–200 mm3, mice were 
randomized to the treatment groups. Mice receiving the full 
regimen were treated on days 1, 4, 7 and 10 with 75 mg/kg 
cyclophosphamide (McKesson) intraperitoneally; on days 2, 8, 
and 14 with 100ug dinutuximab intravenously; on days 3, 6, 9, 
12, 15, and 18 with 2.5 × 106 γδ T cells (expanded from healthy 
human blood as described above) intratumorally. Mice were 
sacrificed when tumor burden reached IACUC-prescribed 
limit based on tumor volume (1500 mm3) and physical burden. 
Tumors were harvested and mechanically dissociated to extract 
RNA and protein to perform RT-qPCR, western blots, and flow 
cytometry as described above.

Statistical analyses

GraphPad Prism v9.4.1 was used to perform all statistical 
analyses. For pairwise comparisons throughout, unpaired 
t-tests with Welch’s correction were calculated. Kaplan–Meier 
survival plots were generated for in vivo investigations, and log 
rank test was performed to determine statistical significance.

Results

Neuroblastoma cell lines that express high YAP and low 
GD2 are resistant to dinutuximab and gamma delta (γδ) 
T cell treatment in vitro

Given the increased expression and activity of YAP in relapsed 
neuroblastoma and its influence on chemotherapy response, 
we sought to determine if YAP might also play a role in GD2 
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immunotherapy response. We first evaluated YAP and GD2 
expression in three neuroblastoma cell lines: SK-N-AS, NLF, 
and CHLA-255. YAP protein expression was high in SK-N-AS 
(MYCN non-amplified) and NLF (MYCN amplified) while 
undetectable in CHLA-255 (MYCN amplified) (Figure 1A). 
GD2 cell surface expression was conversely low in neuroblas-
toma cells with high YAP expression, SK-N-AS and NLF, and 
high in CHLA-255 that expresses no YAP (Figure 1B). Gamma 
delta (γδ) T cells are an innate effector immune cell subset that 
can regulate antibody-dependent cell-mediated cytotoxicity 
(ADCC). γδ T cells have been shown by our group to synergize 
with dinutuximab against neuroblastoma models both in vitro 
and in vivo.32,33 We therefore used ex vivo expanded γδ T cells 
as the immune effectors in combination with dinutuximab in 
these investigations. Agnostic of MYCN amplification state, 
GD2low/YAPhigh cell lines, SK-N-AS and NLF were resistant 
to γδ T cell-induced specific lysis with and without dinutux-
imab treatment (Figure 1C). Contrastingly, γδ T cells alone 
induced specific lysis of GD2high/YAPlow cell line CHLA-255, 
with γδ T cell-mediated specific lysis significantly enhanced by 
the addition of dinutuximab at both 1:1 and 5:1 effector: target 
(E:T) ratios (Figure 1C).

YAP inhibition sensitizes neuroblastomas to dinutuximab 
and γδ T cells in vitro and in vivo through upregulation of 
GD2 cell surface expression

Based on the inverse correlation of YAP and GD2 expression in 
neuroblastomas and differential dinutuximab responses, we 
evaluated the role for YAP in dinutuximab response through 
genetic knockdown. Using GD2low and dinutuximab-resistant 
SK-N-AS that harbors an activating NRAS Q61K mutation, we 
generated stable YAP knockdown models using short hairpin 
(sh)RNA. Western blot analysis confirmed genetic inhibition 
of YAP in SK-N-AS cells selected to stably express YAP- 
silencing shRNA (shYAP1, shYAP2) compared to a non- 

targeting, scrambled control (Figure 2A). Increased cytotoxi-
city of γδ T cells alone was observed in SK-N-AS shYAP1 and 
shYAP2 cells at an E:T ratio of 5:1 compared to SK-N-AS 
control (Figure 2B). The addition of dinutuximab in the cocul-
ture further augmented cytotoxicity of YAP-inhibited SK- 
N-AS by the γδ T cells (Figure 2B).

To determine the mechanism of increased sensitivity of 
YAP-inhibited SK-N-AS to γδ T cells both alone and in com-
bination with dinutuximab, we first evaluated for changes in 
the intrinsic killing mechanisms of γδ T cells imparted by YAP 
knockdown in the tumor.34 We performed flow cytometric 
analysis of CD107a, a cell surface marker of early degranulation 
used as a surrogate for γδ T cell activation.35–37 No detectable 
differences in early degranulation were observed between γδ 
T cells co-cultured with SK-N-AS control or SK-N-ASshYAP1 

cells ± dinutuximab (Supplemental Figure S3). 
Immunophenotyping of expanded γδ T cells before and after 
the 24-hour co-culture with SK-N-AS control, SK-N-AS 
shYAP1, or SK-N-AS shYAP2 cells showed no differences or 
changes in γδ T cell surface expression of common markers of 
activation (DNAM1, NKG2D), inhibition (KIR2DL1), or 
exhaustion (PD1, TIM3, CTLA4, TIGIT) (Supplemental 
Figure S4).32 γδ T lymphocytes harbor innate receptors that 
recognize and bind to stress ligands on the tumor cell surface, 
leading to T cell activation. In addition, they express FASL that 
binds to death receptors expressed on tumor cells, leading to 
perforin and granzyme release.38,39 To elucidate whether the 
mechanism of increased death of SK-N-AS shYAP cells is due 
to changes in tumor cell surface markers or death receptors, we 
assessed the expression of NKG2D receptor ligands (MICA, 
MICB, and ULBP1/2/5/6), as well as death receptors (TRAIL- 
R1/2, CD95/FAS) and DNAM1 ligands (CD112/Nectin-2 and 
CD155/PVR). These markers did not change with YAP knock-
down in SK-N-AS (Supplemental Figure S5).

In response to major histocompatibility complex (MHC)- 
independent activation by tumor cells, γδ T cells can produce 

Figure 1. YAP expression is high in neuroblastoma cell lines that are resistant to anti-GD2/γδ T cell immunotherapy. A, Western blot of YAP expression in the 
neuroblastoma cell lines, SK-N-AS, NLF, and CHLA-255. GAPDH is the loading control. B, Mean normalized fluorescence of GD2 cell surface expression by flow cytometry 
in SK-N-AS, NLF, and CHLA-255. C, Percentage specific lysis after 4-hour cytotoxicity assays between γδ T cells (effector) and the neuroblastoma cell lines (target), CHLA- 
255, NLF and SK-N-AS at effector: target (E:T) ratios of 0:1, 1:1, and 5:1 with or without the addition of the anti-GD2 monoclonal antibody, dinutuximab. For CHLA-255, 
1:1, *p = 0.0235, 5:1, **p = 0.0072. All other differences are not statistically significant.
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IFNγ.40 IFNγ can induce apoptosis in tumor cells.41 We there-
fore examined IFNγ production when γδ T cells were co- 
cultured with SK-N-AS shYAP or control cell lines with or 
without dinutuximab. In the absence of dinutuximab, we 
observed no difference in IFNγ concentrations when γδ 
T cells were co-cultured with SK-N-AS control, shYAP1 and 
shYAP2 cells (Supplemental Figure S6A). However, in the 
presence of dinutuximab, a statistically significant increase in 
IFNγ release was observed in the shYAP1 and shYAP2 co- 
cultures compared to control (Supplemental Figure S6B), 
corresponding with the increased cytotoxicity observed in the 
shYAP cells exposed to dinutuximab and γδ T cells at 1:1 and 
5:1 (Figure 2B).

The presence of antigen or changes in antigen density at the 
cell surface are essential determinants of response to therapies 
that depend on ADCC.42 Given that intrinsic killing properties 
of γδ T cells are not significantly changed by differences in 
tumor YAP expression, we focused our attention on GD2 sur-
face expression and its potential contribution to augment 
dinutuximab/γδ T cell combination effects. Wild-type SK- 
N-AS expresses low levels of GD2 on the cell surface 
(Figure 1B). The median fluorescent intensity (MFI) of the 
GD2-bright population (defined by GD2 MFI of >104 based 

on the brightest point in the isotype staining – dotted line, 
Figure 2C) significantly increased for SK-N-AS shYAP1 (mean 
MFI = 44136) and SK-N-AS shYAP2 (mean MFI = 39032) fol-
lowing YAP knockdown compared to the SK-N-AS control 
(mean MFI = 2115) (Figure 2C,D). Additionally, the percen-
tage of the GD2-bright cells was higher for SK-N-AS shYAP1 
(mean = 30.2%) and SK-N-AS shYAP2 (mean = 38.7%) com-
pared to the SK-NAS control (mean = 0.63%) (Figure 2E).

Given that YAP regulates chemotherapy response within 
the neuroblastoma TME and response to dinutuximab and γδ 
T cells in vitro, we ascertained whether YAP inhibition also 
influences tumor response to dinutuximab and γδ T cells in -
vivo.16 We have previously shown that dinutuximab and γδ 
T cells are more effective against tumors in vivo with the 
addition of a cytotoxic agent, in keeping with clinical trials 
showing dinutuximab in combination with chemotherapy is 
more effective in patients with relapsed neuroblastoma com-
pared to dinutuximab alone.3,16,43 We treated NSG mice har-
boring established SK-N-AS control or shYAP subcutaneous 
tumors with dinutuximab, γδ T cells, and cyclophosphamide 
and monitored tumors for growth (Treatment schema, 
Supplemental Figure S7A). SK-N-AS shYAP tumors had 
a significant prolongation of tumor regression and survival 

Figure 2. Genetic inhibition of YAP increases in vitro response to anti-GD2/γδ T cell immunotherapy with corresponding upregulation of GD2 surface expression in SK- 
N-AS. A, Western blot of YAP expression in control- (SK-N-AS control) and shYAP-transduced cells (SK-N-AS shYAP1 and shYAP2). GAPDH is the loading control. B, 
Percentage apoptosis of neuroblastoma target cells, SK-N-AS control, shYAP1 and shYAP2 when co-cultured for 4 hours with γδ T cells, with (+ DIN) and without 
dinutuximab, 1:1 ±DIN: control vs shYAP1, *p = 0.0292, control vs shYAP2, *p = 0.0327; 5:1: control vs shYAP1, *p = 0.0146, control vs shYAP2, *p = 0.0185; 5:1 ±DIN: 
control vs shYAP1, **p = 0.0054, control vs shYAP2, **p = 0.0022; Data represent mean ± standard error of n = 3 independent experiments with two technical replicates 
per condition, student’s T-test with Welch’s correction. All other comparisons were not significant. C, Representative graph showing mean normalized fluorescence of 
GD2 cell surface expression by flow cytometry in SK-N-AS control, shYAP1 and shYAP2 cell lines. Lighter colors indicate isotype controls and darker colors indicate GD2- 
BV421 staining. The dotted line demarcates the GD2-bright population which was quantified in D and E. D, Quantification of median fluorescence intensity (MFI) of the 
GD2-bright population in SK-N-AS control, shYAP1 and shYAP2 cell lines: SK-N-AS control vs shYAP1: *p = 0.0215, SK-N-AS control vs shYAP2: *p = 0.0193. Data 
represent mean ± standard error of n = 3 independent experiments. E, Percentage of GD2-bright cells by flow cytometry in SK-N-AS control, shYAP1 and shYAP2 cell 
lines: SK-N-AS control vs shYAP1: *p = 0.0233; SK-N-AS control vs shYAP2: *p = 0.0142. Data represent mean ± standard error of n = 3 independent experiments.
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following treatment with dinutuximab, γδ T cells, and cyclo-
phosphamide compared to mice with SK-N-AS control tumors 
(p = 0.0024) (Supplemental Figure S7B). We confirmed that 
YAP knockdown and lower expression of its canonical target, 
CYR61, were maintained in the SK-N-AS xenograft tumors at 
experimental endpoint after tumors recurred (Supplemental 
Figure S7C and S7D).

YAP inhibition increases cell surface expression of GD2 
through upregulation of ST8SIA1

YAP can transcriptionally repress genes involved in therapy 
response.13,16 Next-generation sequencing of paired diagnostic 
and relapsed high-risk neuroblastomas showed a significant 
decrease in expression of genes normally suppressed by YAP 
in relapsed tumors.10 We therefore examined genes in the 
biosynthetic pathway of GD2 (Figure 3A), using RNA sequen-
cing data from SK-N-AS control versus SK-N-AS shYAP1 
cells.16 ST8SIA1, which encodes for the critical rate-limiting 
enzyme GD3 synthase (GD3S) in the GD2 biosynthesis path-
way, was found to be significantly increased (logFC = 2.62; p =  
5.87 × 10−3) in SK-N-AS shYAP1 versus SK-N-AS control 
(Figure 3B). We validated this finding in both SK-N-AS 
shYAP1 and SK-N-AS shYAP2 models by RT-qPCR 
(Figure 3C). Reduced expression of YAP and its canonical 
target CYR61 were confirmed in shYAP1 and shYAP2 cells 
compared to control and corresponded to significantly 
increased expression of ST8SIA1 (>100-fold, p < 0.01) 
(Figure 3C). In the same models, other genes involved in the 
biosynthesis of GD2 (B4GALT5/6, ST3GAL5, ST8SIA5, 

B4GALNT1, B3GALT4, ST3GAL2) were either marginally 
changed or unchanged by RT-qPCR of shYAP1 and shYAP2 
compared to control (Supplemental Figure S8). Notably, the 
gene encoding GD2 synthase (GD2S), B4GALNT1, was 
unchanged. Others have shown that forced expression of the 
master transcription factor PRRX1 causes adrenergic-to- 
mesenchymal transition, leading to epigenetic suppression of 
genes like ST8SIA1 in neuroblastoma.44 Interestingly, the 
expression of PRRX1 significantly increased with YAP knock-
down for both SK-N-AS shYAP1 and shYAP2 compared to 
control, yet ST8SIA1 expression and GD2 surface expression 
were not impacted (Figure 3C).

To confirm that GD2 cell surface changes were the result of 
YAP suppression of ST8SIA1 (Supplemental Figure S9), we 
genetically inhibited ST8SIA1 by shRNA in the SK-N-AS 
shYAP2 model. YAP knockdown was maintained in the con-
trol- and shST8SIA1-lentiviral transduced SK-N-AS shYAP2 
cells (Figure 4A) and successful knockdown of ST8SIA1 was 
achieved using two separate shST8SIA1 constructs (Figure 4B 
and Supplemental Figure S9). Genetic inhibition of ST8SIA1 in 
the SK-N-AS shYAP2 cells led to significantly decreased med-
ian fluorescence intensity (MFI) of GD2 cell surface expression 
in SK-N-AS shYAP/shST8SIA1–1 and the SK-N-AS shYAP/ 
shST8SIA1–2 compared to SK-N-AS shYAP/LV control, com-
pletely reversing the phenotype of increased GD2 surface 
expression upon YAP knockdown (Figure 4C,D). The percen-
tage of GD2-positive cells in SK-N-AS shYAP shST8SIA1–1 
and SK-N-AS shYAP shST8SIA1–2 was also >50-fold less than 
SK-N-AS shYAP control (Figure 4E). Furthermore, knock-
down of ST8SIA1 in SK-N-AS shYAP cells reduced their 

Figure 3. YAP inhibition mediates significantly increased gene expression of the GD2 biosynthetic enzyme, ST8SIA1. A, Schematic of ganglioside biosynthesis showing 
genes encoding enzymes in the biosynthetic pathway of GD2. Blue denotes genes downregulated, Red denotes genes upregulated, and Gray denotes genes unchanged in 
RNA sequencing data: SK-N-AS shYAP1 vs control. B, Volcano plot of -log(p-value) vs log(fold change(fc)) for GD2 biosynthetic genes from RNA seq data of SK-N-AS shYAP1 
compared to control. Blue denotes genes downregulated, Red denotes genes upregulated, and Gray denotes genes not significantly changed. C, Normalized gene 
expression as determined by RT-qPCR of YAP: SK-N-AS control vs shYAP1: **p = 0.0011, SK-N-AS control vs shYAP2: **p = 0.0040, SK-N-AS shYAP1 vs shYAP2: *p = 0.0467; 
YAP canonical target, CYR61: SK-N-AS control vs shYAP1: **p = 0.0078, SK-N-AS control vs shYAP2: *p = 0.0102, SK-N-AS shYAP1 vs shYAP2: **p = 0.0010; ST8SIA1: SK-N-AS 
control vs shYAP1: **p = 0.0021; SK-N-AS control vs shYAP2: **p = 0.0043; SK-N-AS shYAP1 vs shYAP2: *p = 0.0349; and PRRX1: SK-N-AS control vs shYAP1: **p = 0.0081; SK- 
N-AS control vs shYAP2: **p = 0.0085; SK-N-AS shYAP1 vs shYAP2: **p = 0.0091. Data represent mean ± standard error of n = 3 independent experiments.
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in vitro sensitivity to γδ T cells in the presence of dinutuximab 
compared to SK-N-AS shYAP/LV control, with no difference 
in neuroblastoma killing by γδ T cells in the absence of GD2- 
targeting antibody (Figure 4F).

YAP and ST8SIA1 or GD2 cell surface expression are 
inversely correlated in neuroblastoma primary tumors 
and patient derived xenografts

We queried publicly available gene expression datasets of pri-
mary neuroblastoma tumors to validate the clinical relevance 
of the regulation of GD2 by YAP through ST8SIA1. An inverse 
relationship between YAP and ST8SIA1 expression was 
demonstrated in two separate datasets with non-overlapping 
cohorts: in the TARGET (Asgharzadeh) dataset, which consists 
of 249 samples assessed by exon array, R=-0.233, p = 2.05×10−4 

(Figure 5A), and for the Kocak dataset, which consists of 648 
samples assessed by microarray, R=-0.132, p = 7.89×10−4 

(Figure 5B). Additionally, Kaplan–Meier survival analysis 
shows that the overall survival probability is reduced when 
ST8SIA1 expression is lower (Figure 5C,D).

Since GD2 is a glycosphingolipid and thus, not genetically 
encoded, we sought to determine whether YAP protein 

expression and GD2 surface expression also inversely corre-
lated by performing immunoblot and flow cytometry, respec-
tively, in low-passage neuroblastoma patient-derived 
xenografts (PDXs). YAP expression was lower in NBx14r and 
NBx28r than in NBx27 and NBx34r (Figure 5E) and corre-
spondingly, the MFI of GD2 on the surface of NBx14r and 
NBx28r was higher than that of NBx27 and NBx34r 
(Figure 5F).

Discussion

High-risk neuroblastomas that recur are notoriously che-
motherapy resistant, leading to improvements in survival 
focused on immunotherapy approaches. Indeed, anti-GD2 
antibodies in combination with chemotherapy have resulted 
in unprecedented response rates in relapsed patients.22 

However, challenges to GD2 targeted immunotherapies 
remain, such as an incomplete understanding of biomarkers 
predicting response and mechanisms of resistance.30,31 High- 
risk neuroblastoma tumors that relapse are enriched with 
mesenchymal cells as well as RAS pathway mutations,6,15,44 

leading many to investigate how these properties may influence 
immunotherapy resistance to identify new therapeutic targets.

Figure 4. GD3S (ST8SIA1) inhibition reverses the phenotypes of increased GD2 surface expression and sensitivity to anti-GD2/γδ T cell immunotherapy when YAP is 
inhibited in SK-N-AS cells. A, Western blot of YAP expression in SK-N-AS shYAP lentiviral (LV) control, shYAP shST8SIA1–1, shYAP shST8SIA1–2, and SK-N-AS WT cells. 
GAPDH is the loading control. B, Normalized gene expression as determined by RT-Qpcr of ST8SIA1 in dually transduced cells, SK-N-AS shYAP LV Control, SK-N-AS shYAP 
shST8SIA1–1, and SK-N-AS shYAP shST8SIA–2, SK-N-AS shYAP LV Control vs shYAP shST8SIA1–1: *p = 0.0155, SK-N-AS shYAP LV Control vs shYAP shST8SIA–2: *p =  
0.0157, SK-N-AS shYAP shST8SIA1–1 vs shYAP shST8SIA–2: *p = 0.0460. C, Representative graph showing mean normalized fluorescence of GD2 cell surface expression 
by flow cytometry in SK-N-AS shYAP LV Control, SK-N-AS shYAP shST8SIA1–1, and SK-N-AS shYAP shST8SIA–2 cell lines. Lighter colors indicate isotype controls and 
darker colors indicate GD2-BV421 staining. D, Quantification of median fluorescence intensity (MFI) of GD2 in SK-N-AS shYAP LV Control, SK-N-AS shYAP shST8SIA1–1, 
and SK-N-AS shYAP shST8SIA–2 cell lines: SK-N-AS shYAP LV Control vs shYAP shST8SIA1–1: *p = 0.0242, SK-N-AS shYAP LV Control vs shYAP shST8SIA–2: *p = 0.0221. 
Data represent mean ± standard error of n = 3 independent experiments. E, Percentage of GD2 cell surface expression by flow cytometry in SK-N-AS shYAP LV Control, 
SK-N-AS shYAP shST8SIA1–1, SK-N-AS shYAP shST8SIA–2 cell lines; SK-N-AS shYAP LV Control vs shYAP LV shST8SIA1–1: **p = 0.0088, SK-N-AS shYAP LV Control vs 
shYAP shST8SIA–2: **p = 0.0095. Data represent mean ± standard error of n = 3 independent experiments. F, Percentage apoptosis of neuroblastoma target cells, SK- 
N-AS shYAP LV control, shYAP shST8SIA1–1, and shYAP shST8SIA1–2 when co-cultured for 4 hours with γδ T cells, with (+ DIN) and without dinutuximab, 0:1 +DIN: 
shYAP LV control vs shYAP shST8SIA1–2, **p = 0.0056; 1:1: shYAP LV control without DIN vs +DIN: **p = 0.0076; 1:1 +DIN: shYAP LV control vs shYAP shST8SIA1–1, *p =  
0.0392; shYAP LV control vs shYAP shST8SIA1–2, **p = 0.0018; Data represent mean ± standard error of n = 3 independent experiments with two technical replicates per 
condition, student’s T-test with Welch’s correction. All other comparisons were not significant.
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YAP is a canonical mesenchymal gene that encodes for the 
YAP protein known to cooperate with hyperactivated RAS.17 

Indeed, the YAP expressing neuroblastoma cell lines we inves-
tigated are RAS pathway mutated (SK-N-AS, NLF) and harbor 
the mesenchymal gene signature.15,44,45 Our findings demon-
strate that YAP genetic inhibition paradoxically leads to upre-
gulated expression of PRRX1, one of the master transcription 
factors that can drive the mesenchymal phenotype.44 

Previously, it was shown that genetic induction of mesenchy-
mal neuroblastoma via overexpression of PRRX1 induces simi-
lar transcriptional downregulation of ST8SIA1 with resultant 
decrease of cell surface GD2.31 PRRX1 converts an adrenergic 
neuroblastoma cell to a mesenchymal neuroblastoma cell 
(adrenergic to mesenchymal transition) with a decrease in 
adrenergic-differentiating genes like PHOX2B, GATA2, DLK1 
and an increase in mesenchymal stem-like genes such as SOX2, 
SNAI2 and YAP.44 We now show that YAP is sufficient to 
suppress the same glycosphingolipid biosynthesis pathway 
regardless of PRRX1 gene expression, suggesting that GD2 
synthesis may be more directly regulated by YAP downstream 
of its mesenchymal driving forces such as PRRX1 and other 
master mesenchymal transcription factors. Further studies are 
warranted to validate the full functional roles for YAP within 
the mesenchymal neuroblastoma phenotype.

Despite the success of dinutuximab and other anti-GD2 
antibodies, not all patients respond, and preclinical data sug-
gest that it may be due to lack of GD2 on the tumor cell surface. 
Detection of GD2 in primary neuroblastoma tissue is limited 
since GD2 is a glycosphingolipid and its presence is therefore 
not detectable by immunohistochemistry on paraffin 
embedded tissue.18 Recent studies have therefore sought to 

determine and provide surrogate biomarkers for GD2 expres-
sion in an effort to triage patients most likely to benefit from 
GD2 immunotherapy.31 We found that neuroblastomas with 
low GD2 have high YAP gene and protein expression. 
Furthermore, this inverse correlation has functional relevance 
as we found YAP to suppress GD2 expression through inhibi-
tion of the GD3 synthase (GD3S) gene ST8SIA1. By suppres-
sing GD3S and thus GD2 synthesis, YAP indeed serves as 
a mediator and potential biomarker of anti-GD2 antibody 
resistance. We validated this relationship through genetic 
knockdown studies, showing YAP inhibition restores response 
to dinutuximab and γδ T cells both in vitro and in vivo in SK- 
N-AS, with the therapy resistant phenotype restored upon 
knockdown of ST8SIA1 in the shYAP neuroblastoma cells. 
We also observed a trend toward inverse correlation between 
YAP protein and GD2 cell surface expression in low-passage 
high risk and relapsed neuroblastoma PDXs. In addition, pri-
mary neuroblastomas also show an inverse correlation between 
genetic expression of YAP and ST8SIA1. Based on these data, 
we hypothesize that high YAP expression in neuroblastoma 
tumors may predict GD2 immunotherapy resistance clinically. 
Immunohistochemical staining of YAP in primary neuroblas-
toma tumors is feasible and should be characterized prospec-
tively to statistically correlate results to patient outcomes 
following anti-GD2 therapy to concretely define it as 
a biomarker of response.

A slight increase in neuroblastoma cell death was observed 
following coculture with γδ T cells alone in the SK-N-AS 
shYAP cells compared to control. We therefore investigated 
whether increased tumor cell death was due to paracrine effects 
of the YAP-inhibited neuroblastoma cells toward the γδ T cells. 

Figure 5. YAP and ST8SIA1 expression are negatively correlated in primary neuroblastoma tumors, low ST8SIA1 expression is associated with worse overall survival, and 
YAP and GD2 are inversely correlated in neuroblastoma patient derived xenografts (PDXs). YAP and ST8SIA1 expression in primary neuroblastoma tumors from patients: 
A, TARGET (Asghardazeh) dataset: n = 249, R=-0.233, p = 2.05 × 10−4. B, Kocak dataset: n = 648, R=-0.132, p = 7.89 × 10−4. Low ST8SIA1 expression in primary 
neuroblastoma tumors from patients is associated with worse overall survival: C, TARGET (Asghardazeh) dataset: n = 247, Bonferroni-corrected (bonf.) p = 0.052. D, 
Kocak dataset: n = 476, R=-0.137, bonf. p = 3.9 × 10−4. https://r2.amc.nl. E, Western blot of YAP expression in neuroblastoma patient-derived xenografts (PDXs), NBx-14r, 
NBx-27, NBx-28r, NBx-34r and the SK-N-AS neuroblastoma cell line-derived xenograft (CDX). GAPDH is the loading control. F, Mean normalized fluorescence of GD2 cell 
surface expression by flow cytometry in neuroblastoma patient-derived xenografts (PDXs), NBx-14r, NBx-27, NBx-28r, NBx-34r and the SK-N-AS neuroblastoma cell line- 
derived xenograft (CDX). Grey denotes isotype control staining and white denotes GD2-BV421 staining.
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When SK-N-AS shYAP cells were co-cultured with γδ T cells, 
we observed no difference in γδ T cell markers of exhaustion, 
activation, or apoptosis, nor an increase in tumor-resident 
stress antigens or FAS/TRAIL receptors. Although there was 
an increase in IFNγ release when SK-N-AS shYAP cells were 
treated with the combination of γδ T cells and dinutuximab 
in vitro, this increased IFNγ release was not consistently 
observed in the absence of dinutuximab. This suggests that 
differences in cytotoxicity were not due to γδ T cell-intrinsic 
changes, increased release of cytotoxic mediators, or by 
increased T cell recognition ligands on the tumor cells. 
Further investigation is warranted to understand the effect of 
tumor YAP inhibition on increased γδ T cell activity.

YAP expression by immune cells themselves has been 
shown to promote immunosuppression and suppress immu-
notherapy activity.46 For example, high YAP expression in 
regulatory T cells of hepatocellular carcinoma patients was 
found to facilitate an immunosuppressive TME and was an 
indicator of poor prognosis.47 Since YAP has a well-established 
role in the TME, its role in the neuroblastoma TME-enacted 
resistance to anti-GD2 immunotherapy warrants evaluation by 
using immunocompetent murine models. Indeed, future stu-
dies in additional neuroblastoma models will identify whether 
therapeutic targeting of YAP may be beneficial by not only 
making tumor cells more vulnerable through upregulation of 
the immunotherapy target, but also through inhibition of 
immune cells contributing to the immune hostile TME.

Others have identified that mesenchymal master transcrip-
tion factors epigenetically suppress ST8SIA1 expression, lead-
ing clinical efforts to evaluate the combination of GD2 
antibodies with epigenetic modifying agents such as EZH2 
inhibitors (tazemetostat) and the histone deacetylase inhibitor, 
vorinostat.31,48 These epigenetic approaches to increase GD2 
surface expression may be viable for improving targeting neu-
roblastoma cell populations that express low cell surface GD2 
(GD2low) in patients. Additionally, dual targeting of other 
highly expressed neuroblastoma antigens like B7-H3 or GPC2 
with GD2 could ensure tumor specificity and optimize the 
targeting of GD2low neuroblastoma.49–51 Here, we demonstrate 
increased ST8SIA1 expression in SK-N-AS neuroblastoma cells 
upon genetic inhibition of YAP and an inverse relationship 
between YAP and ST8SIA1 in primary neuroblastoma tumors. 
Further mechanistic studies in additional models will be 
important to confirm our findings and determine the mechan-
ism by which YAP suppresses ST8SIA1. If confirmed, these 
studies would lay the foundation for combining targeted YAP 
inhibition as a way to sensitize GD2low neuroblastomas to anti- 
GD2 immunotherapy similar to epigenetic-modifying agents.

Overall, our findings have defined a role for YAP in down-
regulation of ST8SIA1, rendering GD2 antibody resistance in 
neuroblastoma cell lines. These results support that both 
ST8SIA1 (GD3 synthase) and YAP warrant further investiga-
tion with regard to their expression in relation to clinical 
response to anti-GD2 antibody immunotherapy. Currently, 
inhibitors of the YAP/TEAD interaction have shown preclini-
cal promise in adult cancers with one agent in clinical applica-
tion for adult mesothelioma,52 and investigations are ongoing 
to evaluate such inhibitors in neuroblastoma. Incorporation of 
YAP pharmacological inhibition with novel GD2 targeting 

immunotherapies, such as GD2-CAR T cells or novel anti- 
GD2 antibody combinations (γδ T cells with dinutuximab 
and chemotherapy; NCT05400603) may also improve out-
comes for patients with high-risk and relapsed 
neuroblastoma.53
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