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Type 2 diabetes is a preventable disease. The pandemic that has reached 415 million people
worldwide continues to grow, threatens to undermine the global economy, and is taking place
on the back of a profound transformation in the modern lifestyle, which involves pervasive det-
rimental changes in diet and physical activity patterns [1]. Though the disease undoubtedly has
a genetic component, the recent explosion in its prevalence is clearly driven by a dynamic envi-
ronment operating on a relatively static genetic background. But this equation also has a favor-
able counterpoint: as a deleterious environment has driven diabetes prevalence into double
percentage digits in just a few decades, so reverting this trend by the widespread introduction
of healthy behavioral patterns should, in turn, reduce disease burden.

Lifestyle intervention strategies have been proven to be effective in randomized controlled
trials. The Chinese Da Qing study [2], the Finnish Diabetes Prevention Study [3], the U.S. Dia-
betes Prevention Program (DPP) [4], and the Indian Diabetes Prevention Program [5] have
consistently shown that intensive lifestyle modification is able to prevent, in some, and delay,
in others, the incidence of diabetes, despite the high-risk metabolic profile of participants. Life-
style interventions are successful across the full range of genetic risk (Fig 1) [6,7] and can also
reduce cardiovascular mortality if given enough time [8]. However, many of the prediabetic
participants continue to march toward diabetes, albeit at a slower pace [9], and deploying a
successful lifestyle intervention across the entire population at risk (~52 million in North
America) is a massive undertaking.

While logistically challenging, preventive strategies do make financial sense. An economic
analysis of participants who adhered to the intervention in the DPP found that, over a ten-year
period, intensive, individualized lifestyle modification costs less than US$5,000 per quality-
adjusted life year [10], well within the expense range of other health interventions routinely
embraced by high-income societies. Furthermore, preventive treatment with metformin was
found to be cost-saving for those participants who adhered to treatment in the DPP study.
However, these interventions would still involve a substantial investment, and governments are
not necessarily in a position to provide such interventions to all their citizens at risk.

Identifying Individuals at Increased Risk
In a world of finite resources, it may make sense to prioritize those most likely to benefit.
Therefore, great interest has emerged in whether nascent technologies can be used to identify
individuals at risk of future type 2 diabetes and/or predisposed to experience a favorable
response to preventive strategies.
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Among all available approaches for more detailed personalized profiling, genetics has led
the way for a number of reasons. First, it is now possible to query millions of variants across
the human genome in a single experiment with great precision, and to interpret the ensuing
results with appropriate statistical rigor. Second, germline genetic variation is fixed in the indi-
vidual, and thus need be measured only once in the person’s lifetime. Third, DNA is easily
accessible and does not require the biopsy of type 2 diabetes-relevant tissues such as beta cells,
which would be required for many other biological modalities.

Advances in genotyping and sequencing, as well as plummeting costs and widespread inter-
national collaboration, have led to the identification of over 100 genetic variants associated
with type 2 diabetes or related glycemic traits [12]. Most of them are common and shared
across populations and, with a few exceptions [13,14], tend to have a small effect on risk (odds
ratios 1.1–1.4; Fig 2). Combined genetic risk scores composed by the weighted sum of the risk
alleles at these loci have been tested for their ability to predict diabetes in individuals, above
and beyond the information provided by clinical risk factors. However, the available clinical
prediction tools are good, they include variables (such as fasting glucose or body mass index)
that already capture genetic information, and the combined effect of these genetic variants is
modest; thus, genetic data do not seem to add much to clinical information in type 2 diabetes
prediction [15–17]. The addition of metabolomic biomarkers only offers marginal additional
benefit [18], and the incremental genetic information only reclassifies a few individuals into
more accurate categories of risk. Genotype scores perform slightly better in younger subgroups
or those with longer follow-up [15,16].

These results suggest that, if genetic prediction tools composed of common genetic variants
were to be deployed to enhance prediction and target subgroups for preventive interventions,
they would need to be combined with other risk factors that capture the global risk profile of
an individual. As an illustration of this concept, Claudia Langenberg and colleagues used the
EPIC-Interact study to demonstrate that, for individualized risk prediction, absolute risk, and
not relative risk, is what matters. They stratified participants by their genetic risk scores as well

Fig 1. An intensive lifestyle intervention, as deployed in the U.S. Diabetes Prevention Program (DPP),
is effective regardless of genetic risk score for type 2 diabetes.DPP participants were stratified by
quartile of genetic risk constructed by adding risk alleles from 34 known type 2 diabetes-associated variants.
Whereas the genetic risk score predicts diabetes incidence in the placebo arm (red bars), it does not do so in
the lifestyle arm (blue bars); indeed, the intervention is highly effective in reducing diabetes incidence even in
the quartile with the highest genetic risk. Data are from reference [11].

doi:10.1371/journal.pmed.1002102.g001
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as by their obesity categories (obese, overweight or normal weight). Obese individuals in the
lowest genetic risk quartile were much more likely to develop type 2 diabetes than normal-
weight individuals in the highest genetic risk quartile (Fig 3), indicating that if only genetics
had been used for risk stratification, the individuals at highest risk would not have been tar-
geted for intervention [19].

While this is the case for common genetic variants of small effects shared across popula-
tions, a potential exception might be made for variants that have much stronger effects. Explo-
rations that target a lower frequency of the allelic spectrum have led to the identification of

Fig 2. Chronological listing of type 2 diabetes-associated loci, plotted by year of definitive publication and approximate effect size. By
convention, the gene name closest to the index variant is given. Loci identified via the candidate gene approach are shown in red, loci identified via
agnostic genome-wide association approaches are shown in light blue, loci identified by exome sequencing are shown in green, and loci identified by
whole-genome sequencing are shown in purple. TCF7L2 (shown in dark blue) was discovered by dense fine-mapping under a linkage signal. TBC1D4
(shown in orange) was identified by exome sequencing of a locus found to be associated with a diabetes-related quantitative trait. Gene names that have
asterisks (*) indicate initial discovery by association with quantitative glycemic traits; gene names that have a number sign (#) denote identification in
population isolates.

doi:10.1371/journal.pmed.1002102.g002
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loci that are unique to a specific ethnic group but are present at appreciable frequencies in
members of that group. For example, whole-exome sequencing in ~4,000 people of Latino
descent uncovered the coding variant E508K in the gene HNF1A, which increases diabetes
risk 5-fold [13]. Though complete loss of function in the transcription factor HNF1A causes
maturity-onset diabetes of the young (MODY) type 3, the E508K allele only attenuates tran-
scriptional activity by ~60%; as a result, the clinical phenotype of carriers is indistinguishable
from regular type 2 diabetes, which would not alert the clinician to a mutation in a known
MODY gene. The variant is carried by ~2% of Mexicans with type 2 diabetes, and, given its
large impact on diabetes risk, it may help to target carriers (identified because they have a pre-
diabetic phenotype, or they are relatives of a diabetic carrier, or they have undergone popula-
tion screening when available) for more intensive surveillance and prevention. Similarly, Ida
Moltke and colleagues identified a nonsense variant in the gene TBC1D4, which is present in
17% of Inuit individuals in Greenland [14]. Loss of function of its protein product interferes

Fig 3. The relative effect of genetic risk and obesity on future type 2 diabetes. Participants in the EPIC-Interact study were stratified by quartiles of
genetic risk and by strata of adiposity (obese in black, overweight in blue, and normal weight in red). The likelihood of developing type 2 diabetes is
shown, indicating that obese participants with the lowest genetic burden have a higher absolute risk of diabetes than lean or overweight participants with
the highest genetic burden. Image is from Langenberg et al. [19].

doi:10.1371/journal.pmed.1002102.g003
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with insulin-stimulated Akt-induced glucose uptake in skeletal muscle, and the variant is thus
associated with higher two-hour glucose and a 10-fold increased risk of type 2 diabetes. The
clinician caring for this population would do well in using oral glucose tolerance tests to diag-
nose prediabetes and diabetes, to ensure that the 2-hour glucose measure is considered in
diagnostics, and carriers might be better treated with an insulin sensitizer for either diabetes
prevention or treatment.

Identifying Individuals More Likely to Respond to Intervention
While the value of genetic testing in type 2 diabetes prediction is limited, it may have a more
useful role in the selection of patients more likely to respond to intervention. Though many of
these observations require independent replication, the DPP Research Group has shown that
variation in the obesity-associated geneMC4Rmodifies the ability of the lifestyle intervention
to induce weight loss [20], the missense type 2 diabetes-associated variant P446L in GCKR
modifies the effect of the intensive lifestyle intervention on triglyceride concentrations [21],
and a genetic risk score for lipid traits also modifies the response to lifestyle intervention on
LDL cholesterol concentrations and small LDL particle number [22]. A combined meta-analy-
sis of the DPP (in prediabetic participants) and the Look AHEAD trial (in participants with
established type 2 diabetes) has shown that genotype at the obesity-associated geneMTIF3 also
predicts the degree of weight loss after a lifestyle intervention [23].

With regard to metformin, several genetic variants seem to modify metformin’s ability to
reduce diabetes incidence [10]. One that has been shown to have an effect on metformin
response in an independent cohort [24] is a polymorphism in the gene SLC47A1, which
encodes the metformin transporter MATE1. The extent to which genetic loci associated with
glycemic response in patients with established type 2 diabetes will exert a similar effect on dia-
betes prevention awaits more detailed analyses, although preliminary evidence for the top
locus unearthed in a genome-wide association study of metformin response [25] indicates that
the two traits may not have perfectly overlapping genetic architectures [26]. That is to say, the
genetic variants that modify glycemic response to metformin in a person with established dia-
betes may not necessarily influence metformin’s ability to prevent diabetes and vice versa, in
that the two processes may act via related but separate molecular pathways at different stages
of disease progression.

Conclusion
In summary, while type 2 diabetes represents one of the most serious threats to global public
health in the 21st century, strategies exist to stem its spread. To rationalize deployment of dia-
betes prevention strategies in a cost-efficient manner, it may help to stratify the population
into groups at highest risk or most likely to benefit. Genetic prediction does not seem to pro-
vide much additional information beyond traditional clinical predictors in identifying those at
increased risk, with the potential exception of some variants with strong effects that are more
prevalent in specific ethnic groups; thus, if included, genetic predictors should always be con-
sidered in conjunction with other markers to obtain an overall estimate of risk. Whether the
suggestive evidence that genetic predictors may help stratify response to preventive interven-
tions is eventually translated into clinical practice awaits the completion of well-powered clini-
cal trials.
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