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ABSTRACT
Genomes of KhoeSan individuals of the Kalahari Desert provide the greatest understanding of single 
nucleotide diversity in the human genome. Compared with individuals in industrialized environments, 
the KhoeSan have a unique foraging and hunting lifestyle. Given these dramatic environmental 
differences, and the responsiveness of the methylome to environmental exposures of many types, we 
hypothesized that DNA methylation patterns would differ between KhoeSan and neighbouring agro
pastoral and/or industrial Bantu. We analysed Illumina HumanMethylation 450 k array data generated 
from blood samples from 38 KhoeSan and 42 Bantu, and 6 Europeans. After removing CpG positions 
associated with annotated and novel polymorphisms and controlling for white blood cell composition, 
sex, age and technical variation we identified 816 differentially methylated CpG loci, out of which 133 
had an absolute beta-value difference of at least 0.05. Notably SLC39A4/ZIP4, which plays a role in zinc 
transport, was one of the most differentially methylated loci. Although the chronological ages of the 
KhoeSan are not formally recorded, we compared historically estimated ages to methylation-based 
calculations. This study demonstrates that the epigenetic profile of KhoeSan individuals reveals differ
ences from other populations, and along with extensive genetic diversity, this community brings 
increased accessibility and understanding to the diversity of the human genome.
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Background

Patterns of DNA methylation can be distinct 
between human populations, reflecting both 
genetic and lifestyle differences [1–6]. To gain 
insight into the extent of diversity seen in the 
human epigenome, we characterized DNA methy
lation patterns among the southern African 
KhoeSan, a group of ‘click-language’ speaking peo
ples of the greater Kalahari region. The KhoeSan’s 
way of life, which is characterized by a heavy reli
ance on gathering of wild foods with periodic 
hunting, and which may or may not be subsidized 
by subsistence farming and limited herding, is 
dramatically different from that of most other 
peoples in the world. Although whole-genome 

sequencing or genotyping has been performed on 
samples from several KhoeSan individuals [7], our 
analysis represents one of the first epigenetic com
parisons of the KhoeSan with other ethnic groups.

The Khoe and the San are two culturally dis
tinct, but evolutionarily related groups that have 
occupied southern Africa for ≥ 100,000 years [8– 
10]. Whereas the Kalahari San hunt for food and 
live from the provisions of the land, the Khoe also 
practice pastoralism. Contemporary members of 
the Khoe and San, hereafter called KhoeSan, des
cended from an extensive ancestral population, 
creating a breadth of genetic diversity in this 
group that is greater than any other human popu
lation [7]. Unique physiological attributes of the 
Kalahari KhoeSan include one of the lowest adip
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osity coefficients in the world [11], a lack of hyper
tension or hypertensive coronary heart disease 
(correlated with a lack of added dietary salt), and 
low urinary phosphate levels, potentially attributed 
to the lack of grains in their diet. In contrast to 
individuals with modernized amenities, the 
Kalahari KhoeSan individuals endure long periods 
where there is a lack of food, and they can store 
metabolic resources (including water and lipid 
metabolites) during times of plentiful food [7,11]. 
They can go for months without access to standing 
water; during those times they acquire moisture 
from water-storing melons and roots [12]. Medical 
practices do not involve hospitals or Western med
icine [13].

We predicted that we would find differences in 
DNA methylation, especially in metabolic or immu
nological pathways, measured between the KhoeSan 
and other peoples, including nearby Bantu groups, 
some of which might be influenced by distinct envir
onmental exposures in addition to genetic diversity. 
In this study we analysed DNA methylation micro
array data for 38 KhoeSan and 42 regionally matched 
Bantu (and 6 Europeans). To minimize confounding 
of epigenetic differences by genetic variation, we first 
removed known common SNPs, then using methy
lation data as a proxy for genetic variation we iden
tified 298 novel polymorphisms of high confidence. 
Analysis of differential methylation controlled for 
sex, age, leukocyte count and technical variation 
resulted in 816 differentially methylated sites (False 

Discovery Rate < 0.001). Among the top differen
tially methylated sites we found that site-specific 
methylation affects regulatory regions located in 
DNase hypersensitive sites, illustrated by 
a predicted alternative promoter of a zinc transpor
ter, SLC394A. Gene set enrichment analyses identi
fied new and known biologically relevant 
enrichments. Thus, after carefully filtering SNPs 
and assessing DNA methylation differences between 
the KhoeSan and non-KhoeSan groups, our data 
support the conclusion that their unique lifestyle 
and diverse genetic background is reflected in 
a unique DNA methylation profile in the blood.

Results

Probes differentially methylated in the KhoeSan

Samples from 38 KhoeSan individuals and 42 
Bantu individuals were matched as carefully as 
possible given the absence of formal records on 
age from the consenting KhoeSan individuals 
(Table 1, age distribution comparison in 
Supplemental Figure 1). Data analysis workflow 
is depictured in Figure 1. All samples were sub
jected to preprocessing and normalization aiming 
on minimizing technical variation and between- 
array differences. As a result, two KhoeSan sam
ples were removed due to quality considerations. 
Afterwards, array probes were filtered by various 
quality control criteria. Additionally, all known 

Table 1. Demographic data for samples analysed.
Language classification Sub-classification Lifestyle Samples (#) Males (#) Females (#) Median age Age range

KhoeSan (n = 38) KhoeSana Foragers/ 
Hunting or Herdingb

13 7 6 66c 47–85c

9 4 5 64.5c 36–85c

2 1 1 85c 85c

9 5 4 46c 32–75c

2 2 0 40c 53–64c

9 4 5 63c 55–65c

Bantu 
(n = 42) 
European (n = 6)

Southwest Bantu 
(Namibia)

Agro-pastoralistsd 26 12 14 68 48–71
45.5 43–46
45.5 48–58
45.5 36–100

Southern Bantu 
(South Africa)

Agro-patoralists/ 
Industriald

16 4 12 48 20–63

South African Colourede Industrial 2e 2 0 18 18
European Industrial 4 2 2 48 47–64

aKhoeSan in this study self-identified as: Ju/’hoansi (n = 13), !Xun (n = 9), Naro (n = 9), Makaukau (n = 2) and Hai//om (n = 9). bWhile basic 
sustenance is from foraging and hunting permitted within areas, many groups have had to supplement their diets with small scale crops and 
herding. cAges estimated through discussions of life histories. dIn contrast to the Southern Bantu recruited from urban localities, the Southwest 
Bantu recruited into this study were from remote rural localities with limited access to Western commodities. eSouth African Coloured represent an 
ancestrally European derived population of mixed ancestry (see Petersen et al. [22] for a genetic and historic contribution to the South African 
Coloured population). eTwins. 
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common SNPs as well as those from African and 
European populations were removed from consid
eration, reducing the number of array probes to 
354,596 in 94 samples for the downstream 
analysis.

Lacking the genome sequences, we relied upon 
methylation data to identify and remove novel 
SNPs that may affect differential methylation ana
lysis. Figure 2 shows three-tier patterns that are 
expected for sites where differences in methylation 
are driven by the underlying genetic variation, as 
in CC/CT/TT alleles [14]. Although we used 
highly conservative parameters for identifying the 
SNPs, we were able to determine 298 of them 
across our limited dataset of 94 KhoeSan and non- 
KhoeSan individuals (Supplemental Table 1). 
Considering their allele frequencies in our limited 
dataset, the loci that were identified are most likely 
common SNPs in KhoeSan. Clustering of all sam
ples based on the methylation of novel SNPs 

achieves a complete separation between the sample 
groups, except for one admixed sample 
(Supplemental Figure 2).

Prior to differential methylation analysis we 
assessed all possible sources of unwanted variance 
such as age, sex, leukocyte composition and tech
nical artefacts of methylation arrays (Figure 3, 
Supplemental Figure 3). We decomposed methyla
tion data of our whole blood samples into indivi
dual components using reference leukocyte counts. 
Afterwards we analysed differences in immune cell 
composition in circulating blood between 
KhoeSan and non-KhoeSan groups. Significant 
differences were identified in CD4 + T-cell and 
B-cell counts (Figure 3(a)). PCA analysis on all 
samples confirmed leukocyte composition as 
a strong confounding factor (Figure 3(b)), domi
nating principal components PC1 and PC4. PCA 
did not reveal any strong association with age. We 
noted that incomplete randomization of samples 

Figure 1. DNA methylation analysis pipeline.

Figure 2. Identification of polymorphisms in methylation data. Strip chart shows methylation beta-values for 298 CpG array probes 
with trimodal patterns characteristic for SNPs with CC, CT, TT genotypes. Probes were found with the clustering algorithm 
implemented in MethylToSNP R package. Colour indicates the sample group: KhoeSan or non-KhoeSan. Heatmap and clustering 
of samples based on novel SNPs is provided in Supplemental Figure 1.
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across eight arrays resulted in confounding of 
sample group by array variable. Figure 3(c) 
shows that PC3 is associated with array variable 
(Kruskal-Wallis test p value 9.3e-14) as well as 
with the sample group (p value 7.1e-14). To 
remove unwanted between-array variance, we 
trained another PCA model on samples stratified 
by the non-KhoeSan group, selected components 
associated with between-array variance (PC3, PC5, 

PC7) and extrapolated component values to the 
complete non-stratified dataset (Supplemental 
Figure 4).

Finally, we included the variables explaining 
technical variation in a linear regression model 
for differential methylation, along with age and 
sex variables (see Methods). Samples from geneti
cally related individuals and replicates were 
excluded (remaining n = 83). In the differential 

Figure 3. PCA of methylation data and inferred leukocyte composition. Comparison of proportions of granulocytes (GR), CD4+ T cells 
(CD4), CD8+ T cells (CD8), CD19+ B cells (B), monocytes (MO) and natural killer cells (NK) in samples from KhoeSan and non-KhoeSan 
groups. (b) Correlogram of top ten principal components obtained from normalized methylation data against leukocyte fractions and 
age. (c) Associations between principal components and categorical factors such as sex, sample group (KhoeSan and non-KhoeSan) 
and methylation array.
Additional PCA plots available in Supplemental Figures 3, 4, 10. 
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methylation analysis we also excluded all the novel 
SNPs that we identified (remaining n = 354,298). 
We performed differential methylation analysis 
with M-values instead of beta-values, as the former 
reportedly have a better performance [15]. We 
assessed p value inflation (Supplementary 
Figure 5) and applied a conservative false discov
ery rate threshold (FDR < 0.001) (Volcano plot in 
Figure 4(a)). The analysis resulted in 816 

differentially methylated CpG loci (Supplemental 
Table 2). To identify the differentially methylated 
loci of greatest interest, we computed the absolute 
differences in mean methylation beta-values 
between KhoeSan and non-KhoeSan groups 
(deltaBeta), applying a threshold of 0.05, resulting 
in 133 probes with the largest effect size (Volcano 
plot in Figure 4(b)). Figure 4(c) shows 
a Manhattan plot with the one most significantly 

a

c

d e

b

Figure 4. Differential methylation between KhoeSan and non-KhoeSan groups. (a) Volcano plot for fold change in M-values and FDR- 
adjusted t-test p-values, with 816 probes (shown in black) below FDR<0.001 threshold. (b) Probes selected based on mean beta- 
value difference (deltaBeta) for KhoeSan and non-KhoeSan groups (shown in green). (c) Manhattan plot produced with qqman 
R package showing the 0.001 FDR threshold (in red) and names of genes mapped for the most significantly differentially methylated 
probe on each chromosome. (d) Comparison of methylation beta-values for probes with |deltaBeta| > 0.05. A second threshold of 0.1 
shown as a dashed red line separates 30 probes with the largest effect size. Probes are coloured by presence of single nucleotide 
variants in dbSNP database either directly on the CpG site (red) or within 10 bases (blue). Note that these variants have low allele 
frequencies in the population to be called SNPs, and they were not identified as potential SNPs based on the methylation data 
(Figure 2). (e) deltaBeta for 133 CpG probes with the absolute mean beta-value difference of 0.05 plotted versus the average 
methylation beta-values in non-KhoeSan group. Contour lines show distribution density.
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differentially methylated CpG probe per chromo
some labelled by the name of the gene proximal to 
the probe. There are several possible genetic var
iants (with low minor allele frequencies) under
lying differential methylation among these sites 
(Figure 4(d)), however we do not have any evi
dence of genetic variants for these loci in KhoeSan, 
neither did we find any SNP-like patterns in these 
sites. By applying a second threshold on absolute 
difference in group-wise mean values (i.e., 
deltaBeta) of 0.1 (bold red dashed line in Figure 
4(d)) we short-listed 30 significantly differentially 
methylated sites with the largest effects. We cannot 
rule out completely, however, that there is no 
genetic variation underlying these sites. Also, 
such between-group differences may be driven by 
an outlier subgroup of samples rather than a shift 
in the whole group (Supplemental Figure 6). 
Supplemental Figure 7 shows that the sites with 
the largest difference in means also show the lar
gest variance.

There is a slight general bias towards hyper
methylation in KhoeSan compared to non- 
KhoeSan group (351 hypo- and 465 hypermethy
lated CpG) (Figure 4(a)), which also holds true for 
the 133 CpG sites with |deltaBeta| > 0.05 (57 hypo- 
and 77 hypermethylated CpG) (Figure 4(b) and 
Supplemental Figure 6).

Figure 4(e) shows a trend in differential methy
lation for 133 CpGs with the largest deltaBeta: 
CpG loci with low methylation in non-KhoeSan 
(< 0.5) are mainly hypermethylated in KhoeSan, 
whereas CpG loci that have high methylation in 
non-KhoeSan (> 0.5) are hypomethylated in 
KhoeSan (two-sided Fisher’s exact test 
p value = 0.000428, odd ratio = 3.68). Effectively, 
for the differentially methylated CpG with the 
largest effect size, the range of methylation values 
is more compressed, i.e., closer to beta-value of 
0.5, in the KhoeSan group relative to non- 
KhoeSan group.

Figure 5(a) shows distributions of beta-values in 
the top 30 most differentially methylated CpG 
sites. The most dramatic changes occurred at 
four probes in SLC39A4/ZIP4 (cg14228592, 
cg05681977, cg02583091, cg18246227), which 
encodes a zinc transporter with high expression 
in intestinal cell membranes (Table 2). The mean 
difference in methylation at each probe was 

between 0.26 and 0.40, with methylation in the 
KhoeSan samples between 0.61 and 0.77, except 
for probe cg18246227 with mean value of 0.39 
(four SLC39A probes are shown in the bottom of 
Supplemental Figure 8).

Methylation signature unique to the KhoeSan

Next, we investigated whether the differentially 
methylated sites we identified represented 
a discrete signature of methylation for the 
KhoeSan. A clear separation emerged between 
KhoeSan and non-KhoeSan samples even with 
only 30 differentially methylated sites (Figure 5 
(a)), also reproduced with the top 133 sites with 
the largest effect size (Supplemental Figure 8). 
We conclude that differentially methylated sites 
represent a unique KhoeSan methylation signa
ture. Noteworthy, based on the methylation the 
admixed individual was clustered together with 
the KhoeSan group where that person lives, and 
not with the non-KhoeSan group as indicated by 
the SNP-based clustering (Supplemental 
Figure 2). This suggests an environmental influ
ence on DNA methylation levels.

Functional implications of CpG sites differentially 
methylated in the KhoeSan

We were interested in whether differential methyla
tion was enriched in any biological pathways or 
localized to any specific type of genomic region 
(e.g., DNase hypersensitive sites, enhancers, CpG 
islands, shores and shelves of CpG islands, gene 
bodies). We saw slight depletion in enhancers and 
enrichment in DNase hypersensitive sites that were 
suggestive but not statistically significant according 
to one-sided Fisher exact tests. Otherwise, no speci
fic localization patterns in the 133 differentially 
methylated loci with |deltaBeta| > 0.05 were found.

We examined Gene Ontology (GO) term 
enrichment for differentially hypomethylated 
(Figure 5(b)) and hypermethylated (Figure 5(c)) 
CpG loci separately (Supplemental Table 3).

Hypomethylated sites (Figure 5(b)) showed 
enrichment in (GO:0000050 urea cycle), 
(GO:0019627urea metabolic process) and 
(GO:0071941nitrogen cycle metabolic process).
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Hypermethylated sites (Figure 5(c)) showed 
enrichment for pathways involving ribosome bio
genesis, which is linked to nutritional state. For 
example, cells subjected to energy deprivation 
repress ribosomal DNA transcription to maintain 

cellular ATP levels and protect against the ener
getic costs of ribosome biogenesis (GO:0042254 
Ribosome biogenesis [16]).

Enrichment also occurred in (GO:0009267cellular 
response to starvation) and (GO:0031669 cellular 

a

b c

Figure 5. Differentially methylated loci with the largest effect size between KhoeSan and non-KhoeSan groups. (a) Strip chart shows 
methylation beta-values in top 30 CpGs based on their mean absolute beta-value difference between KhoeSan and non-KhoeSan 
groups. (b–c) Significantly enriched GO terms (FDR < 0.001) identified by gene set enrichment analysis of: (b) hypomethylated and 
(c) hypermethylated CpG loci. Bigger circles denote more general and more frequent GO terms, whereas smaller denotes more 
specific ones. Colour corresponds to FDR significance level (blue – most significant).

Table 2. Top ten differentially methylated probes ordered by adjusted p value.

Locus and strand Probe Type adj.P.Val KhoeSan mean Non-KhoeSan mean
Delta 
beta Gene Feature

chr19:4724679 - cg15404665 I 5.24E-07 0.353 0.229 0.125 DPP9 TSS1500-shore
chr5:135000000 - cg05521474 I 1.77E-06 0.647 0.771 −0.124 IGR-opensea
chr2:10176748 - cg17214023 II 2.14E-06 0.387 0.491 −0.104 IGR-opensea
chr14:21755798 + cg18642567 II 3.20E-06 0.612 0.718 −0.106 RPGRIP1 TSS1500-opensea
chr16:10205262 + cg09622330 II 7.72E-06 0.646 0.751 −0.105 GRIN2A Body-opensea
chr17:41278563 + cg27581762 II 2.68E-05 0.589 0.690 −0.101 BRCA1 TSS1500-shore
chr13:113000000 + cg05170706 I 3.24E-05 0.704 0.572 0.132 IGR-opensea
chr8:146000000 - cg05681977 II 5.78E-05 0.613 0.257 0.355 SLC39A4 Body-island
chr3:139,000,000 + cg18005180 II 5.78E-05 0.646 0.544 0.102 IGR-shore
chr10:134000000 - cg09033333 I 6.22E-05 0.766 0.602 0.165 IGR-opensea

Type refers to Illumina array probe type; IGR stands for intergenic region, TSS – transcription start site. Island, shore (< 2 kb), opensea (> 4 kb) 
denote annotation with respect to the nearest CpG island. 
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response to nutrient levels) driven primarily by cel
lular response to zinc ion starvation and (GO: 
0005385 zinc ion transmembrane transporter activ
ity), particularly in the SLC39A4 Zn transporter 
gene.

Another group of significantly enriched gene 
sets with hypermethylated CpG loci belongs to 
various epigenetic regulatory mechanisms such as 
(GO:0045814; negative regulation of gene expres
sion, epigenetic), (GO:0060968; regulation of gene 
silencing), (GO:0006342; chromatin silencing), 
(GO:0034728; nucleosome organization), 
(GO:0006333; chromatin assembly or 
disassembly).

Immune system genes included (GO:0045652, 
regulation of megakaryocyte differentiation) and 
(GO:0098761, cellular response to Interleukin-7), 
where interleukin-7 is a cytokine important for 
B and T cell development.

Additionally, cell-cell adherens junctions, whose 
disruptions or defects are associated with a variety 
of diseases including inflammatory bowel disease 
[17], disorders of the skin and hair [18] and cancer 
[19] (GO:0045296 cadherin binding) were also 
implicated.

Considering hypermethylation at the sites 
within the SLC39A4 gene in KhoeSan samples, 
we investigated functional implications of 

differential methylation. In a 980 bp genomic 
region of SLC39A4 we identified five methylated 
sites where the KhoeSan samples displayed 
roughly 20% more methylation than the non- 
KhoeSan, largely Bantu derived samples (Figure 
6). A third probe site in the locus represents 
a position that can contain a SNP and was not 
considered, although it did show significant differ
ential methylation. The functional annotations at 
these positions in SLC39A4 are consistent with 
a novel alternate promoter marked by a CpG 
island, H3K27 acetylation, a DNase 
I hypersensitivity site, numerous transcription fac
tor binding sites, and an annotated transcription 
start site. Thus, we predict that increased methyla
tion in KhoeSan samples represents a functional 
outcome that is likely to involve SLC39A4 alter
native promoter repression or differential expres
sion of SLC39A4 isoforms between KhoeSan and 
non-KhoeSan individuals.

To analyse the presence of neighbourhoods of 
differential methylation, probe sites were tested for 
agglomeration of individual methylation sites into 
discrete, differentially methylated regions [20]. In 
total, 91 locations were identified in the genome 
that overlap annotated promoters in the genome 
(Table 3 and Supplemental Table 4). The results 
included the SLC39A4 region, supporting the 

Figure 6. SLC39A4 methylation in a genomic context. Methylation in the SLC39A4 gene was examined in the UCSC Human Genome 
Browser, at positions of differentially methylated probes. Annotations for histone modifications, DNase hypersensitivity, CpG island, 
numerous transcription factors (by ChIP-seq) and an annotated 5� end of a gene isoform all implicate an alternative promoter.
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conclusion we drew previously of an alternative 
promoter. We conclude that patterns of tandem 
CpGs agglomerated into regions of differential 
methylation provide a strong rationale for predict
ing repressive functions at these epigenetically 
modified regulatory regions.

Among other regions identified as the most 
significantly differentially methylated are loci asso
ciated with Homeobox protein HOXB which has 
several haematopoietic functions, olfactory recep
tor OR2I1P, for which increase of methylation was 
observed in KhoeSan and TEX26 with reduced 
methylation in KhoeSan.

Examining age differences in differential 
methylation findings
Given the acknowledged differences in chronolo
gical ages between the KhoeSan and non-KhoeSan 
datasets (which were unavoidable due to limited 
sample availability and estimation of KhoeSan 
ages: KhoeSan mean age = 63.2 years, SD = 14.3, 
non-KhoeSan mean age = 52 years, SD = 15.1; 
P = 0.008, t-test), we investigated whether differ
ential methylation sites were directly implicated as 
age-related alterations. First, we calculated DNA 
methylation age using Horvath’s [21] and 
Hannum’s [22] models to compare the results to 
our original records of presumable and self- 
reported chronological age. The Horvath (and 
Hannum) methylation analysis shows more simi
larity between the methylation-based ages of the 
groups than the reported ages (Supplemental 
Figure 1). Moreover, the presence of a systematic 
bias, where the methylation-derived age is lower 
than the chronological age (deceleration showed in 
Figure 7(a)) could indicate that both models were 
calibrated on mostly European population and are 
inaccurate when applied to an African population. 
We observed the largest deviations in the non- 
KhoeSan group, specifically for the centenarians 

in the non-KhoeSan group with the Horvath 
model and for the Hannum model in general.

Next, we examined correlations between methy
lation levels in sites determined to be differentially 
methylated, and reported chronological age. We 
found several probes with (anti)correlations close 
to ±0.5 (Figure 7(b)). Methylation levels for three 
of these probes are shown on scatterplots in Figure 
7(c). It appears that in these cases age and sample 
group (KhoeSan vs non-KhoeSan) may be insepar
able and that strong correlations would be much 
weaker if considered within the groups. From 
these results, we conclude that known markers of 
age are not implicated in the major differences in 
DNA methylation between KhoeSan and non- 
KhoeSan samples.

Discussion

The goal of our study was to investigate whether 
KhoeSan foragers have a DNA methylation profile 
present in their blood DNA that differs from non- 
forager agro-pastoralists with significant impact 
from an industrialized environment. We also 
aimed to predict whether any differential methyla
tion sites specific to the KhoeSan epigenome are 
implicated in altering gene regulation. We estab
lished that a population-specific DNA methylation 
signature separates southern African KhoeSan 
from their southern African Bantu neighbours. 
We found a general hypermethylation bias in 
KhoeSan with a trend for differentially methylated 
CpG loci closer to beta-value of 0.5. We also 
showed that some of the most dramatic differences 
in DNA methylation occurred in the SLC39A4 
gene, which encodes a zinc transporter. SLC39A4 
is expressed at very low levels throughout the 
body, with the highest levels found in the trans
verse colon, small intestine and kidneys [23]. The 
hypermethylation at this gene observed in 
KhoeSan could potentially repress expression of 

Table 3. Differentially methylated genomic regions and associated genes.
Locusa Width # CpGs Minimum FDR Stouffer Max beta fold change Mean beta fold change Gene promoter

chr17:46681111–46683047 1937 13 1.79E-27 1.44E-14 0.137 0.939 HOXB6
chr6:29520698–29521788 1091 38 2.3E-45 5.73E-14 0.069 0.027 OR2I1P
chr8:145638202–145639181 980 5 1.55E-28 5.63E-12 0.350 0.235 SLC39A4
chr13:112861499–112862112 614 4 1.36E-20 4.13E-10 0.160 0.117
chr13:31506270–31507139 870 10 1.43E-23 7.91E-09 −0.158 −0.075 TEX26

aThe top 5 differentially methylated regions from all regions listed in Supplemental Information Table S4. 
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the gene and reduce cellular uptake of zinc. This 
would be consistent with the higher levels of zinc 
in KhoeSan diets [24], for which the increased zinc 
availability may result in higher efficiency of zinc 
transporters and decreased need for additional 
expression. Nonetheless, a selective sweep has 
been shown through the Leu372Val polymorphism 
in Sub-Saharan Africans with a suggested advan
tage of providing nutritional immunity to patho
gens reliant on zinc as a micronutrient [25]. Other 
reports indicate higher expression levels of this 
gene may have relevance for less adiposity and 
inflammation [26], with roles in insulin secretion 

in pancreatic beta cells [27] and pancreatic can
cer [28].

Fagny et al. [29] explore methylation landscapes 
of African rainforest populations, while their life
styles may be similar, their environment differs 
from the semi-desert Kalahari KhoeSan. Their 
study participants are from both an isolated popu
lation and a more agrarian population with limited 
genetic mixing over the last several thousand 
years. Using an epigenome-wide association 
study Fagny et al. also found a separation of 
groups attributed to geographic location and sub
sistence methods. Another major finding of theirs 

a

c

b

Figure 7. DNA methylation age and age-associated methylation sites. (a) Difference (acceleration) between researcher-assigned or 
self-reported chronological age and DNA methylation age inferred by two computational models (Horvath and Hannum). All models 
tend to underestimate the age, regardless of the group. In many cases a large (10 or more years) discrepancy is seen. Comparison of 
age distributions between sample groups is shown in Supplemental Figure 12. (b) FDR-adjusted p values from differential 
methylation analysis are plotted against the p values for correlations between methylation beta-value and chronological age. 
Colour scale denotes correlation coefficients. Top probes with the largest association between methylation beta-value and age are 
labelled. (c) Scatter plots showing top three correlations between methylation beta-value and age.
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was altered methylation patterns in immune path
ways and developmental processes. After correct
ing proportional differences in leukocytes that 
biased our methylation results, we found immune 
pathways and inflammation, but our most signifi
cant findings were related to metabolic and phy
siological adaptations. However, epigenetic loci 
identified by Fagny et al. were not significantly 
differentially methylated between KhoeSan and 
non-KhoeSan groups according to our analysis 
(Supplemental Figure 9).

Our study has several recognized limitations. 
First, relatively small sample size limits the power 
of the analysis, which we addressed by using 
highly conservative thresholds on false discovery 
rate and on effect size. Second, the 38 KhoeSan 
and 42 individuals who donated samples to our 
study were matched as closely as possible for age 
and sex, but differences remained. Our model of 
differential methylation controlled for age and sex, 
thus potential for confounding by these factors is 
low. As described in the Results, only a few of the 
top differentially methylated probes we identified 
are associated with ageing, and no probes showed 
patterns which were statistically associated with 
sex. Third, although we filtered out probes asso
ciated with known SNPs and removed CpG sites 
where we identified novel SNPs based on charac
teristic methylation patterns, KhoeSan genomes 
may harbour other novel single nucleotide variants 
(SNVs). In that case, some of the differentially 
methylated CpG sites we observed in the 
KhoeSan may reflect genetic differences rather 
than epigenetic differences. There are known var
iants directly at the CpG sites of the probes or 
within 10 bp, which may affect methylation levels. 
However, allele frequencies in such variants are 
too low to consider them as SNPs, additionally 
they may not be manifested in KhoeSan popula
tion at all. Despite these careful assessments, we 
cannot rule out genetic differences that confer 
trans-acting epigenetic effects or distant cis-acting 
effects. Nevertheless, we conclude that the pattern 
of methylation we identified in the KhoeSan sam
ples is not likely to be an artefact of sequence 
variants at CpG positions; instead, it reflects epi
genomic programming based on both genetic and 
environmental differences from the non-KhoeSan 
group. Because of limited sample availability, we 

did not have the opportunity to perform bisulphite 
sequencing on any of the samples. Future work 
may enable more granulated analysis of the epige
netic differences in KhoeSan and Bantu 
individuals.

We note that samples were assessed on eight 
methylation chips, which could incur batch effects, 
thus we took steps to account for unwanted tech
nical variance. Between-array normalization using 
control array probes has been performed. 
Additionally, to mitigate the residual technical 
variation we incorporated principal components 
associated with array chip into our differential 
methylation regression model, thus controlling 
for this effect. The second principal component 
PC2 is likely to be associated with technical varia
tion in methylation arrays (Supplemental Figure 
10). We note that all samples were processed and 
run at the same time and that replicates run on 
different arrays gave the lowest variation of any 
samples.

Another source of unwanted variation that we 
controlled for is leukocyte composition of whole 
blood samples. We used a model calibrated on cell 
counts from white blood cells in a different popu
lation, thus its parametrization is a known limita
tion. Although the differences in CD4+ T-cell and 
B-cell fractions in KhoeSan are significant and 
may have an immunological explanation, we 
accounted for variation in leukocyte counts as 
part of the differential methylation model. Thus, 
we can conclude that differentially methylated 
probes that we identified are not confounded by 
blood composition differences.

Conclusions

To our knowledge this is the first study to identify 
a unique DNA methylation signature present 
among KhoeSan individuals of the Kalahari. We 
have provided a model example of population- 
relevant methylation patterns with potential 
insight into the impact of environmental and life
style exposures on the epigenome. Additionally, 
we identified novel SNPs in KhoeSan based on 
their characteristic methylation patterns. Future 
studies of the KhoeSan with larger sample sizes 
can further investigate this subject; in particular, it 
will be important to determine whether additional 
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studies replicate our differential methylation find
ings, and whether isoform expression levels of 
genes such as SLC39A4 have biological relevance 
in the manner predicted in this study.

Methods

Study participants and samples

Study participants broadly self-classified as 
KhoeSan (n = 38), Bantu (n = 42) or European 
(n = 6) (Table 1) were consented and recruited 
within the borders of Namibia or South Africa in 
accordance with ethics approvals granted by the 
Ministry of Health and Social Services of Namibia 
(#17/3/3-Hayes 2008, #17/3/3-Heyns 2014 and 
#17/3/3-HEAF 2019), Limpopo Provincial 
Government (#4/2/2-Venter), University of 
Limpopo Medunsa Research and Ethics 
Committee (#MREC/H/28/2009-Venter), South 
African National Blood Service Human Research 
Ethics Committee (HREC #2012/11-Hayes) and 
University of Pretoria HREC (#43/2010 and 
#280/2017 Bornman), South Africa. DNA was 
extracted from whole blood using standard meth
ods (QIAGEN Inc., Germantown, Maryland) and 
shipped under the Republic of South Africa 
Department of Health Export Permit (#J1/2/4/2), 
in accordance with the National Health Act 2003, 
and appropriate institutional Material Transfer 
Agreements between local institutions and the 
Garvan Institute of Medical Research in 
Australia, with site-specific approval granted by 
St Vincent’s Hospital HREC (SVH 15/227), and 
named collaborative contribution from the 
National Human Genome Research Institute, 
National Institutes of Health, Bethesda, 
Maryland, USA.

All 38 KhoeSan (aged 32–80 years, 50% female) 
were recruited within the remote Kalahari region 
of Namibia, with none to limited access to 
Western amenities. Ages of KhoeSan individuals 
were estimated through interviews and historical 
accounts of contemporary events to compensate 
for a lack of recorded ages (this has taken place 
over a 10-year period of engagement by V.M.H). 
By contrast, the 42 Bantu (aged 20–100 years, 57% 
female) represent either Southwestern (n = 26) or 
Southern (n = 16) Bantu ancestry (Table 1). 

Whereas the Southwestern Bantu were recruited 
from remote rural localities of Namibia with sus
tained agropastoral existence, the Southern Bantu 
were recruited from more industrialized regions of 
South Africa. To varying degree and in contrast to 
the KhoeSan, all Bantu in this study have access to 
amenities such as public transportation, Western 
medicine and food markets. All study participants 
were excluded if they held parental or sibling rela
tionships in the dataset. As an internal control, we 
included 6 Europeans, including a twin pair of 
admixed South African Coloured ancestry (see 
Petersen et al. [30] for a genetic and historic con
tribution to the South African Coloured popula
tion), whereas three sample replicates allowed for 
blinded validation (2 European and 1 Bantu). Two 
KhoeSan samples were excluded because of quality 
considerations, one twin and all replicates were 
excluded for further downstream analyses for 
a total of 83 samples undergoing methylation 
analyses.

Data collection

DNA was isolated using the QIAamp DNA Blood 
Mini kit or the FlexiGene DNA kit (QIAGEN, 
Gaithersburg, MD) and quantified on the 
NanoDrop spectrophotometer (Thermo Scientific). 
As recommended by Illumina, 0.5 ug of DNA were 
used for bisulphite conversion and methylation ana
lysis. DNA was subjected to bisulphite conversion 
using the Zymo EZ-96 DNA Methylation Kit 
(Irvine, CA), according to the manufacturer’s stan
dard protocol. Next, every sample was hybridized to 
Illumina Infinium Human Methylation 450K 
Beadchip arrays. All DNA was prepared for the 
chips concurrently, and all chips were run in 
parallel.

Data processing

Data processing and analysis has been performed 
in R (version 3.6.1) [31] using ewastools [32], 
minfi [33], wateRmelon [34], ChAMP [35], 
MethylToSNP [14], limma [36], DMRcate [20]. 
Data processing pipeline is shown in Figure 1. 
We loaded raw data and ran a panel of quality 
control tests recommended by Illumina using 
ewastools (Supplemental Table 5). We excluded 
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probes that did not have significant readings at 
α = 0.01 for > 75% of samples, after Holm’s 
multiple testing correction of sample detection 
P-values and bead count < 3 in at least 5% of 
samples. As a result of quality control, we 
excluded two KhoeSan Samples TK1 and MD6 
because of the number of failed probes. The 
initial number of probes 485,577 was reduced 
to 354,596 in a sequence of filtering steps.

Namely, 10,028 sex chromosome probes, 3,091 
non-CpG probes and 11 cross-reactive probes 
were removed. Additional 59,901 common SNPs 
as well as 5,214 EUR-specific and 11,762 AFR- 
specific SNPs were removed [37] using CHAMP 
package filter functionality. No imputation for 
missing values has been performed, thus removing 
probes completely from the analysis if it had miss
ing values in one or more samples.

We obtained normalized beta-values using 
ewastools R package with blood tissue option 
enabled, in order to minimize between-array 
effects [38] while retaining ability to estimate 
blood leukocyte composition.

Identifying novel SNPs

SNVs may affect hybridization of DNA to methy
lation array probes, which is reported as changes 
in methylation beta-values. Common polymorph
isms in CpG sites result in multimodal patterns 
thus, by detecting such patterns we can infer poly
morphisms from methylation data. MethylToSNP 
[14] with gap sum ratio 0.4, gap ratio 0.5 and 2 
standard deviations for outlier removal was used 
to detect novel polymorphisms in combined 
KhoeSan and non-KhoeSan methylation data. We 
identified 359 potential SNPs, 298 of which 
MethylToSNP labelled as high confidence predic
tions (Supplemental Table 1). Probes correspond
ing to novel SNPs were removed from 
downstream analysis, resulting in 354,298 probes.

Principal component analysis

To identify and quantify potential sources of 
unwanted variance we performed PCA on all 
methylation probes after normalization and filter
ing. Probes with missing values were excluded. 

Principal components were calculated with 
R package prcomp with scaling enabled.

First, PCA was calculated for all samples 
(KhoeSan and non-KhoeSan together). Top 10 
components were analysed in correlograms against 
Illumina control metrics (Supplemental Figure 10), 
blood leukocyte counts and age (Figure 3(b)). 
Additionally, Kruskal-Wallis test was used to 
establish association between variance along each 
of the top 10 components and factors like sex, 
sample group, as well as batch variables: array 
and array row (Figure 3(c), Supplemental 
Figure 4).

Second, we calculated PCA for the samples in 
non-KhoeSan group only and analysed the asso
ciation of the top 10 components with sex and 
batch effects. Then, the components significantly 
associated with array variable (PC3, PC5 and PC7, 
Kruskal-Wallis p < 0.001) were used to reconsti
tute the values for the whole dataset, including 
KhoeSan and non-KhoeSan. Afterwards, associa
tion of the reconstituted components has been 
evaluated against sex, array and sample group 
variables (Supplemental Figure 4). These compo
nents were used as variables in the differential 
methylation linear regression model.

Leukocyte composition estimates

Blood leukocyte composition is a potential con
founding factor in analysis of differential methyla
tion and DNA methylation age calculations. In 
order to estimate leukocyte composition for each 
sample based on their normalized methylation 
beta-values we applied EstimateLC function from 
ewastools package parametrized with Houseman 
et al. [39] and Reinius et al. cell counts [40] 
(Supplemental Table 6).

For differential methylation analysis we added 
leukocyte counts as variables in linear regression 
model. For methylation clock age estimates the 
beta-values were adjusted by leukocyte composi
tion using Houseman method implemented in 
ChAMP package.

Differentially methylated probes

Normalized beta-values for 354,298 filtered probes 
were converted to M-values. Replicates and 
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samples from individuals with co-sanguinity were 
removed from differential methylation analysis, 
thus 37 KhoeSan and 46 non-KhoeSan (Bantu 
and European) derived samples were included.

First, we conducted Mann-Whitney U statistical 
tests for beta-values (without SNPs removed), that 
were subjected to multiple hypothesis testing cor
rection using the Bonferroni method. From 12,613 
probes at adjusted p value ≤ 0.05 we selected top 
400 probes based on their maximum absolute dif
ference between Khoesan and non-KhoeSan group 
medians in beta-values.

Second, we applied linear regression using 
R package limma and included several factors as 
model variables:

M e Intercept þ LCþ PCþ ageþ sexþ group 

where leukocyte counts LC ¼ GRþ NK þ CD4  
þCD8þ B, and PC ¼ PC3þ PC5þ PC7included 
principal components from the non-KhoeSan group, 
presumably representing array batch effects (see PCA 
analysis section).

The p values for regression coefficients in group 
variable, corresponding to KhoeSan and non- 
KhoeSan, were subjected to Benjamini-Hochberg 
correction. Supplemental Figure 5 shows p values 
and adjusted p values. Although there is inflation 
of unadjusted p-values, the artefact is completely 
removed in adjusted p values, possibly at the cost 
of overcorrecting. Moreover, a conservative false 
discovery rate threshold of FDR ≤ 0.001 was used 
in the downstream analysis, resulting in 816 sig
nificantly differentially methylated probes. 
Afterwards we filtered the probes based on the 
observed effect size. Two thresholds on absolute 
difference between group-wise means of beta- 
values have been applied: 0.05 and 0.1, yielding 
133 and 30 probes with the largest effects, 
respectively.

Finally, we assessed coherence between the lists 
of top probes ranked by the two orthogonal 
approaches: 41 out of 133 probes identified by 
linear regression t-test were also found among 
400 probes identified by Mann-Whitney U-test 
(Supplemental Figure 11).

Clustering of samples based on methylation data

Clustering of samples and probes based on their 
methylation beta-values was performed using 
agglomerative method with average linkage and 
Manhattan distance, implemented in hclust 
R function. Heatmaps were produced with aheat
map function from NMF R package.

Genomic feature enrichment and regions of 
differential methylation

Using the annotation of genomic positions provided 
by Illumina (IlluminaHumanMethylation450kanno. 
ilmn12.hg19), we determined the genomic locations 
of all probes differentially methylated between the 
KhoeSan and Bantu samples, as well as their relation 
to genomic features such as DNase hypersensitive 
sites, enhancers, CpG islands, shores and shelves, 
gene bodies. A CpG position was scored positive if 
it intersected the annotated interval by the genomic 
coordinates. Hypergeometric statistical tests were 
used to determine whether any region was enriched 
in the KhoeSan DNA. Regions of differential methy
lation were identified as in Peters et al. [20]. The 
approach, implemented in R package DMRcate, first 
identifies differentially methylated sites, then com
bines them and calculates p values (Stouffer’s 
method) with correction (Benjamini-Hochberg).

Gene set enrichment analysis

We tested 133 significantly differentially methy
lated CpG probe sites with a |deltaBeta| of at 
least 0.05 for GO term enrichment with 
methylglm function from methylGSA R package 
[41]. Methylglm is based on GOglm approach 
and fits a logistic regression model for each 
gene set, thus adjusting length bias in DNA 
methylation by the number of CpGs. We tested 
hyper- and hypomethylated CpGs separately. 
FDR threshold was set to 0.001 (Supplemental 
Table 3). Due to the hierarchic nature of gene 
ontology we applied REVIGO to cluster GO 
terms (Figure 5(b,c)) [42].
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Methylation-based age prediction

Along with the investigator estimates of KhoeSan 
ages, referred to as chronological age, we applied 
methylation clock algorithm to predict DNA 
methylation ages of the KhoeSan and non- 
KhoeSan sample donors. We used Horvath’s [21] 
and Hannum’s [22] models implemented in 
R package wateRmelon [34]. We analysed differ
ences between groups (Supplemental Figure 1) and 
ageing acceleration (or rather deceleration) as dif
ference between presumable chronological age and 
DNA methylation age (Figure 7).
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