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1  | INTRODUC TION

Anthropogenic land use changes have altered the structure and 
function of ecosystems on nearly all parts of the planet (Sala 
et al., 2000; Zwick, 1992). These alterations often reduce the ability 

of landscapes to support high biological diversity and decrease the 
systems’ resilience to environmental stressors (i.e., lower their eco-
logical integrity; Freedman, 2015; Ordóñez & Duinker, 2012; Parrish 
et al., 2003). Much research has been devoted to documenting and 
quantifying negative impacts of anthropogenic land use changes on 
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Abstract
Anthropogenic land use changes have broad impacts on biological diversity, often 
resulting in shifts in community composition. While many studies have documented 
negative impacts on occurrence and abundance of species, less attention has been 
given to native species that potentially benefit from anthropogenic land use changes. 
For many species reaching high densities in human-dominated landscapes, it is un-
clear whether these environments represent higher quality habitat than more natural 
environments. We examined the influence of landscape ecological integrity on rela-
tive abundance and body condition of two native generalist freshwater turtle species 
that are prevalent in anthropogenic systems, the painted turtle (Chrysemys picta) and 
red-eared slider (Trachemys scripta elegans). Relative abundance was negatively asso-
ciated with ecological integrity for both species, but the relationship was not strongly 
supported for painted turtles. Body condition was positively associated with ecologi-
cal integrity for painted turtles, with no strong association for red-eared sliders. Our 
study suggests that both species benefitted at the population level from reduced 
ecological integrity, but individual-level habitat quality was reduced for painted tur-
tles. The differing responses between these two habitat generalists could partially 
explain why red-eared sliders have become a widespread exotic invasive species, 
while painted turtles have not.
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wildlife, such as declines in density and local extirpation of popula-
tions (Crawford & Bolen, 1976; Wilberg et al., 2011), lower fitness 
of individuals (Li et  al.,  2016; Slabbekoorn & Ripmeester,  2008), 
reduced genetic diversity (Holderegger & Di Giulio, 2010; Miraldo 
et al., 2016), and behavioral changes (Andersen et al., 2017; Longcore 
& Rich, 2004). A major outcome of broad-scale anthropogenic land 
use change is the loss of habitat specialists and gain of habitat gen-
eralist and synanthropic species (including invasive species), with 
the consequent homogenization of wildlife communities (Clavel 
et al., 2010; Sofaer et al., 2020).

Habitat generalists often exist at higher densities in human-
dominated landscapes than in more natural landscapes (Fedriani 
et al., 2001; Roseberry & Woolf, 1998). For example, several stud-
ies found that raccoon (Procyon lotor) densities in urban and sub-
urban areas were higher than in adjacent rural and undisturbed 
areas (Prange et  al.,  2003; Riley et  al.,  1998). Annual productivity 
and nesting densities of some bird species, such as Cooper's hawk 
(Accipiter cooperi) and American crow (Corvus brachyrhynchos), in-
crease in urban and suburban areas (McGowan,  2001; Rosenfield 
et al., 1995). Anthropogenic habitat alterations can increase quality 
of resources such as food and cover, which provides direct benefits 
to some species (Bateman & Fleming, 2012; West et al., 2016). This 
is likely the case for strongly synanthropic species, such as raccoon 
(Demeny et al., 2019; Gross et al., 2012), brown rat (Rattus norvegicus; 
Traweger et al., 2006, Feng & Himsworth, 2014), and house sparrow 
(Passer domesticus; Leu et al., 2008, Khera et al., 2010). Some species 
can also benefit from changes in thermal conditions associated with 
anthropogenic land uses (Frishkoff et al., 2015; Leveau, 2018; Miles 
et  al.,  2019). For example, Bowne et  al.,  (2018) found the propor-
tion of females in painted turtle (Chrysemys picta) populations was 
positively associated with urbanization, and attributed the finding to 
higher soil temperatures in urban environments.

While anthropogenic land use changes can increase quality of re-
sources for some species, many generalist species may instead ben-
efit from reduced predation pressure (Eötvös et al., 2018; Rodewald 
et  al.,  2011), or reduced interspecific competition for resources. 
Competitive release occurs when the local distribution or abundance 
of a species increases in response to decline or extirpation of a re-
source competitor (Gause, 1932; Hardin, 1960). Many experimental 
and observational studies have confirmed potential for competitive 
release (Berger & Gese, 2007; Hairston, 1986; Menge, 1976; Segre 
et  al.,  2016). In the context of reduced predation or competition 
pressure, anthropogenic habitat alterations could both reduce qual-
ity of resources and result in increased densities of generalist species 
(Cruz-Elizalde et al., 2016; Decena et al., 2020; Peltzer et al., 2006).

In the absence of pre- and post-anthropogenic habitat alter-
ation community data, health of individuals can provide insights into 
whether generalist species benefit from anthropogenic habitat alter-
ations. Specifically, body condition index (BCI) can be a useful metric 
to assess habitat quality (Maceda-Veiga et al., 2014; Pulliam, 2000; 
Sasaki et al., 2016). A BCI score represents the relationship between 
the weight and size of an individual relative to the study group, typi-
cally using residuals from a log-transformed length–weight regression 

(Schulte-Hostedde et al., 2005). Individuals with BCI scores above 
the mean have above average amounts of metabolizable tissue (fat 
or protein) relative to their length and vice versa (Schulte-Hostedde 
et  al.,  2005). Body condition correlates with fitness metrics such 
as survival probability and fecundity (Bender et  al.,  2008; Burton 
et al., 2006; Carranza & Hidalgo de Trucios, 1993).

The painted turtle (Chrysemys picta) and red-eared slider 
(Trachemys scripta elegans) are generalist freshwater turtle species 
native to North America (Ernst & Lovich, 2009). Our focal subspe-
cies, eastern painted turtle [C. p. picta] and midland painted turtle 
[C. p. marginata], are widely distributed across much of the eastern 
United States and southeastern Canada (Ernst & Lovich,  2009). 
The red-eared slider, a subspecies of the pond slider (T. scripta), is 
native to a large portion of the east-central United States (Ernst & 
Lovich, 2009). However, due to their popularity in the pet trade and 
ability to persist in a wide variety of environmental conditions, non-
native populations of red-eared sliders have become established in 
many regions of the world (Héritier et al., 2017; Lambert et al., 2019), 
and it is considered one of the world's worst invasive species (Lowe 
et al., 2000). Both species generally prefer shallow lentic freshwa-
ter habitats containing a soft mucky bottom with abundant aquatic 
plants (DonnerWright et  al.,  1999; Janzen et  al.,  1992; Morreale 
& Gibbons,  1986). Both species are also commonly found in wet-
lands associated with anthropogenic land use, such as agricultural 
farm ponds and urban retention ponds (Buchanan et al., 2019; Stone 
et al., 2005). Further, many studies have indicated that densities of 
painted turtles and red-eared sliders in anthropogenic wetlands are 
much higher than other turtle species occupying the same wetlands 
(Brown, Farallo, et al., 2011; Failey et al., 2007; Glorioso et al., 2010).

Although generalist turtle species can achieve high densities in 
human-dominated landscapes, little research has been conducted to 
assess whether these environments represent higher quality habitat 
than more natural systems. The purpose of this study was to de-
termine whether relative abundance and body condition of painted 
turtles sampled in West Virginia, and red-eared sliders sampled in 
Texas, are correlated with ecological integrity of the surrounding 
landscape. We hypothesized that relative abundance of these spe-
cies would be negatively correlated with ecological integrity, which 
would suggest that human-dominated landscapes can support larger 
populations, potentially due to reduced predation or competition 
pressure. We also hypothesized that BCI score for these species 
would be negatively correlated with ecological integrity, which 
would suggest that habitat quality for these species is better in 
human-dominated landscapes.

2  | METHODS

2.1 | Species data and sampling sites

We collated turtle capture and measurement data previously col-
lected by the authors for painted turtles in West Virginia and red-
eared sliders in Texas. The data were originally collected for a wide 



     |  5513MOTA et al.

variety of research projects primarily focused on relationships be-
tween relative abundance and land use and management (Brown 
et al., 2012; Gulette, 2018; Mali et al., 2013; Watson & Pauley, 2006) 
and investigations of hoop net sampling methodology (Gulette 
et al., 2019; Mali et al., 2014; Oxenrider et al., 2019). For all study 
sites, turtle populations were sampled using hoop net traps, primar-
ily baited with canned sardines. Turtles were sampled throughout 
the active season (March–September) in both states. Trap size varied 
based on study objectives and ranged from 0.3 to 0.91 m diameter 
in hoop width.

Trapping occurred between 1999 and 2019 in West Virginia, and 
between 2008 and 2013 in Texas (Appendix S1). Painted turtles were 
sampled at 49 wetlands across 10 counties in southern and east-
ern West Virginia (Figure 1; Appendix S1). Red-eared sliders were 
sampled at 43 wetlands across five counties in south, central, and 
west Texas (Figure 1; Appendix S1). Midline carapace length (MCL) 
was measured to the nearest 1 mm using tree calipers (method D in 

Iverson & Lewis, 2018). Weight was measured using spring scales to 
the nearest 1, 5, 10, and 50 g for turtles weighing ≤10, ≤600, ≤2,500, 
and >2,500 g, respectively (Brown et al., 2020). Turtles were indi-
vidually marked using marginal scute notches (Cagle, 1939). In both 
states, sampled wetlands occurred in agricultural systems, river 
backwaters, and natural areas. In Texas, several wetlands also oc-
curred in heavily urban environments. Wetlands ranged in size from 
0.008 to 5.577 ha (median = 0.063 ha) in West Virginia and 0.018 to 
66.264 ha (median = 1.145 ha) in Texas.

2.2 | Landscape condition

We used NatureServe's Landscape Condition Model (LCM) for 
Temperate North America as our landscape condition index (Hak 
& Comer,  2017). This index is based on 20 landscape character-
istics, categorized as transportation (including roads at multiple 

F I G U R E  1   Map of counties sampled 
for painted turtles (Chrysemys picta) in 
West Virginia (top) and red-eared sliders 
(Trachemys scripta elegans) in Texas 
(bottom), USA (inset). We sampled 49 
wetlands in West Virginia between 1999 
and 2019, and 43 wetlands in Texas 
between 2008 and 2013
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classification levels), urban and industrial development, and man-
aged and modified land cover (Hak & Comer, 2017). Ecological integ-
rity is scored from 0 to 1, with scores close to 0 and 1 representing 
areas of lowest and highest ecological integrity, respectively (Hak & 
Comer, 2017). The model has a spatial resolution of 90 m2. We digi-
tized sampled wetland boundaries using aerial imagery and created 
buffers around each water body at 0.1 km, 1.0 km, and 2.5 km. The 
0.1, 1.0, and 2.5 km buffers were specified to approximate local wet-
land, home range size, and dispersal area size buffers for our focal 
turtle species (Bodie & Semlitsch,  2000; Bowne & White,  2004; 
Gibbons,  1967; Tucker & Lamer,  2008). We computed the mean 
landscape condition value within each buffer.

The LCM provides a static measure of ecological integrity and 
was constructed using datasets representing environmental condi-
tions between approximately 2003 and 2010, including the 2011 
National Landcover Database (NLCD; Hak & Comer, 2017). We per-
formed a preliminary analysis to ensure the land cover surrounding 
our sites was similar between the turtle sampling and LCM time-
frames. We obtained the NLCD data for the years 2001, 2006, 2011, 
and 2016, clipped the layers to a 2.5  km buffer around each site, 
and computed Pearson's correlation coefficients between the 2011 
NLCD layer and the layer that most closely matched the turtle sam-
pling timeframe. Pearson's correlation coefficients were ≥0.9588 
across all sites, indicating the LCM likely provides a reliable metric of 
ecological integrity for our sites. All spatial analyses were performed 
using ArcMAP 10.6 (ESRI, Redlands, California, USA).

2.3 | Turtle relative abundance

Trapping effort varied among wetlands, and thus, we used captures-
per-unit-effort (CPUE) as our metric of relative abundance (Brown 
et al., 2011; Murray & Seed, 2010). To obtain CPUE, we divided the 
number of unique individual captures of the focal species by the 
number of trap days (TD) at each wetland, where a single TD repre-
sented one trap in the water for one day (Appendix S1). To minimize 
potential CPUE biases due to level of trapping effort, we specified 
a target effort of 50 TD and removed sites with <20 TD (n = 2). For 
sites with >50 TD, we excluded all subsequent days of trapping once 
the site reached 50 TD. For the analysis, site-level TD ranged from 
20 to 123 (mean = 54, hereafter reduced CPUE analysis; Appendix 
S1). We supplemented the reduced CPUE analysis with an additional 
analysis that included all TD at each site (hereafter full CPUE analy-
sis; Appendices S2 and S3). For both analyses, we excluded 9 sites in 
West Virginia because number of trap days was not available.

2.4 | Turtle body condition

We computed turtle BCI scores using the residuals of log-transformed 
MCL-weight regressions (Schulte-Hostedde et  al.,  2005). We com-
puted BCIs separately for each sex within each species and standard-
ized the values (0 mean, 1 standard deviation) so that BCI scores were 

weighted equally among each sex and species (Schulte-Hostedde 
et al., 2005). We removed adult and subadult turtle capture records 
with unrecorded sex from the dataset. We also excluded juveniles, in-
cluding painted turtles <89 mm MCL (Balcombe & Licht, 1987; Lefevre 
& Brooks, 1995) and red-eared sliders <101 mm MCL (Cagle, 1948) 
because sex was unknown for this size class.

2.5 | Statistical analyses

We used linear mixed-effects models to analyze the relation-
ship between landscape condition and turtle CPUE and BCI 
(Zuur et al., 2009). For CPUE, we grouped wetlands into four size 
classes (Class 1 = <2.750 ha; Class 2 = 2.750 ha < 10.795 ha; Class 
3 = 10.795 ha < 33.615 ha; Class 4 = ≥35.615 ha) using the Jenks 
natural breaks classification method (Jenks,  1977). This method 
is based on Fisher's “Exact Optimization” method (Fischer,  1958), 
which seeks to optimize homogeneity within groups by minimizing 
the sum of squares difference. We included size class as a random ef-
fect to account for potential effects of wetland size on CPUE. Fixed 
effects included landscape condition value (LCV) and trap size. For 
this analysis, we used the LCV extent that was most supported for 
the BCI analysis. We specified traps as small (0.3 m) or large (0.76–
0.91 m) to account for potential trap size effects on CPUE of painted 
turtles in West Virginia. Trap size (0.76 m) was consistent for all wet-
lands sampled for red-eared sliders in Texas. For CPUE, preliminary 
analyses indicated the LCV relationship may be quadratic, and thus 
we tested LCV as both a linear and quadratic predictor. For BCI, we 
included wetland as a random effect to account for site-level envi-
ronmental variation independent of landscape condition that could 
influence BCI. Fixed effects included sex and mean LCV surround-
ing the wetland at distances of 0.1, 1.0, and 2.5 km. We tested the 
influence of sex as both an additive effect and an interactive effect.

We used Akaike's information criterion corrected for small sample 
size (AICc) to rank candidate models (Burnham & Anderson,  2004). 
We considered models to have strong support if ∆AICc < 2 (Burnham 
et al., 2011). For the most supported models, we assessed confidence 
for an effect of each variable by computing the 85% confidence in-
tervals (CI) of the beta coefficients (Arnold,  2010) and considered 
there to be evidence for a strong effect when CIs did not overlap zero 
(Halsey, 2019). For all analyses, we assessed assumptions of normal-
ity using quantile–quantile plots and homoscedasticity using residual 
plots (Zuur et  al., 2009, 2010). For the CPUE models, we removed 
one painted turtle site to satisfy the assumption of normality. For the 
BCI models, we removed 23 extreme outliers (>4 standard deviations 
from the mean), which likely represented incorrect MCL or weight 
measurements. All analyses were conducted using program R (version 
3.6.3). We performed the Jenks natural breaks classification using 
the package BAMMtools (version 2.1.7) and assessed model assump-
tions using the package car (version 3.0-6). We created mixed-effects 
models using the package nlme (version 3.1-142), performed model 
selection analyses using the package AICcmodavg (version 2.2-2), and 
plotted results using the package ggplot2 (version 3.2.1).
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3  | RESULTS

For the reduced CPUE dataset, CPUE per wetland ranged from 0.02 
to 1.00 (mean = 0.22) for painted turtles in West Virginia and from 
0 to 0.70 (mean = 0.14) for red-eared sliders in Texas (Appendix S1). 
For the BCI dataset, unique turtle captures per wetland ranged from 
1 to 109 (mean = 14) for painted turtles in West Virginia and from 1 
to 135 (mean = 17) for red-eared sliders in Texas (Appendix S1). The 
LCV scores ranged from 0.016 to 0.6 (mean = 0.221) for sampled 
wetlands in West Virginia and from 0.005 to 0.890 (mean = 0.437) 
for sampled wetlands in Texas. The LCV scores were highly corre-
lated among the three buffer sizes within each state (r2 =  .82–.96), 
indicating landscape condition near the wetland was similar to land-
scape condition in the surrounding landscape, at least at the spatial 
resolution of the LCM.

For the painted turtle reduced CPUE analysis, the most sup-
ported model was the null model (wi = 0.51; Table 1). The second 
most supported model was the linear 2.5 km LCV model (wi = 0.26, 
ΔAICc = 1.31). For this model, predicted CPUE decreased by 0.296 
as LCV increased from 0 to 1 (Figure 2a), but the CI broadly over-
lapped zero (−0.695–0.104). We obtained similar results for the full 
CPUE analysis (Appendices S2 and S3). For painted turtle BCI, the 
linear 2.5 km LCV model was the most supported model (wi = 0.28; 
Table 1). The linear 2.5 km LCV + sex (wi = 0.18, ΔAICc = 0.90) and 
linear 1.0 km LCV (wi = 0.13, ΔAICc = 1.51) models also had strong 
support. The null model received the lowest support (wi  =  0.01; 
Table  1). For the most supported model, predicted BCI increased 
1.32 standard deviations as LCV increases from 0–1 (Figure 3a), and 
the CI did not overlap zero (0.782–1.849).

For the red-eared slider reduced CPUE analysis, the most sup-
ported model was the linear 2.5 km LCV model (wi = 0.53), but the 
quadratic 2.5 km LCV (wi = 0.25, ΔAICc = 1.49) and null (wi = 0.22, 
ΔAICc = 1.76) models also had strong support (Table 1). The linear 
2.5 km LCV model-predicted CPUE decreased 0.19 standard devia-
tions as LCV increased from 0 to 1, and 85% CI did not overlap zero 
(−0.058 to −0.328; Figure 2b). The modeled relationship was similar 
for the full CPUE analysis (Appendix S3), except the quadratic 2.5 km 
LCV model received higher support than the linear model (Appendix 
S2). For red-eared slider BCI, the most supported model was the 
null model (wi  =  0.36; Table  1). The linear 2.5  km LCV (wi  =  0.16, 
ΔAICc = 1.61) and linear 1.0 km LCV (wi = 0.13, ΔAICc = 1.99) mod-
els also had strong support. For the linear 2.5 km LCV model, pre-
dicted BCI increased 0.16 standard deviations as LCV increases from 
0 to 1 (Figure  3b). However, the 85% CI broadly overlapped zero 
(−0.174–0.503).

4  | DISCUSSION

Generalist species often appear to benefit from anthropogeni-
cally degraded landscapes, but the underlying causes that en-
able increased densities of most habitat generalists are not clear. 
We sought to improve our understanding of the underlying forces 

TA B L E  1   Model selection results for the influence of landscape 
integrity (landscape condition value [LCV]) on captures-per-unit-
effort (CPUE) and body condition index (BCI) of painted turtles 
(Chrysemys picta) in West Virginia and red-eared sliders (Trachemys 
scripta elegans) in Texas

Model AICc ΔAICc wi

Chrysemys picta

CPUE

(.) 2.08 0.00 0.51

LCV2.5 3.39 1.31 0.26

LCV2.5 (Q) 5.08 3.00 0.11

LCV2.5 + Trap size 5.82 3.74 0.08

LCV2.5 (Q) + Trap size 7.56 5.48 0.03

BCI

LCV2.5 1,707.23 0.00 0.28

LCV2.5 + Sex 1,708.13 0.90 0.18

LCV1.0 1,708.74 1.51 0.13

LCV0.1 1,708.78 1.56 0.13

LCV2.5 × Sex 1,709.46 2.23 0.09

LCV1.0 + Sex 1,709.99 2.76 0.07

LCV0.1 + Sex 1,710.21 2.98 0.06

LCV1.0 × Sex 1,711.51 4.28 0.03

LCV0.1 × Sex 1,712.12 4.89 0.02

(.) 1,714.15 6.93 0.01

Trachemys scripta elegans

CPUE

LCV2.5 −31.25 0.00 0.53

LCV2.5 (Q) −29.75 1.49 0.25

(.) −29.48 1.76 0.22

BCI

(.) 2,011.47 0.00 0.36

LCV2.5 2,013.08 1.61 0.16

LCV1.0 2,013.47 1.99 0.13

LCV0.1 2,013.49 2.02 0.13

LCV2.5 + Sex 2,015.10 3.63 0.06

LCV1.0 + Sex 2,015.49 4.01 0.05

LCV0.1 + Sex 2,015.52 4.04 0.05

LCV2.5 × Sex 2,017.13 5.66 0.02

LCV1.0 × Sex 2,017.49 6.02 0.02

LCV0.1 × Sex 2,017.54 6.07 0.02

Note: For CPUE, we used a reduced trapping dataset with a target of 
50 trap days per site. We used Akaike's information criterion corrected 
for small sample size (AICc) to rank candidate models. For CPUE, we 
used the 2.5 km LCV and tested a linear and quadratic (Q) relationship. 
The size of traps (Trap Size) varied at West Virginia sites and was 
included as a candidate predictor for C. picta. For BCI, we ranked mean 
LCV at 0.1, 1.0, and 2.5 km surrounding wetlands. We also tested the 
influence of sex as an additive and interactive predictor at the three 
spatial scales. We standardized BCI by species and sex prior to analysis. 
The null model is shown as (.) and includes only the intercept. Wetland 
buffer distance is denoted by subscripts following the LCV term. Akaike 
weights are represented as wi.
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allowing two generalist turtle species to maintain high abundances 
in highly degraded systems. Our results provide some support for 
the hypothesis that generalist freshwater turtle species benefit from 
anthropogenic land use, as relative abundance of both species was 
negatively associated with ecological integrity. However, the two 
species differed in individual-level responses, with reduced ecologi-
cal integrity appearing to negatively impact painted turtles but not 
red-eared sliders. This indicates that painted turtles may benefit 
from anthropogenic land uses through other factors than improved 
habitat quality, such as reduced predation or competition pressure, 
which has been documented for other freshwater turtle species 
(Petrozzi et al., 2021; Ryan et al., 2008; Spencer & Thompson, 2005).

It is interesting that individual-level responses to ecological in-
tegrity differed between these two generalist turtle species, as both 
species are prevalent in wetlands that span a wide range of envi-
ronmental conditions (Brown et  al.,  2012; Buchanan et  al.,  2019). 
Wetlands associated with anthropogenic landscapes generally differ 
from those in more natural systems. For example, wetlands associ-
ated with developed and working lands are often more eutrophic 
(Kennish, 2002; Smith & Schindler, 2009), which in turn influences 
many abiotic and biotic factors (McCormick & Laing, 2003; McGoff 
et al., 2013; Naselli-Flores & Barone, 2000). Created wetlands (e.g., 
farm ponds and mitigation wetlands) also tend to be deeper than 
natural wetlands (Cole & Brooks, 2000; Cole et al., 2006; Gamble & 

F I G U R E  3   Model-estimated relationships between mean 2.5 km landscape condition value (LCV) and standardized body condition index 
(BCI) scores for (a) painted turtles (Chrysemys picta; n = 625) sampled at 46 wetlands across 10 counties in West Virginia and (b) red-eared 
sliders (Trachemys scripta elegans; n = 715) sampled at 42 wetlands across 5 counties in Texas. We included wetland as a random effect in 
analyses to account for site-level environmental variation independent of landscape condition that could influence BCI. Black circles depict 
standardized BCI values, and gray bands depict 85% confidence intervals. Note the maximum LCV for C. picta sites was 0.6

F I G U R E  2   Model-estimated relationship between mean 2.5 km landscape condition value (LCV) and captures-per-unit-effort (CPUE) 
for (a) 39 painted turtle (Chrysemys picta) wetlands located across 10 counties in West Virginia, and (b) 41 red-eared slider (Trachemys scripta 
elegans) wetlands located across five counties in Texas using the reduced CPUE analysis dataset. Wetlands where trap days could not be 
calculated were excluded from this analysis. We included wetland size as a random effect in analyses to account for the influence of size on 
CPUE. Black circles depict observed CPUE, and gray bands depict 85% confidence intervals. Note the maximum LCV for C. picta sites was 
0.6
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Mitsch, 2009). These wetland-specific characteristics likely interact 
with the surrounding landscape condition to influence habitat qual-
ity for the two species (Buchanan et al., 2019; Cosentino et al., 2010; 
Ryan et al., 2008). While our study was not designed to control for 
wetland characteristics, we encourage future studies to explore in-
teractions between landscape integrity and species-specific wetland 
habitat quality.

The red-eared slider has successfully established non-native 
populations in many regions of the world (e.g., France [García-
Díaz et  al.,  2017], Japan [Kakuda et  al.,  2019], South Korea [Oh 
et al., 2017]). Our results suggest that even within their native dis-
tribution (apart from one study site in west Texas), red-eared slid-
ers benefit from environmental conditions associated with lower 
ecological integrity. The ability to exploit anthropogenic habitats, 
in conjunction with potentially reduced competitive pressure in 
anthropogenically altered systems (Cadi & Joly, 2003), could ex-
plain why red-eared sliders are a particularly successful invasive 
species. In contrast, painted turtles did not appear to strongly 
benefit from lower ecological integrity and are also not a promi-
nent invasive species, despite also being common in the pet trade 
(Hohn, 2003; Telecky, 2001). Interestingly, red-eared sliders typ-
ically achieve much higher densities than painted turtles in sym-
patric areas (Bodie et  al.,  2000; Dreslik et  al.,  2005), indicating 
red-eared sliders may be competitively dominant (Lindeman, 1999; 
Polo-Cavia et al., 2011).

Anthropogenic land use changes result in creation, loss, and 
alteration of environmental conditions, resulting in wildlife spe-
cies “winners and losers” (McKinney & Lockwood, 1999). Globally, 
freshwater turtles are declining in human-dominated systems 
due to a variety of pressures, such as habitat loss and degrada-
tion, and overexploitation for food or pets (Gibbons et al., 2000; 
Lovich et  al.,  2018). Further, the general life history strategy of 
freshwater turtles is characterized by a long lifespan, delayed sex-
ual maturity, and low annual recruitment (Congdon et  al.,  1994), 
which can result in both slow declines and slow recovery rates 
(e.g., Howell et  al.,  2019; Mullin et  al.,  2020). Our investigation 
of the relationship between landscape integrity and habitat qual-
ity for two widely distributed habitat generalist turtles in North 
America suggests that ecological integrity has little influence on 
habitat quality for the red-eared slider, potentially explaining its 
prominence as an exotic invasive species (Lowe et al., 2000), and 
ecological degradation could benefit both species at the popu-
lation level. Thus, as many regions in North America continue to 
shift toward heavy anthropogenic use (e.g., agriculture and urban-
ization; Brown et al., 2005; Ordonez et al., 2014), we expect these 
two species to be “winners” in comparison with other sympatric 
freshwater turtle species.
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