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Abstract: The Kleier model and Carrier-mediated theory are effective for molecularly designing
pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory
cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed
investigation of the two models and the scope of their applications can provide a more accurate and
highly efficient basis for the guidance of the design and development of phloem-mobile pesticides.
In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds
is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the
pesticide’s physicochemical properties following the Kleier model, thus allowing the conjugates to
fall on the predicted and more accessible transportation region of phloem. Moreover, the influence
of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To
verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-
Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.)
indicated that all the target compounds (4a–4f) had phloem mobility. The capacity for phloem
mobility shows that N-alkylated glycine containing small substituents can significantly improve
PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-
Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil–water partition coefficient between 1.2~2.5. In
particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility,
with the average concentrations in phloem sap of 14.62 µM, 13.98 µM, and 17.63 µM in the first
5 h, which are 8 to 10 times higher than PCA-Gly (1.71 µM). The results reveal that the Kleier
model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides.
However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there
is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem
transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant
compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated
theory. It is necessary to consider the improvement of physicochemical properties according to the
Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.

Keywords: Kleier model; Carrier-mediated theory; phloem mobility; phenazine-1-carboxylic acid;
synthesis
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1. Introduction

In recent years, pesticides with phloem mobility [1,2] have received considerable
attention due to their effective control of vascular pathogens [3] and improved targeting
and utilization efficiency, reducing their usage and associated environmental pollution [4].
Since most pesticides do not have phloem mobility, it is necessary to develop strategies to
guide the molecular design of pesticides and improve phloem mobility.

A mathematical model to associate phloem mobility with xenobiotic-physicochemical
properties (acid dissociation constant and octanol-water partition coefficients, Log Kow
and pKa) was established by Kleier et al. [5]. Xenobiotics with a pKa between −0.5~4 and a
Log Kow between 3~6 may have phloem mobility. In previous reports, the Kleier model
(Figure 1) was verified as a potential method for predicting whether a compound obtained
phloem mobility or not [6–10]. For instance, using the Kleier model, N-carboxymethyl-
3-cyano-4-(2,3-dichlorophenyl)pyrrole exhibits good phloem mobility [10]. Furthermore,
some compounds are absorbed by endogenous carriers in plants, such as glyphosate and
paraquat [11,12] (Figure 2). L-type amino acid transporters (LAT1/LAT2) play significant
roles in the uptake of glyphosate [11]. Paraquat uptake is involved in polyamine transporter
RMV1 and AtPDR11 [12]. Therefore, another approach to converting nonmobile pesticides
into phloem-mobile types consists of introducing endogenous plant substances, such as
glucose and amino acid peptides, to modify pesticide molecules by click chemistry [13–18],
which involves a carrier-mediated process. For example, coupling a non-phloem-mobile in-
secticide with glycine could improve phloem mobility with fipronil-glycine conjugates [15]
(Figure 3). Amino acid carriers were found more efficient in translocating phenyl pyrrole
conjugates than sugar carriers [16]. Four amino acid transporters, RcLHT6, RcANT15,
RcProT2, and RcCAT, may be involved in the glycine–fipronil coupling phloem trans-
port [17]. Thus, the phloem mobility of exogenous substances correlates with their own
physicochemical properties and plants’ endogenous carriers.
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Phenazine-l-carboxylic acid (PCA) is an antibiotic secreted by Pseudomonas sp. M18. [19,20]
PCA is a dual-function fungicide capable of the broad-spectrum inhibition of plant pathogens
and promoting plant growth [21,22]. It has the characteristics of a broad-spectrum and a
high-efficiency. Currently, PCA is registered as a new microbially sourced fungicide for
rice in China and has been widely promoted. However, PCA does not have phloem mobil-
ity [23,24]. In our previous reports, we have developed a vectorization strategy coupling
the PCA to amino acids based on Carrier-mediated theory, which successfully confers
phloem mobility to PCA [23–29]. The PCA was absorbed by the plants in the form of
conjugates and then hydrolyzed by amide hydrolase to PCA [29]. (Figure 4). However, the
phloem mobility of these couplings should be further improved [23,29]. Meanwhile, some
interesting phenomena have been discovered. For example, based on the Kleier prediction
model, the conjugates PCA-L-Tryptophan and PCA-L-Tyrosine (Figure 5) should have
an excellent diffusion through the membrane, and phloem mobility should be observed.
Nevertheless, the experimental results of the phloem sap analysis violate the Kleier model.
PCA-L-Tryptophan and PCA-L-Tyrosine were found to have no phloem mobility, but this
may be due to the lack of relevant amino acid carriers [24]. Amino acid carriers should
more easily recognize PCA-Gly to improve phloem mobility, but their phloem mobility
was not as satisfactory as expected because they are more hydrophilic with a low diffusion
through the membrane [24]. Thus, the single Kleier model or Carrier-mediated theory
cannot achieve a reliable explanation of the phloem mobility of all exogenous substances.
In the present paper, a novel strategy of combining Carrier-mediated theory and the Kleier
model is proposed for the first time to improve compounds’ phloem mobility. On the
one hand, based on Carrier-mediated theory, the active ingredient-amino acid conjugate
operates as the molecular model; on the other hand, the N-alkylated amino acid conjugate
improves the physicochemical properties by following the Kleier model to promote phloem
mobility. Then, the capacity of the Kleier model and Carrier-mediated theory to design
phloem-mobile pesticides is inspected, which may provide a more accurate and highly
efficient basis for guiding the design and development of phloem-mobile pesticides.

To verify this strategy, PCA-glycine conjugate [24] (a compound with phloem mobility
synthesized by our research group) was chosen as the molecule model due to the glycine-
rich nature of the model plant. Furthermore, a series of the N-alkylated derivatives of
PCA-Gly were designed and synthesized (Scheme 1). Hydrogen linked with a nitrogen
atom is substituted by methyl, ethyl, isopropyl, tert-butyl, and phenyl (4a–4f). Among
them, the Glycine fragments guarantee that they can be carried by carriers, and the N-
alkylated derivatives will enhance the hydrophilicity via a higher diffusion through the
membrane. The phloem mobility of all the coupling compounds was evaluated by ultra-
performance liquid chromatography-mass spectrometry (UHPLC-MS) using castor bean
seeds (R. communis L.) and a castor bean plant model. The relationship between the
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movement of phloem with the structure of exogenous compounds was discussed by the
Kleier model and Carrier-mediated theory.
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Scheme 1. Synthetic route of the title compounds 3a–3l and 4a–4f. Reagents and conditions: (A) K2CO3,
room temperature, 12 h; (B) oxalyl chloride (1.5 equiv), CH2Cl2, reflux, 8 h; (C) triethylamine (5 equiv),
CH2Cl2, 0 ◦C, 6 h; (D) lithium hydroxide, 1,4-dioxane/H2O (v/v = 1:1), room temperature, 5 h.

2. Results and Discussion
2.1. Synthesis

According to Scheme 1, the target compounds were synthesized with four-step reac-
tions. Due to the water sensitivity of intermediate two, the solvents in this study needed to
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be pretreated to an anhydrous state. Since intermediate two is unstable, it is prepared to
react with intermediate one immediately. Compounds 3a–3l were designed to study the
structure-activity relationship by performing a series of alkylation steps at the R1 position
on N and linking the methyl and ethyl groups at the R2 position. Compounds 4a–4f were
designed to study the phloem mobility by altering the physicochemical properties of the
compounds. The structures of the title compounds 3a–3l and 4a–4f were characterized by
1H-NMR and a high-resolution mass spectrum (HR-MS) (See Supplementary).

2.2. Phloem Mobility in R. communis Seedlings

The phloem mobility of 3a, 3g, 4a–4f, PCA, and PCA-Gly was evaluated using the
R. communis seedlings system, which is an ideal biological model that is widely employed
to study the phloem mobility of xenobiotics [25,26]. The cotyledons were incubated with
each compound of 200 µM for 2 h. The phloem sap was then collected and analyzed using
UHPLC-MS.

The detection results for the phloem sap are shown in Table 1. For the cotyledons
incubated in the presence of PCA, the fungicide was not detected in the phloem sap even
after 5 h. Compounds 3a and 3g were not detected, validating our previous experimental
conclusions that PCA-amino acid ester conjugates do not have phloem mobility [27]. In
contrast, when the cotyledons were incubated with compounds PCA-Gly and 4a–4f, these
compounds were clearly found in the phloem sap. The test of the PCA-Gly shows good
reproducibility and indicates the applicability of Carrier-mediated theory.

Table 1. Concentrations of compounds 3a, 3g, 4a–4f, PCA-Gly, and PCA in phloem sap of castor
bean seedlings at 1~5 h.

Compd.
Concentration in Phloem Sap a (uM)

1 h 2 h 3 h 4 h 5 h Average
Concentration

3a NDb ND ND ND ND 0
3g ND ND ND ND ND 0
4a ND 14.06 ± 1.04 b 16.69 ± 0.79 b 19.41 ± 1.33 b 22.96 ± 2.01 c 14.62
4b ND ND 17.44 ± 0.55 ab 22.56 ± 0.21 ab 29.90 ± 0.49 a 13.98
4c ND 21.52 ± 1.77 a 18.58 ± 1.27 a 22.79 ± 0.96 a 25.26 ± 0.39 b 17.63
4d ND 5.29 ± 0.25 c 4.65 ± 0.67 cd ND ND 1.99
4e 0.74 ± 0.23 a 2.30 ± 0.32 d 0.96 ± 0.11 e 0.95 ± 0.19 c 1.09 ± 0.07 d 1.21
4f 0.54 ± 0.18 a 0.56 ± 0.21 d 0.83 ± 0.18 e 1.18 ± 0.22 c 1.56 ± 0.13 d 0.93

PCA-Gly ND 2.10 ± 0.12 d 2.51 ± 0.22 d 2.08 ± 0.16 c 1.88 ± 0.27 d 1.714
PCA ND ND ND ND ND 0

Notes: a Phloem sap was collected at a 1 h intervals for 5 h. Each data point is the mean of 12 seedlings ± SE
(n = 3). b “ND” means not detected. Duncan’s multiple range tests at a 5% probability level were used to determine
statistical differences between treatments simultaneously. The data in the table are the mean ± SE, and those
followed by different letters in the same column are significantly different at the 5% level.

Notably, compared with PCA-Gly, compounds 4a–4f increasingly deviated from the
recognizable structure of an amino acid carrier, but four of the compounds (4a, 4b, 4c, and 4d)
exhibited better phloem mobility. The phloem transport ability was 4c > 4a ≈ 4b > 4d > PCA-
Gly > 4e > 4f in the castor bean system. Compounds 4a (CH3-N), 4b(C2H5-N), and 4c
(i-C3H7-N) had better phloem mobility, with the average concentrations in phloem sap of
14.62 µM, 13.98 µM, and 17.63 µM in the first 5h, which were 8 to 10 times higher than
PCA-Gly (1.71 µM). Compared with our previous studies [23–31], compounds 4a–4c’s
phloem transportation ability comprised the best class of compounds. The results im-
perfectly correspond to Carrier-mediated theory, as based on Carrier-mediated theory,
PCA-Gly should have the best phloem mobility. These findings suggest that the single
Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all
exogenous substances.
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2.3. Prediction of Phloem Mobility Using the Kleier Model

The Kleier model is widely used to predict whether xenobiotics have phloem mobility
based on their physicochemical properties (log Kow and pKa) [6–10]. The experimental
data fit well with the theoretical predictions for most of the tested xenobiotics. Thus, the
physicochemical properties of the compounds 3a, 3g, 4a–4f, PCA-Gly, and PCA are listed
in Table 2. Based on their physicochemical properties, we marked the compounds on the
predicted phloem mobility in Figure 6.

Table 2. Physicochemical properties of compounds 3a, 3g, 4a–4f, PCA-Gly, and PCA.

Compound Molecular Formula Molecular Weight (g/mol) pKa Log Kow

3a C18H17N3O3 323.35 0.05 2.62
3g C17H15N3O3 309.32 0.04 2.22
4a C16H13N3O3 295.29 3.31 1.23
4b C17H15N3O3 309.32 3.31 1.73
4c C18H17N3O3 323.35 3.28 2.09
4d C19H19N3O3 337.37 3.31 2.61
4e C22H17N3O3 371.39 3.30 2.58
4f C17H13N3O5 339.30 3.56 0.98

PCA-Gly C15H11N3O3 281.27 3.29 1.06
PCA C13H8N2O2 224.21 2.34 1.59

Notes: The “Log Kow” was calculated by the ALOGPS 2.1 program; the “pKa” was calculated by the ACD Log D
v 6.00 software.
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As shown in Figure 6, compounds 3a, 3g, 4a, 4f, PCA-Gly, and PCA were predicted to
possibly have certain mobility. Compounds 4b, 4c, 4d, and 4e were in the moderately mo-
bile compounds’ areas, indicating that these compounds have moderate phloem mobility.
This met the design requirements stating that the N-alkylated amino acid conjugate im-
proves the compounds’ physicochemical properties by following the Kleier model, which
can lead it to fall on the transportation region that was predicted to be more accessible in
phloem. Systemic tests with the Ricinus communis seedlings also showed that all the target
compounds (4a–4f) had phloem mobility.

The LogKow is first considered when determining the permeability of exogenous
compounds and the capacity for phloem mobility [6–10]. PCA-Gly and compounds 4a–4e
with the same pKa values (3.28–3.31) and LogKow enhanced gradually (1.23–2.61). Simple
alkylation did not affect the pKa, but significantly improved LogKow. Additionally, the
Kleier model (Figure 6) also predicted that the phloem transport ability by compound
was 4d > 4e > 4c > 4b > 4a > 4f > PCA-Gly. In fact, the phloem transport ability was in the
sequence of 4c > 4a ≈ 4b > 4d > PCA-Gly > 4e > 4f, which contradicts the predictions of
the Kleier model. Compared with PCA-Gly, phloem sap’s concentration does not increase
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linearly but in a particular range. The Kleier model does not reasonably explain this phe-
nomenon, but when we consider Carrier-mediated theory, the results fit our hypothesis.
The phloem mobility of compounds 4a–4c are consistent with the Kleier model’s theoretical
predictions. They have a specific deviation from the identifiable structure of amino acid
carriers but can still be effectively combined. The LogKow enhanced gradually (1.23–2.09),
enhancing the phloem mobility. Although compounds 4d and 4e are more lipophilic than
4a–4c, too much of a deviation in their structures will lead to their reduced recognition or
their being unrecognized by amino acid carriers. Therefore, the phloem mobility’s affect is
lower than the Kleier model predicted. The synergistic effect began to weaken from com-
pound 4d. It can be quantified to enable a LogKow between 1.2 and 2.5. Compound 4f has
two free carboxyl groups but fewer detected in the phloem, due to its high hydrophilicity. It
was also confirmed that the effect of the octanol–water partition coefficients on exogenous
phloem transport is more significant than the acid dissociation constant. Our study verifies
the strategy wherein the introduction of plant endogenous compounds as carriers improves
the phloem mobility of pesticides by Carrier-mediated theory; simultaneously, it proves
the necessity of considering the improvement of the physicochemical properties according
to the Kleier model.

2.4. Phloem Mobility in Adult Castor Bean Plants

To explore whether compounds 4a–4f could pass through the wax layer, the R. communis
plant model was used to measure their ability of phloem mobility. Compound 4c, with the
best phloem mobility towards the castor seedlings, was selected as the test compound to
screen the experimental conditions. As shown in Table 3, the target compound could move
in the phloem without being degraded in detectable amounts during a 24 h test period.
This suggests that compound 4c can pass through the wax layer and accumulate in specific
parts of plants. Based on these results, the relationship between the measured values of
phloem exudates and the time after applying different concentrations of chemicals is shown
in Figure 7. At the concentration of 5 M, the compound 4c in roots reached the maximum
after a 12-h treatment.

According to the phloem mobility of compound 4c in the castor plants under different
conditions, the dosage was 5 M with 12-h treatments to study the phloem mobility of
compounds 4a, 4b, 4d, 4e, 4f, PCA-Gly, and PCA under the same conditions (Table 4). All
the tested compounds can pass through the wax layer and move in the phloem, except
compound 4d and PCA. Among them, the content of compound 4a reached the maximum
in the root more than ten times PCA-Gly. Compared with the results of the phloem mobility
test of the R. communis seedlings, the two results were not wholly consistent. However, the
phloem mobility of compounds 4a, 4b, and 4c were still 1–2 orders of magnitude higher
than that of 4e and 4f. Moreover, the phloem mobility of compound 4e was also far lower
than that of PCA-Gly, but it is more lipophilic than glycine. Thus, the structures that
deviate too much from the amino acid are not recognized by the carriers, which results in
the weakening of the phloem mobility. Compound 4f and PCA-Gly are more hydrophilic
and exhibit a small amount of migration in the plants due to the wax barrier.

Table 3. Contents of compound 4c in the root of castor plant by different treatment.

Concentration (mmol/L)
Content (µg/Kg)

3 h 6 h 12 h 18 h 24 h

root 1 0.14 ± 0.02 d 9.36 ± 0.11 a 3.13 ± 0.14 c 2.96 ± 0.09 cd 4.18 ± 0.21 b

2 0.58 ± 0.04 d 11.05 ± 0.38 a 4.15 ± 0.19 c 3.87 ± 0.22 c 7.16 ± 0.18 b

5 5.44 ± 0.17 b 29.92 ± 0.77 a 34.38 ± 6.91 a 19.54 ± 4.35 ab 17.98 ± 3.82 ad

Note: The treatment was repeated three times in each group (mean ± SE). Duncan’s multiple range tests at a 5%
probability level were used to determine statistical differences between treatments simultaneously. The data in
the table are the mean ± SE, and those followed by different letters in the same column are significantly different
at the 5% level.
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Table 4. Contents of compound 4a–4f, PCA-Gly, and PCA in castor root at 12 h (µg/Kg).

4a 4b 4c 4d

95.35 ± 3.27 a 10.32 ± 0.74 c 34.38 ± 1.96 b ND

4e 4f PCA-Gly PCA

0.72 ± 0.11 d 0.03 ± 0.01 d 7.01 ± 0.72 d ND
Note: “ND” means not detected; The treatment was repeated three times in each group (mean ± SE). Duncan’s
multiple range tests at a 5% probability level were used to determine statistical differences among treatments. The
data in the table are the mean ± SE, and those followed by different letters in the same column are significantly
different at the 5% level.

3. Materials and Methods
3.1. Chemicals

All reagents and solvents were purchased from commercial suppliers. The melting
point was determined by a WRR-Y melting point apparatus (Shanghai Yidian Physical
Optical Instrument Co., Ltd., Shanghai, China). Thin-layer chromatography (TLC) was
conducted on silica gel plates (GF254) (Qingdao Haiyang Chemical Co., Ltd., Qingdao,
China), and spots were visualized on a ZF-I ultraviolet analyzer (Shanghai Gucun Electro-
optical Instrument Factory, Shanghai, China). Column chromatography purification was
carried out on silica gel (200–300 mesh) (Qingdao Haiyang Chemical Co., Ltd., Qingdao,
China). Nuclear magnetic resonance (NMR) spectra were obtained using an AVANCE III
HD 400 NMR spectrometer (Bruker Corporation, Basel, Switzerland). Mass spectrographic
analysis was conducted on a Thermo Scientific Q Exactive TM (Thermo Fisher Scientific,
Waltham, MA, USA).

3.2. Plant Materials

Castor bean seeds (Ricinus communis L.) were provided by the Zibo Agricultural
Science Research Institute. The castor seedlings were planted as previously reported
(Yu et al., 2018). Then, 6-d-old seedlings were selected for the next experiments.

The adult castor bean plants were obtained according to methods described in a
previous study [32]. Castor seedlings were grown in nutrient soil in a greenhouse (25–30 ◦C,
natural light) for 3–4 weeks until 3–4 leaves appeared, and cotyledons and primary leaves
were removed.

3.3. General Synthesis Procedure for Title Compounds 3a–3l and 4a–4f

The synthetic route is described in Scheme 1.
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3.3.1. General Procedure for Glycine Ester Derivatives 1

As shown in Scheme 1, A mixture of R1NH2 (1 mmol), BrCH2COOR2 (2 mmol), and
K2CO3 (3 mmol) in DMF (15 mL) was stirred at room temperature for 12 h. Subsequently,
100 mL of water was added to the reaction mixture, and the mixture was extracted three
times with 30 mL of ethyl acetate. The organic phase was dried with anhydrous sodium
sulfate, filtered, and concentrated in vacuum [33,34].

3.3.2. Synthesis of Phenazine-1-Carbonyl Chloride 2

Phenazine-1-carboxylic acid (2 mmol) was dissolved in 20 mL of anhydrous CH2Cl2;
then, oxalyl chloride (3 mmol) was slowly added. The reaction was stirred at reflux
temperature for 8 h. The reaction solution was evaporated under vacuum, and the residue
was dissolved in 15 mL anhydrous CH2Cl2, which was immediately used for the following
reaction [28].

3.3.3. General Procedure for PCA-Glycine Ester Derivatives 3a–3l

The glycine ester derivative 1 (2 mmol) was dissolved in CH2Cl2 at 0 ◦C, triethylamine
(10 mmol) was added, and the reaction was stirred for 15 min. Then, phenazine-1-carbonyl
chloride 2 (2 mmol) completely dissolved in 15 mL of anhydrous CH2Cl2 was added
dropwise with respect to the above reaction system. The mixture was stirred at 0 ◦C for
about 6 h until the reaction was complete (monitored by TLC). The reaction solution was
washed with a 5% sodium hydrogen carbonate solution and extracted with CH2Cl2. Then,
the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated in
vacuum. Finally, pure target compounds 3a–3l were obtained by column chromatography
(PE/EtOAc, v/v = 4:1) [25].

3.3.4. General Procedure for PCA-Glycine Derivatives 4a–4f

Lithium hydroxide (10 mmol) was added dropwise to a solution of compound 3a
(2 mmol) in water (10 mL) and 1,4-dioxane (10 mL), and the reaction mixture was stirred
at room temperature for 5 h until the reaction was complete (monitored by TLC). The
1,4-dioxane and water were removed under vacuum, and the remaining solid was dissolved
with a small amount of water. The pH of the aqueous solution was adjusted to 2 with
1 mol/L of HCl. The solid precipitate was then filtered and dried to obtain the pure target
compound 4a. Compounds 4b–4f were also synthesized by this method [24].

3.4. Sap Collection from R. communis L. Seedlings

The method of phloem sap collection was the same as that recently described [2,24].
The cotyledons were immersed in a buffered solution containing 200 µmol/L test com-
pounds, and roots were immersed in 500 µmol/L CaCl2 solution. After 2 h of incubation,
the hypocotyls were cut for phloem exudation. Phloem sap was collected at a 1 h intervals
for 5 h. A series of standard solutions (1, 2, 5, 10, and 20 µmol/L) of the test compounds
were prepared in methanol for calibration curves. The linear equations of test compounds
are shown in Table 5.

Table 5. The linear equations of the test compounds (Ricinus communis L.).

Compound Linear Equations R2 LOQ (mg/L)

4a y = 4.6 × 10−7x + 0.3213 0.9996 0.1
4b y = 1.7 × 10−7x + 0.2596 0.9993 0.1
4c y = 9.1 × 10−8x + 0.0389 0.9998 0.3
4d y = 1.8 × 10−7x − 0.0782 0.9999 0.1
4e y = 1.1 × 10−10x − 0.0007 0.9983 0.2
4f y = 8.4 × 10−7x − 0.3128 0.9988 0.1

PCA-Gly y = 6.7 × 10−7x + 0.1035 0.9993 0.4
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3.5. Phloem Mobility in Adult Castor Bean Plants

The methodology used for this phase is as follows. Prepare 1 M, 2 M, and 5 M liquid
containing the compounds, wrap the upper two true leaves, stem, and matrix soil surface
of the castor plant with cling film to avoid contamination of the liquid, and slowly smear
the liquid on the lower two true leaves of the castor plant several times with a brush. The
amount of liquid medicine used was 1 g, and the castor plants were exposed to natural
light in the greenhouse. Repeat the above steps 3 times. Castor root was collected at 3 h,
6 h, 12 h, 18 h, and 24 h and stored at −20 ◦C for testing.

The pretreatment method of castor samples is as follows. Wash, dry, and section the
castor roots. Add 50 mL of methanol with masher crush, add 30 mL of methanol wash
segment, transfer to the triangle in the bottle, and seal it in plastic wrap. Conduct an
ultrasonic extraction for 30 min, vacuum suction filter, filter residue with an appropriate
amount of methanol and ultrasonicate for 10 min, vacuum suction filter again, combine
the filtrate, and place the concentration in a rotary dryer until it is near dry to facilitate the
following purification.

The purification procedure is as follows. The concentrated extract was transferred
to a 250 mL separating funnel with a small amount of dichloromethane; then, 50 mL 10%
sodium chloride solution and 5 mL NaOH solution were added. After mixing, 50 mL,
40 mL, and 30 mL dichloromethane was added separately, the extraction was shaken
three times, and the lower layer (dichloromethane) was discarded. The pH of the alkaline
aqueous phase was adjusted to 3 with 1.6 mL of glacial acetic acid (purity ≥ 99.5%); then, the
dichloromethane phase was extracted with 50 mL, 40 mL, and 30 mL dichloromethane three
times by shaking, and the dichloromethane phase was collected. After being dehydrated
by anhydrous sodium sulfate, the dichloromethane phase was dried by rotation, and the
volume was fixed with 5 mL of chromatographic methanol and filtered through a 0.45 µm
membrane. A series of standard solutions (0.5, 1, 2, 5, 10, and 20 µmol/L) of test compounds
were prepared in methanol for calibration curves. The linear equations of test compounds
are shown in Table 6.

Table 6. The linear equations of the test compounds (Adult castor bean plants at 3–4 leaf stage).

Compound Linear Equations R2

4a y = 3.4 × 10−7x + 0.3054 0.9995
4b y = 1.1 × 10−7x − 0.0864 0.9998
4c y = 7.1 × 10−8x − 0.2330 0.9993
4d y = 9.9 × 10−6x − 0.2282 0.9993
4e y = 1.0 × 10−7x − 0.2599 0.9993
4f y = 4.7 × 10−7x − 0.1863 0.9994

PCA-Gly y = 6.6 × 10−7x − 0.0723 0.9993

3.6. Analytical Methods

The phloem sap was diluted with pure water (phloem sap/pure water, v/v = 1:9), and
analyzed by ultra-high performance liquid chromatography mass spectrometer (UHPLC-
MS) (Thermo UltiMate 3000 TSQ-Quantis, Waltham, MA, USA). A C18 reversed-phase
column (3 um, 100 × 2.1 mm, Thermo Fisher Scientific Co., Ltd., MA, USA) was used for
separations at 30 ◦C. The mobile phase was composed of methanol and water containing
0.1% formic acid with an isocratic elution (methanol/water containing 0.1% formic acid,
v/v = 70:30) at a flow rate of 0.4 mL/min. And the injection volume was 10 µL. The
optimized parameters of electrospray ionization in the positive mode were as follows: pos
ion spray voltage, 3500 V; sheath gas, 30 Arb; aux gas, 5 Arb; ion transfer tube temp, 350 ◦C;
and vaporizer temp, 400 ◦C.

4. Conclusions

All of the hydrolyzed compounds (4a–4f) with exposed carboxyl groups exhibited
excellent phloem mobility in R. communis L. compared to the non-phloem-mobile PCA
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and PCA-amino acid ester conjugates. The phloem mobility of 4a–4c was significantly
enhanced—8 to 10 times higher than PCA-Gly. Therefore, the N-alkylation of PCA-Gly
promotes phloem mobility. Our previous studies have demonstrated that the carboxyl
group is an amino acid-carrier binding site [23–29]. Based on Carrier-mediated theory,
N-alkylated amino acid conjugates will increase molecular width and the steric hindrance,
resulting in the decrease in the carrier-binding conjugates. Compounds 4a–4c are still within
the binding range; thus, their phloem mobility increases with an increasing lipophilicity
and exhibit the synergism of Carrier-mediated theory and the Kleier Model. The synergistic
effect began to weaken starting with compound 4d. The R. communis L. results indicate
that small substituents can significantly improve PCA’s phloem mobility, and this can
be quantified to enable a LogKow between 1.2 and 2.5. Compound 4e is difficult to
combine with amino acid carriers due to the considerable steric hindrance of phenyl. Even
if the lipophilicity was improved, the movement of the phloem is lower than PCA-Gly.
Compound 4f and PCA-Gly are more hydrophilic and exhibit a small degree of migration
in plants. The experiment involving the phloem mobility in adult castor bean plants
showed that most of the tested compounds can pass through the wax layer and move in
the phloem. This synergism is similar to that of Ricinus communis L. Therefore, we suggest
introducing plant endogenous compounds as a promoiety to improve the phloem mobility
of pesticides via Carrier-mediated theory. It is necessary to consider the improvement of
the physicochemical properties according to the Kleier model. This study verifies that
the carrier-mediated theory and Kleier model can play a synergistic role in promoting the
phloem transport of exogenous compounds. As far as we know, this theory is the first
to combine the Kleier model with the Carrier-mediated theory in the design of phloem-
mobile pesticides. We provide an active ingredient-amino acid conjugate structural model,
which can also extend to other plant endogenous nutrients, such as glucose, peptides,
etc. However, more data are still needed for supplements, which will be further studied.
This research and its further iterations will contribute to a scientific theory for developing
phloem-mobile pesticides.
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