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Glioma, the most common primary brain tumor in adults, can be difficult to discern
radiologically from other brain lesions, which affects surgical planning and follow-up
treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma
has stepped into molecular and algorithm-assisted levels. Specifically, the histology-
based glioma classification is composed of multiple different molecular subtypes with
distinct behavior, prognosis, and response to therapy, and now each aspect can be
assessed by corresponding emerging MR sequences like amide proton transfer-weighted
MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result
of this novel progress, the clinical practice of glioma has been updated. Accurate
diagnosis of glioma at the molecular level can be achieved ahead of the operation to
formulate a thorough plan including surgery radical level, shortened length of stay, flexible
fol low-up plan, timely therapy response feedback, and eventually benefit
patients individually.

Keywords: glioma, radiomics, preoperative grading, differential diagnosis, 7-T magnetic resonance imaging,
response assessment in neuro-oncology (RANO), magnetic resonance image
INTRODUCTION

With its heterogeneous histological and imaging features, gliomas may still be the most common
primary brain tumors in adults. The prognosis of patients with gliomas is not better than that of
patients with other cancers, even for glioma patients who undergo various therapies such as
aggressive surgery, chemoradiotherapy, and antiangiogenic therapy. Gliomas frequently occur in
brain lesions and can be difficult to discern radiologically from other brain lesions, which might
influence surgical planning and the course of follow-up treatment. In recent years, the development
of magnetic resonance imaging (MRI) has greatly improved the clinical treatment and management
of glioma patients. Previously, clinicians could only acquire basic information of tumor mostly from
contrast-enhanced T1-weighted MR sequences. However, the pathophysiological aspects of gliomas
can now be directly visualized and investigated with the help of emerging functional MR sequences.
Currently, MRI plays a role throughout the course of the clinical treatment cycle. In addition to
allowing the identification of different lesions in the central nervous system, the therapy plan can be
elaborated in light of increasingly exquisite neuro-oncological imaging. With preoperative grading
and key onco-marker detection, the formulation of individual treatment plans could contribute to
improving prognosis and shortening the hospital length of stay (LOS). The correct radiological
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assessment during follow-up is crucial not only for the follow-up
of glioma recurrence and progression but also for accurate
assessment of therapeutic responses.

This review presents the frontiers of MR sequences in clinical
applications relevant to the oncological imaging of glioma. The
correlations between the MR sequences and their clinical
applications in a glioma oncology diagnosis are discussed.
Finally, the application of ultra-high-field MRI to glioma
oncology is discussed.
NONINVASIVE PREOPERATIVE GRADING

Noninvasive preoperative grading and differential diagnosis of
gliomas are useful for neurosurgeons. To differentiate between
non-enhancing and enhancing brain tumors, amide proton
transfer (APT)-weighted (APTw) MRI can be used in
presurgical radiological assessments (1). As an indirect
indicator of the cellular mobile protein content, APTw imaging
has been well-received for its chemical exchange saturation
transfer (CEST) technique, which allows visualization of
changes in amide protons in the peptide bonds of mobile
proteins that carry the water necessary for MRI. Routine
subjoined APTw sequences in preoperative radiological
examinations could be used for preliminary differentiation
between low-grade (LGGs) and high-grade (HGGs) gliomas
(1). The introduction of intravoxel incoherent motion (IVIM)
MRI alongside APTw improved the efficiency of differentiation
between LGGs and HGGs, with an area under the curve of 0.986
(2). Another systematic review that included 353 patients to
evaluate the diagnostic performance of APTw MRI in
differentiating between LGGs and HGGs indicated that HGGs
have significantly higher amide proton-transfer signal intensity
than LGGs (3). The pooled sensitivity and specificity were 88%
and 91%, respectively. The clinical utility of APTwMRI was thus
considered reliable.

Another powerful and advanced MRI technique is MR
perfusion-weighted imaging (PWI), which can be used to
visualize the aggressiveness and malignancy of a glioma. PWI
facilitates the identification of the proliferation of neogenesis
vessels and tumor angiogenesis in gliomas (4). Tumoral vessels
can lead to hemodynamic changes in the brain due to their
pathological structure, which is revealed in color maps of
cerebral blood volume (CBV) and vessel wall permeability by
means of PWI. This efficiency can be quantified as the relative
CBV (rCBV), which is the ratio of tumoral CBV to normal-
appearing white matter CBV. In PWI, increased CBV often
reflects HGGs. At their first presentation, the rCBV of primary
solid and non-enhancing WHO grade II gliomas on PWI was
significantly lower in LGGs than that in HGGs (5). By setting the
rCBV threshold at a fixed value for differentiation, dynamic
susceptibility contrast-enhanced (DSC) PWI-derived rCBV is
available and reliable for distinguishing newly diagnosed non-
enhancing LGGs from HGGs.

As the traditional assessment for CBV, vascular-space-
occupancy (VASO) MRI is impractical because of its low
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signal-to-noise ratio (6). Inflow-based VASO (iVASO) is
improved by only inverting the blood flowing into the slice,
which could reduce the partial effects of cerebrospinal fluid
volume. Activating the iVASO response within a certain time
window could maximize the reflection of arterial/arteriolar CBV
(rCBVa) changes (7). Combining rCBVa from iVASO MRI with
the minimum apparent diffusion coefficient (mADC) from
diffusion-weighted imaging (DWI) shows higher preoperative
grading efficiency than any sequence alone (8).

For the last decade, dynamic contrast-enhanced (DCE)-MRI
has been a well-established technique for preoperative grading of
gliomas (9, 10). The previous glioma grading model, mainly
based on the “hot-spot” logic of DCE-MRI, recorded the average
value of several well-visualized structures as the “hot-spot,”
which advanced mapping of tumor boundaries but was
deficient in measuring its heterogeneity. To quantify spatial
variation in the grayscale intensity and depict the latent
imaging heterogeneity, the use of textural features in DCE-
MRI has advanced preoperative glioma grading. Textural
features obtained from DCE-MRI, calculated by an algorithm
and screened by the model, showed good efficiency of
discrimination between grade III and IV gliomas. This had
been impossible in the prior “hot-spot” model because of
excessive homogeneity (11, 12).

The degree of intratumoral susceptibility signal (ITSS) of
susceptibility-weighted imaging (SWI) helps to visualize normal
vascular brain structures and the vasculature inside the glioma
(13). HGGs tend to have greater micro-hemorrhage volume and
vigorous angiogenesis under 3-T conventional MRI. Using a 7-T
MRI scanner has a significant advantage over using its precursor
in terms of spatial resolution due to its higher signal-to-noise
ratio. Moreover, local image variance (LIV) is a new
complementary technique that uses 7-T MRI for the
quantification of hypointense microvascular SWI structures.
Using LIV-SWI for quantitative analyses in preoperative
gliomas, a significantly higher value can be found in HGGs
than in LGGs, making 7-T MRI practical for preoperative
grading (14).

Both rCBV from PWI and ITSS from SWI are capable of
grading glioma noninvasively. The rCBV achieves this through
comparing the CBV of tumor with white matter, while ITSS does
this through visualizing the glioma vasculature. While the study
by Park et al. (15) indicates that the degree of ITSS shows a
significant correlation with the value of rCBVmax in the same
tumor segments and the diagnostic performance of SWI on
glioma grading is comparable to that of PWI, recent research
further illustrated that glioma pathological type correlated with
SWI ITSS score and WHO grade correlated with rCBV ratio
(16). The combination of rCBV values and ITSS scores to
improve grading accuracy is recommended (17).
DIFFERENTIAL DIAGNOSIS

Glioma mostly manifests with neurological dysfunction, which
can also be associated with other neoplastic and nonneoplastic
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lesions such as brain inflammation, lymphoma, or brain
metastasis. Certain lesions require nonoperative treatments,
rendering it necessary to distinguish them from gliomas. In
clinical practice, clinical symptoms and preoperative
examination features of these conditions often overlap, making
them indistinguishable. The lack of a clear diagnosis may lead to
invasive procedures such as biopsy, surgery, or even radiotherapy
that may not only be inappropriate for the primary disease
treatment but also eventually aggravate a patient’s condition.
Therefore, it is imperative for clinicians to assess alternative
noninvasive differential diagnostic tools to ensure an accurate
preoperative assessment.

Differential Diagnosis of Inflammation
vs. Glioma
In routine clinical practice, the differentiation of brain
parenchyma inflammation from grade II glioma may present a
dilemma for neurosurgeons. Both inflammation and glioma
manifest on conventional MR sequences as lesions with a mass
effect. On certain sequences, they share the same characteristics,
such as hypointensity on T1-weighted imaging (T1WI),
hyperintensity on T2-weighted imaging (T2WI), and no
enhancement on postcontrast T1WI. Radiomics analysis, a
rapidly growing method, refers to the conversion of
radiological images to quantitative data using a feature
extraction algorithm. The radiomics algorithm overcomes the
difficulties associated with the resolution limits of the bare
human eye, making it an emerging and significant approach in
clinical radiological assessments. By extracting several radiomics
features from routine 3-T MRI sequences and integrating them
into an algorithm, a radiomics model has achieved good
diagnostic efficacy for distinguishing inflammation and
glioma (18).

Differential Diagnosis of Primary Central
Nervous System Lymphoma vs. Glioma
Primary central nervous system lymphoma (PCNSL) is another
common brain lesion with an increase in the incidence rate in
recent decades due to the rising number of immunosuppressed
and immunocompetent patients. PCNSL and HGGs share
structural overlaps on MRI, both of which illustrate contrast-
enhancing lesions with peritumoral edema. Quantitative APTw
imaging analysis indicates that significantly higher homogeneous
APTw hyperintensity, APTw min, and magnetization transfer
ratio (MTR) and lower APTw max, APTw max-min, and CEST
total signal intensity values can be found in PCNSLs than in
HGGs. APT imaging is designed to detect free proteins and
peptides in tissue. High MTR value and low CEST total signal of
PCNSL lesions are often associated with a higher nuclear-to-
cytoplasmic ratio. APTw max-min parameter indicates the
APTw signal heterogeneity within the lesion. Significantly
lower APTw max-min in PCNSL than in HGGs is consistent
with the histopathological features that PCNSLs are
histologically relatively homogeneous (19).

The peritumoral edematous areas of PCNSLs show
significantly lower APTw value than that in HGGs, but the
Frontiers in Oncology | www.frontiersin.org 3
edema MTR values showed no statistical difference between
these two types of tumors (19).

Differential Diagnosis of Brain Metastasis
vs. Glioma
Identifying a glioma from brain metastasis is another clinical
predicament due to the similar symptoms of these conditions.
PWI, an MRI sequence that can characterize the peritumoral
area, theoretically ensures a high diagnostic performance in
differentiating glioma from brain metastasis. Several sequences
from PWI can play a vital role in clinical efficiency, such as DSC,
DCE, and arterial spin labeling imaging. DSC is the PWI
technique that is most commonly preferred by clinicians.
Researchers tend to use rCBV as a DSC parameter to
distinguish gliomas from brain metastases, as gliomas tend
to invade adjacent brain tissue, whereas brain metastases tend
to extrude adjacent brain tissue (20). In DCE-MRI, a glioma has
higher peritumoral rCBV values than those in brain metastasis,
indicating that the rCBV sequence can be practically used for
target identification (21).

Numerous studies have reported distinguishing HGGs with
solitary brain metastasis using DWI and diffusion tensor imaging
(DTI) (22, 23). The focus of this differentiation is to distinguish
infiltrative edema caused by the glioma from metastatic
vasogenic edema. The mean minimum peri-enhancing ADC
values in HGG are significantly higher than those in brain
metastases, and combining DWI and DTI has shown a
moderate diagnostic performance in this peritumoral area (24–
26) (Figure 1 and Table 1).
KEY ONCO-MARKER DETECTION

Isocitrate Dehydrogenase
Mutation of the metabolic enzyme isocitrate dehydrogenase
(IDH) is one of the earliest known genetic events in the
tumorigenesis of LGGs. Recent studies indicate that IDH may
be a key driver in the development of multiple subtypes of LGGs.
Molecular classification of gliomas has been revised due to the
discovery of the IDH1 mutation. Gliomas with IDH1 mutations
tend to have a more favorable prognosis.

Radiomics models can also play a vital role in identifying
IDH-mutant gliomas ahead of surgery. After extracting the
mADC, relative ADC (rADC), and rCBVmax from DWI,
DSC-PWI, and conventional MRI data and integrating them
into a prediction model, the mADC and rADC values were found
to be higher in IDH-mutant gliomas than in IDH-wild-type
gliomas. IDH-mutant gliomas also presented considerably lower
rCBV values. The prediction model demonstrated a moderate
diagnostic performance (31–33).

From a metabolic perspective, in IDH-mutant gliomas,
isocitrate is not converted to a-ketoglutarate (a-KG) as usual
but is converted to a new signature metabolite, 2-
hydroxyglutarate (2-HG) (34). MR spectroscopy (MRS) is a
noninvasive diagnostic modality that allows the detection and
quantification of metabolites in cells and patients (35). Given
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wei and Wei MRI in Glioma
that only IDH-mutant gliomas produce 2-HG, measuring 2-HG
levels through MRS can estimate the IDH mutation status (36).

However, using MRS to identify IDH-mutant gliomas by
detecting 2-HG has some drawbacks, as the process of
correlating the 2-HG level and glioma tumor volume and MRS
per se is time-consuming. Under APTw imaging, IDH-wild-type
gliomas tend to demonstrate heterogeneous masses with
scattered punctate or patchy high APTw signals, while IDH-
Frontiers in Oncology | www.frontiersin.org 4
mutant lesions show homogeneous iso-intensity to minimal
APTw signals, making APTw a non-tumor volume-dependent
and time-saving modality (37).

IDH1-R132H mutation status can also be predicted using 7-T
CEST-MRI, with advanced diagnostic accuracy (p < 0.0001). The
same MR sequence used in preoperative grading can be applied in
IDH mutation status prediction, as IDH mutant gliomas manifest
lower mean SWI-LIV values than IDH–wild-type gliomas (14).
FIGURE 1 | Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) of a glioma. T1-weighted imaging (T1WI) (A), fluid-attenuated inversion recovery
(FLAIR) (B), DWI (C), DWI with b = 0 s/mm2 (D), DWI with b = 1,000 s/mm2 (E), DTI apparent diffusion coefficient (ADC) mapping (F), DTI fractional anisotropy (FA)
mapping (G), DTI directional encoded color FA mapping (H), diffusion tensor tractography (DTT) (I).
August 2021 | Volume 11 | Article 694498
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O6-Methylguanine-DNA Methyltransferase
Temozolomide (TMZ) is an oral alkylating agent that has been
suggested to augment anti-glioma immune responses. Glioma
patients may not respond to chemotherapy of alkylating agents
due to the alkylator resistance caused by pivotal DNA repair
enzyme such as O6-methylguanine-DNA methyltransferase
(MGMT). Chemosensitivity to TMZ can be restored by
methylating the MGMT promoter (MGMTpm). Therefore,
MGMT promoter methylation is a robust indicator of glioma
patients’ sensitivity to TMZ treatment. A radiomics approach
using an automated machine-learning algorithm achieved
moderate discriminatory accuracy of the MGMTpm status
(38). Gd-3DT1WI, T2WI, and fluid-attenuated inversion
recovery sequence (Flair) from 3-T MRI scans were integrated
into the algorithm, of which the kernel is formed by applying the
tree-based pipeline optimization tool (TPOT). The input features
can thereafter be selected and classified, and the best machine-
learning pipeline can be generated.

CBVa obtained from iVASO MRI can identify the difference
of tumor histogram and structural features between MGMT
methylation gliomas and unmethylation ones. The root mean
square and variance features from CBVa histogram and contrast-
enhancing component of the tumor location from structural
imaging enable the iVASO-CBVa to evaluate the MGMT
methylation status in gliomas (39).

Histone H3-K27M Mutation
Compared to gliomas in other regions, diffuse midline gliomas
(DMGs) mostly lead to a worse prognosis due to their diffuse
growth pattern and high levels of intrinsic resistance to therapy.
Frontiers in Oncology | www.frontiersin.org 5
DMG occurs near the cerebral or infratentorial brain midline
and occasionally intrudes into the spinal cord (40). DMG shares
anatomical features with diffuse intrinsic pontine glioma (DIPG),
a term that has now been abolished by the World Health
Organization (WHO). In 2012, aberrations in a regulatory
histone gene (H3) resulting in an amino acid substitution from
lysine to methionine at residue 27 (K27M) were discovered in up
to 40% of pediatric glioblastomas (41). Follow-up studies
indicated that four out of every five childhood DIPG patients
may possess H3-K27M mutations. These patients have a dismal
prognosis (a mean of 0.73 years of survival), while those lacking
the mutation survive for a mean of 4.6 years. Quantifying and
qualifying the radiological features of the DWI in H3-K27M
DMG, a moderately low ADC value compared to the H3-K27M
wild type can be found in solid tumors (42). Through statistically
different ADC values, several significantly lower parameters such
as minimal ADC, peritumoral ADC, ratio of minimal ADC, and
ratio of peritumoral ADC can be integrated to assess the H3-
K27M mutational status in DMG (43).

Ki-67
Proliferation-related Ki-67 is a representative antigen in the cell
cycle. It has been widely used as a proliferation marker for human
tumor cells. Ki-67 maintains low expression levels in normal brain
tissues but is elevated in solid glioma tumors. More malignant
tumors often possess a higher Ki-67 marker index and lead to
worse prognosis. Therefore, it is imperative to assess the Ki-67
level preoperatively for better individual treatment (44).
Fluctuations in texture features can be found in the peritumoral
area of glioma due to the expression of Ki-67. As such, a radiomics
model that integrates texture features from T1WI and T2WI can
effectively assess the Ki-67 level noninvasively (45).

Conventional MRI can provide information about the
volume, location, and texture of the tumor and inevitably
suffers bias caused by the selected region of interest (46).
Multicontrast MRI, the combination of multiple conventional
MRI contrast sequences, could improve the objectivity of lesion
detection (47). Multicontrast radiomics provides complementary
information on both geometric characteristics and molecular
biological traits, which correlate significantly with tumor
proliferation. Under multicontrast MRI, non-wavelet and
wavelet radiomics features were found to correlate significantly
with the Ki-67 labeling index. The radiomics features and related
parameters extracted from multicontrast demonstrated a good
prediction of the Ki-67 level (48).

P53
As a tumor suppressor gene, p53 has strong effects on
gliomagenesis (49). p53 level often results in poor prognosis
and malignant transformation of LGGs. Recent studies indicated
that the sensitivity of gliomas to chemoradiotherapy may also be
associated with the p53 level. Mutant p53 was found to be
specifically associated with tumor location and enhancement
texture maps in LGGs based on preoperative MRI scans (50).
The least absolute shrinkage and selection operator (LASSO)
method is an automated machine-learning approach that can
select the best predictive features from the cohort to prevent the
TABLE 1 | MR sequence and parameter in glioma diagnosis.

Clinical application Sequence Parameter Reference

Preoperative grading
LGG vs. HGG APTw – (1)

PWI rCBV (5)
iVASO+DWI rCBVa+mADC (8)
7T-MRI SWI-LIV (14)

II vs. III (oligodendrogliomas) DCE-MRI Vp+Ktrans (9)
III vs. IV DCE-MRI textural feature (11, 12)
Differential diagnosis
With PCNSL APTw – (19)
With brain metastasis PWI rCBV (20, 21)

DWI+DTI pADC (22–26)
With inflammation Radiomics (cMRI) T1WI+T2WI (18)
Response to therapy
Identify tumor progression DSC-PWI rCBV (27)
Response to TMZ MRS 1H MRS (28)
Response to standard CRT CEST-MRI MTR+NOE+APF (29)

7T CEST-MRI rNOE (30)
LGG, low-grade glioma; HGG, high-grade glioma; APTw, amide proton transfer weighted;
PWI, perfusion-weighted imaging; rCBV, relative cerebral blood volume; iVASO, inflow-based
vascular-space-occupancy; DWI, diffusion-weighted imaging; mADC, minimum apparent
diffusion coefficient; SWI-LIV, susceptibility-weighted imaging local image variance;
DCE-MRI, dynamic contrast-enhanced MRI; Vp, plasma volume; Ktrans, volume transfer
coefficient; DTI, diffusion tensor imaging; pADC, peri-enhancing apparent diffusion coefficient;
cMRI, conventional MR imaging; DSC-PWI, dynamic susceptibility-weighted contrast-
enhanced perfusion-weighted imaging; MRS, MR spectroscopy; CEST-MRI, chemical
exchange saturation transfer MRI; MTR, magnetization transfer ratio; NOE, nuclear
Overhauser effect; APF, amide proton transfer; rNOE, relayed nuclear Overhauser effect.
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bias of overfitting and under-generalization caused by human
selection. By integrating p53-related first-order (including
maximum, median, minimum, and uniformity), shape- and
size-based, and textural (including correlation, run percentage,
and sum entropy) features, p53 level can be noninvasively and
preoperatively predicted (51).

Telomerase Reverse Transcriptase
The key for cancer cells to maintain their proliferative potential
and avoid apoptosis is to maintain telomeres. Telomerase reverse
transcriptase (TERT) is the rate-limiting catalytic subunit of
telomerase. By increasing TERT expression, telomere length can
be sustained (52). Mutations in the promoter region of TERTmay
facilitate TERT expression and serve as a crucial onco-marker in
gliomas, particularly in glioblastomas (GBMs). Numerous studies
have demonstrated that >80% of primary GBMs have a mutated
TERT promoter (TERTpm) (53), indicating that it is fundamental
to this tumor type. Volume of interest is a collection of key
radiomics features selected by a specialized radiologist that can be
further optimized to generate an optimal radiomics signature
(Radscore). Based on a LASSO regression, multiple radiomics
features, such as core necrotic volume percentages, Cho/Cr, Lac,
and the Radscore, were found to be significantly higher in
TERTpm than in TERT-wild-type tumors. Multiparameter
models based on these statistically significant variables could
predict the TERT promoter mutation status preoperatively (54).

Alpha-Thalassemia/Mental Retardation,
X-Linked
The function of alpha-thalassemia/mental retardation, X-linked
(ATRX), as a chromatin remodeling protein is mainly expressed
through histone variant H3.3. Distributed widely in gliomas,
ATRX mutations contribute to the development of alternative
lengthening of telomeres (ALT), and ATRX loss-of-function
mutations have been confirmed to promote ALT (55). Based
on the LASSO regression model, ATRX-associated radiomics
features can be auto-selected. The ATRX status affects the overall
Frontiers in Oncology | www.frontiersin.org 6
image brightness, uniformity of the gray-level distribution,
coarseness of an image, and symmetry of the image (56) (Table 2).

Epidermal Growth Factor Receptor
The epidermal growth factor receptor (EGFR) belongs to the
ERBB family of tyrosine kinase receptors. EGFR signaling
cascade is a key regulator in cell proliferation, differentiation,
division, survival, and cancer development (59). EGFR
overexpression can promote malignant proliferation of glioma
cells, and several studies have focused on suppressing malignant
proliferation by inhibiting its activity (60). A radiomics
algorithm formed by texture features extracted from T2WI
shows a good prediction of EGFR level in lower-grade gliomas.
With 41 features validated and applied, the area under the curve
(AUC) of the receiver operating characteristic (ROC) prediction
curve reached the value of 0.95 (57).

Another study distinguished between glioma with amplified
and non-amplified EGFR under DWI. EGFR-amplified tumor
shows lower mean ADC values than EGFR-non-amplified
gliomas, with an AUC of 0.75. Increased EGFR amplification has
been associated with increased levels of cellular growth and
proliferation. Higher EGFR amplification level reflects higher
cellularity, which may lead to lower ADC values; thus, the mADC
could independently predict the EGFR amplification level (58).
RESPONSE TO THERAPY

In addition to overall survival, which is the gold standard of
response to therapy, radiology-related measurements are
increasingly favored by clinicians and radiologists. The
Response Assessment in Neuro-Oncology (RANO) criteria
were used for the accurate and reproducible assessment of
responses to treatment in gliomas. The RANO criteria, which
involve the radiology-based evaluation and measurement of
tumors, can identify postsurgical progression in a timely
TABLE 2 | Detection of onco-markers preoperatively by MRI.

Onco-markers Sequence Parameter AUC Reference

IDH mutation cMRI+DWI+DSC-PWI mADC+rADC+rCBVmax 0.92 (31)
MRS 2-HG – (35)
APTw – 0.89 (36)

MGMTpm Radiomics (TPOT) 3DT1WI+Gd-3DT1WI+T2WI+FLAIR 0.951 (37)
iVASO CBVa 0.931 (39)

H3-K27M mutation DWI ADC 0.872 (41, 42)
Ki-67 level Radiomics (cMRI) T1WI, T2WI 0.773 (43)

Radiomics (multicontrast MRI) ADC+eADC+CBF+PWmap+b1000+ 0.745 (47)
b0+T1FLAIR+T2FLAIR+T2FSE+T1C

p53 mutation Radiomics (cMRI) T2WI 0.709 (50)
TERT Radiomics (cMRI+MRS) CE-T1WI+Flair+T1WI+T2WI 0.955 (53)
ATRX mutation Radiomics (cMRI) T2WI 0.94 (56)
EGFR amplified Radiomics (cMRI) T2WI 0.95 (57)

DWI mADC 0.75 (58)
August 20
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manner, alter chemoradiotherapy plans, shorten clinical trial
lengths, and reduce drug development costs (61).

Identification of Tumor Progression
For most glioma patients, the glioma posttreatment radiation
effect (PTRE) and tumor progression tend to occur in the first 2
years after surgery. Both present enhanced lesions, peritumoral
irregular edema, space-occupying effects, and cystic necrosis,
similar to conventional MRI- and CT-enhanced images. The
treatment and prognosis of PTRE and tumor progression are
quite different. PTRE often manifests as a positive response to
adjuvant treatment and typically does not require further
invasive treatment. Tumor progression, on the other hand, is a
sign that the previous therapy had failed and should prompt
treatment changes that may provide benefit. Therefore, it is
crucial for clinicians to distinguish between PTRE and tumor
progression to develop a proper treatment plan. Higher
perfusion was observed in regions showing glioma progression
due to active cell proliferation. In regions of PTRE, a lower
perfusion status tends to be present because of capillary stenosis.
This hemodynamic turmoil leads to rCBV variations. Due to the
refined assessment possible with rCBV, DSC-PWI is a reliable
tool for the timely identification of tumor progression (27).

Temozolomide Responses
As an oral alkylating agent, TMZ is currently commonly
administered to glioma patients due to it improving the
adverse effects of traditional chemotherapy drugs. 1H MRS is a
metabolic imaging method that can noninvasively measure
several tumor metabolite levels. The levels of a-ketoglutarate
and glutamate, intermediate products of mutant IDH gliomas,
can be detected and quantitatively assessed by 1H MRS. In an in
vitro experiment, after treatment with TMZ, the a-ketoglutarate
and glutamate levels were found to be significantly lower than
those in untreated glioma cells, indicating that 1H MRS may be a
potential assessment tool for assessing the response to TMZ
treatment in IDH1-mutant gliomas (28).

Standard Chemoradiotherapy Responses
CEST is a recently emerged MR technique. Low concentrations
of biomolecules can be detected using CEST by selective
saturation of metabolite-bound protons and subsequent
magnetization transfer to free water. This technology yields
additional information about metabolic activity and the tissue
microenvironment without the need for conventional contrast
agents or radioactive tracers. CEST at 3-T reported good
discrimination between glioma treatment responders and
nonresponders. Using CEST-MRI to monitor the therapeutic
response of gliomas to standard 6-week chemoradiotherapy
(CRT) and several CEST matrices revealed significant
differences, including in the MTR, nuclear Overhauser effect
(NOE), and APT. Part of the matrix can even identify potential
tumor progressors before the start of CRT (29).

The application of 7-T MRI allows the detection of more
sophisticated and heterogeneous CEST effects. The relayed NOE
signal in 7-T CEST-MRI scans allows direct distinction between
Frontiers in Oncology | www.frontiersin.org 7
responders and nonresponders immediately after the end of CRT.
7-T CEST-MRI enables early response assessments 4 weeks ahead
of standard clinical evaluations, according to RANO (30).
CLINICAL FEASIBILITIES OF ADVANCE
SEQUENCES

APT technique was firstly invented in 2003 (62), and until now, it
is the only noninvasive and non-radiative MRmolecular imaging
technology to be used for quantification of free protein. APT is
currently applied for detecting brain tumors (63), grading
gliomas, distinguishing active glioma from treatment effects,
identifying genetic markers in gliomas, detecting ischemic
stroke (62), and detecting Alzheimer’s disease (64) and
Parkinson’s disease (65). Thus, APT technique is worth
priority recommendation for hospitals with neurology and
neurosurgery specializations.

Radiomics is an emerging field in quantitative imaging.
Radiomics uses high-throughput extraction of advanced
quantitative features to describe tumor phenotypes objectively
and quantitatively. These features could be extracted from the
existing medical images by advanced mathematical algorithms to
uncover tumor characteristics that one may fail to appreciate by
the naked eye. Radiomics features have shown promise in the
prediction of treatment response (66), differentiating benign and
malignant tumors (67), and assessing cancer genetics in many
cancer types (68). With no extra hardware needed, radiomics can
be quickly mastered and deployed to serve clinicians.

The most evident clinical application of 7-T is the higher
spatial resolution in the brain compared to 3-T. In the last few
years, studies indicate new insights into the pathology of the
cerebral cortex on 7-T, such as cerebrovascular related
neurodegenerative disease (69), multiple sclerosis (70), cortical
microinfarcts (71), and mesial temporal lobe epilepsy (72). The
higher spatial resolution contributes to the imaging of
microvascular structures under SWI, which helps preoperative
grading, and allows direct distinction between responders and
nonresponders of CRT under 7-T CEST-MRI scans. For other
aspects in glioma diagnosis, the clinical utility of 7-T MRI is yet
to be explored.

For other techniques that require no upgrade of existing MR
equipment such as rCBV from PWI and ADC from DWI, we
recommend that neurosurgeons and radiologists utilize those
sequences for glioma advance diagnosis at once.
CONCLUSION AND FUTURE DIRECTIONS

Advanced MRI plays an increasingly important role in the
clinical management of glioma by using emerging MR
sequences to maximize safe resection, minimize surgery risk,
individualize a CRT plan, shorten LOS, and ultimately prolong
patients’ lives (Figure 2). A variety of parameters in multiple MR
sequences are available for clinical use. The deployment of 7-T
August 2021 | Volume 11 | Article 694498
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MRI with advanced morphological, functional, and metabolic
imaging capabilities increasingly makes comprehensive
diagnoses of gliomas possible. The correct and effective use of
these MR techniques facilitates improved preoperative
assessments for the accurate diagnoses and treatment
responses of gliomas. Research focus on automatic machine
learning and qualitative raw image data processing procedure
that enables robust and thorough information for neurosurgeons
will be crucial for enhancing glioma management in clinical
routine. The correct and effective use of these MR techniques
enables improved preoperative assessments of accurate
diagnoses and treatment responses for glioma.
Frontiers in Oncology | www.frontiersin.org 8
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