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Abstract

Background: There has been a rapid increase in research applying artificial intelligence (Al) to various subspecialties of
orthopaedic surgery, including foot and ankle surgery. The purpose of this systematic review is to (l) characterize the
topics and objectives of studies using Al in foot and ankle surgery, (2) evaluate the performance of their models, and (3)
evaluate their validity (internal or external validation).

Methods: A systematic literature review was conducted using PubMed/MEDLINE and Embase databases in December
2022. All studies that used Al or its subsets machine learning (ML) and deep learning (DL) in the setting of foot and ankle
surgery relevant to orthopaedic surgeons were included. Studies were evaluated for their demographics, subject area,
outcomes of interest, model(s) tested, model(s)’ performance, and validity (internal or external).

Results: A total of 3| studies met inclusion criteria: 14 studies investigated Al for image interpretation, |3 studies
investigated Al for clinical predictions, and 4 studies were grouped as “other.” Studies commonly explored Al for ankle
fractures, calcaneus fractures, hallux valgus, Achilles tendon pathologies, plantar fasciitis, and sports injuries. For studies
reporting the area under the receiver operating characteristic curve (AUC), AUCs ranged from 0.64 (poor) to 0.99
(excellent). Two studies (6.45%) reported external validation.

Conclusion: Applications of Al in the field of foot and ankle surgery are expanding, particularly for image interpretation
and clinical predictions. Current model performances range from poor to excellent, and most studies lack external
validation, demonstrating a need for further research prior to deploying Al-based clinical applications.

Level of Evidence: Level lll, retrospective cohort study.
Keywords: artificial intelligence, machine learning, foot, ankle, technology, orthopaedics

analysis of radiographic images, predicting surgical out-
comes, or predicting injuries in sports players.

Introduction

Artificial intelligence (Al) and its subsets machine learning
(ML) and deep learning (DL) are being increasingly
explored for applications in medicine and orthopaedic
surgery.>781012,15,1925.29.31.89 The essentials of Al, ML,
and DL for orthopaedic surgeons, clinicians, and research-
ers have been thoroughly described in previous litera-
ture.%123437.3845 Briefly, Al and its subsets involves the use
of technology to simulate human intelligence. Algorithms
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or models can be developed that learn and understand com-
plex relationships from data sets. These models can then be
applied for many different purposes, such as automating
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Al models are being developed in nearly all orthopaedic
subspecialties, including hip, knee, spine, and pediatric
surgery.?-27:28.355 K lemt et al?’ developed and validated ML
models for predicting the risk of early revision surgery after
primary total hip arthroplasty (THA). Jo et al’! developed
and validated an ML model for predicting the risk of transfu-
sion following primary TKA. Merali et al*® developed and
validated a DL model for detecting cervical spinal cord com-
pression in magnetic resonance imaging (MRI) scans. Kunze
et al?® trained and tested several ML models for predicting
patients that would achieve the minimal clinically important
difference (MCID) in Hip Outcome Score-Sports Subscale
(HOS-SS) following hip arthroscopy for femoroacetabular
impingement syndrome. Xu et al*® developed a DL-assisted
system for automated measurements and classifications per-
tinent to developmental dysplasia of the hip directly from
plain pelvic radiographs.

Potential applications for Al in foot and ankle surgery
are vast and are at least partly similar to other orthopaedic
subspecialties. Given the impact that Al and its subsets may
have on clinical and operative practice, it is important for
surgeons to understand the current advancements that have
been made thus far in applying Al in foot and ankle surgery.
Therefore, the purpose of this systematic review is to (1)
characterize the topics and objectives of studies using Al in
foot and ankle surgery, (2) evaluate the performance of their
models, and (3) evaluate their validity (internal or external
validation). We hypothesized that most studies would inves-
tigate Al for imaging analysis, have models that are not per-
forming excellently, and have models that are not externally
validated.

Methods

Search Strategy

We performed a systematic literature review in accordance
with Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. Two reviewers inde-
pendently completed structured searches using the PubMed/
MEDLINE and Embase databases on December 11, 2022, to
search for all available articles on the databases before
December 11, 2022. The search query used the terms as fol-
lows: (artificial intelligence OR machine learning OR deep
learning) AND (foot OR ankle OR hallux valgus OR tibial
tendon insufficiency OR hallux rigidus OR Lisfranc OR
Achilles OR peroneal OR metatarsal OR plantar fasciitis OR
midfoot OR talus OR cuboid OR ankle arthroscopy OR ankle
arthroplasty). Two experienced orthopaedic researchers inde-
pendently screened all titles, abstracts, and full-text articles.
The reference lists of the final articles were also reviewed and
cross-referenced to identify any other additional pertinent
studies that were not found from the keyword search. The
search strategy used in this study is displayed in Figure 1.

Eligibility Criteria

Standardized inclusion and exclusion criteria were used to
determine study eligibility. Any disagreements or discrep-
ancies were resolved by consensus. Inclusion criteria were
as follows: (1) involve foot and ankle surgery; (2) involve
Al (3) clinically or operatively relevant to orthopaedic sur-
geons; (4) published in English; (5) available between
January 1, 2005, and December 11, 2022; (6) original stud-
ies with level I to IV evidence; (7) published studies provid-
ing extractable outcome data. Exclusion criteria were as
follows: (1) not involving foot and ankle surgery; (2) not
involving Al; (3) not clinically or operatively relevant to
orthopaedic surgeons; (4) not published in English; (5) no
original, extractable clinical data (ie, review articles, com-
mentaries, letters to the editor); (6) no full-text available;
and (7) systematic review, meta-analysis, abstracts, confer-
ence proceedings.

Data Items

The primary outcomes of interest were (1) subject area in
which Al was being applied, (2) best model performance
metrics, and (3) whether the model(s) were internally or
externally validated. Other variables for which data were
sought included outcomes of interest, number of partici-
pants, median or average age of patients, percentage of
males in the study, and the models evaluated.

Studies were grouped into 3 categories based on their
subject area: clinical predictions, image interpretation, or
other. Image interpretation studies were any that used Al for
detection, classification, or diagnosis using plain radio-
graphs, magnetic resonance imaging (MRI) images, com-
puted topography (CT) images, or ultrasonographic images.

The best performance metrics were only recorded for
studies applying Al for clinical predictions or image inter-
pretation. The primary metrics used for evaluating the per-
formance of models with dependent variables that were
categorical/classes were area under the curve of the receiver
operating characteristic curve (AUC), accuracy, sensitivity,
specificity, negative predictive value (NPV), and positive
predictive value (PPV). The ROC is a plot of a test’s sensi-
tivity and specificity, with sensitivity on the y axis and 1 —
specificity on the x axis. AUC values range from 0 to 1.0. A
value of 1.0 indicates a test has perfect discriminative abil-
ity. AUC values were interpreted as follows for the models:
>0.90 was considered excellent performance, 0.80 to 0.89
was considered good, 0.70 to 0.79 was considered fair, and
0.51 to 0.69 was considered poor.>? The primary metrics
used for evaluating the performance of models with depen-
dent variables that were continuous were root mean squared
error (RMSE) and coefficient of determination (R?). If none
of the aforementioned metrics were available, any other
pertinent metrics reported by the study were recorded.
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Figure |. PRISMA diagram.

Validation method was recorded for studies applying Al
for clinical predictions or image interpretation. Internal
validation was defined as when a model is tested on a popu-
lation that is similar to that on which it was trained on.
External validation was defined as evaluating the perfor-
mance of an algorithm when applied to an external cohort,
such as that from a different institution or national database.
Studies in which data from a single population was split
into training, validation, and independent test sets were not

considered to have externally validated their models.
Determining whether a model has been externally validated
is useful for assessing its generalizability.

Data Analysis

No pooled analysis for AUC, accuracy, or other perfor-
mance metrics was able to be performed because of signifi-
cant methodological heterogeneity including the models
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tested, the types of outcomes, and patient characteristics
that increases the risk for bias and inaccurate conclusions.

Results

A total of 31 studies met criteria for inclusion in the final
analysis. No additional articles were identified after cross-
referencing and reviewing the reference lists. Fourteen
studies investigated Al for image interpretation, 13 studies
investigated Al for clinical predictions, and 4 studies were
grouped as “other.”

Image Interpretation

Of the 14 image interpretation studies, topics included
general foot and ankle fractures, Lisfranc malalignment,
hallux valgus parameters, calcaneus fractures, and the
Achilles tendon (Table 1). Two of the 14 studies exter-
nally validated their models (14.3%). DL models were
used in all of the studies except for 1 (92.9%) (Table 2).
Of the 14 studies, 8 studies reported AUCs, for which the
best values ranged from 0.85 (good) to 0.99 (excellent).
Eight studies reported accuracies, for which the best val-
ues ranged from 72% to 99%.

Ashkani-Esfahani et al’ internally validated 2 deep
convolutional neural networks (DCNNs) for identifying
ankle fractures from radiographs and achieved a near-
perfect AUC of 0.99. Kitamura et al?® internally validated
5 separate CNNs for detecting ankle fractures from plain
radiographs and achieved a fair fracture detection accu-
racy of 81%. Prijs et al* internally and externally vali-
dated a DL model for detecting, classifying, and
localizing ankle fractures from plain radiographs and
achieved an excellent AUC of 0.92 and accuracy of 99%
(classifying ‘“no fracture”) on external validation.
Guermazi et al'* internally validated a DL model for
detecting fractures from foot and ankle plain radiographs,
which performed excellently with an AUC of 0.97, sensi-
tivity per patient of 93%, and specificity per patient of
93%. Olczak et al*® internally validated neural network
models for classifying ankle fractures from radiographs
according to the AO Foundation/Orthopaedic Trauma
Association (AO/OTA) 2018 classification, which per-
formed fair to excellent with AUCs ranging from 0.79 to
0.99 in classifying AO types. Pinto Dos Santos et al*
internally validated a CNN for detecting fractures in
anteroposterior ankle radiographs, which performed
good with an AUC of 0.85.

Li et al*” aimed internally validated a DL model for auto-
mated detection of 18 anatomical landmarks and measure-
ment of the first-second intermetatarsal angle (IMA), hallux
interphalangeal angle (HIA), hallux valgus angle (HVA),
and distal metatarsal articular angle (DMAA) from weight-
bearing, dorsoplantar radiographs. The observed (manual

by radiologist) and predicted (model) values of the 4 angles
correlated well (ICC 0.89-0.96, r 0.81-0.97).3°

Wang et al*® internally validated several radiomics-based
ML models for diagnosing Achilles tendinopathy from
ultrasonographic images in skiers and achieved an excellent
AUC of 0.99, 90% sensitivity, and 100%. Kapinski et al??
internally validated several DL models for classifying
Achilles tendons as injured or healthy from MRI images
and achieved a maximum accuracy of 97.6%, sensitivity of
98.3%, and specificity of 99.45%.

Wang et al** internally and externally tested a DL system
for detecting and grading fatigue fractures (a type of stress
fracture) from plain radiographs, which performed excel-
lent (AUC 0.911, sensitivity 90.8%) in detection of fatigue
fractures for the foot images and good (AUC 0.877, sensi-
tivity 85.5%) for the tibiofibula images. External validity
for grading of fatigue fractures was not demonstrated, as the
DL system performed poorly with an overall accuracy of
62.9% for the tibiofibula images and an accuracy of 61.1%
for the foot images.

Ashkani-Esfahani et al* internally validated 2 DCNN
models for detecting Lisfranc instability from single-view
(anteroposterior) and 3-view radiographs (anteroposterior,
lateral, oblique), which performed excellently with AUCs
ranging from 0.925 to 0.994.

Day et al’ aimed to assess the performance of an Al-based
software that automatically measures the M1-M2 IMA from
weightbearing cone beam computed tomography (WBCT)
scans in hallux valgus patients. The Al-based software was
faster than manual measurements, correlated well with
manual measurements, and had higher and nearly perfect
test-retest reliability (0.99 intrasoftware intraclass correla-
tion coefficient for both 3D and 2D IMA).°

Aghnia Farda et al' internally validated a CNN model
for classifying calcaneal fractures on CT images into the
Sanders system, which performed well with a classification
accuracy of nearly 72% after augmenting the data. Pranata
et al®® internally validated 2 separate DCNN models for
detecting the presence or absence of calcaneal fractures on
CT images and achieved an excellent accuracy of 98%.

Clinical Predictions

Of the 13 clinical prediction studies, topics were wide rang-
ing and included predicting outcomes following surgery for
ankle fractures, predicting lower extremity sports injuries,
predicting recovery of peroneal nerve palsy, and more
(Table 3). Zero of the 13 studies externally validated their
models (0%). The number of ML and DL models tested
ranged from 1 model to 11 models (Table 4). Of the 13 stud-
ies, 9 studies reported AUCs, for which the best values
ranged from 0.64 (poor) to 0.97 (excellent). Six studies
reported accuracies, for which the best values ranged from
70.4% to 93.18%.
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Table 2. Summary of Artificial Intelligence Models for Image Interpretation in Foot & Ankle Surgery.

Author

Purpose/Outcome(s)

Models Tested

Best Metrics Achieved

Ashkani-Esfahani et al®

Ashkani-Esfahani et al*

Guermazi et al'*

Li et al*®

Prijs et al*

Wang et al*3

Wang et al**

Day et al’

Aghnia Farda et al'

Olczak et al*®

Kapinski et al??

Kitamura et al?

Pranata et al*?

Pinto Dos Santos et al*?

Detect ankle fractures on conventional
radiographs

Detect Lisfranc malalignment from
weightbearing radiographs

Detect foot and ankle fractures

Hallux valgus imaging parameters

Detect, classify, localize ankle fractures

Ultrasonographic diagnosis of Achilles
tendinopathy

Detect and grade tibiofibular and foot
fatigue fractures

Automatic measurement of M|-M2
intermetatarsal angle (IMA) from
weightbearing cone bean CT images

Classify calcaneal fractures (Sanders
system) on CT images

Classify ankle fractures according to AO/
OTA 2018 classification

Detect Achilles tendon injuries from MRI
images

Detect ankle fracture on plain radiographs

Detect and classify calcaneus fractures in
CT images
Detect ankle fracture on plain radiographs

DCNN(s)

DCNN(s)

DL model

DCNN(s)

DCNN(s)

ML models

DCNN(s)

Neural network

DCNN(s)
Neural network

DCNN(s)
ensembles

DCNN(s)
ensembles

DCNN(s)

DCNN(s)

3-views Inception V3:
AUROC: 0.99

F score: 0.99

Accuracy: 99%

NPV: 99%

PPV: 99%

Specificity: 99%

3-views Inception V3:
AUROC: 0.99

F score: 0.96

Accuracy: 98.6%

3-views Resnet-50:

NPV: 96.9

PPV: 97.8

Specificity: 97.7%

AUROC 0.97

Sensitivity: 93%

Specificity: 93%

ICC: 0.96 (HVA)

r: 0.97 (HVA)

External validation metrics
Accuracy: 99% (no fracture)
Sensitivity: 99% (no fracture)
Specificity: 100% (Weber A and C)
AUROC: 0.98 (Weber B)
AUROC: 0.99

Sensitivity: 90.0%
Specificity: 100%

AUROC: 0.965

Sensitivity: 96.4%
Specificity: 80.1%

PPV: 77.6%

NPV: 98.4%

Correlation coefficients between

manual and automatic measurements

ranging from 0.52 to 0.63
Accuracy: 72%*

Weighted mean AUROC: 0.90

Accuracy: 97.6%
Specificity: 99.45%
Sensitivity: 98.3%
Ensemble A:
Accuracy: 81.0%
Sensitivity: 80.0%
Ensemble B:
Specificity: 0.88
PPV: 85.0%

NPV: 76.0%
Accuracy: 98%

Accuracy: 76.9%
AUROC: 0.850
Sensitivity: 0.625
Specificity: 1.0
PPV: 1.0

NPV: 0.625

Abbreviations: AUROC, area under the receiver operating characteristic curve; CT, computed tomography; DCNN, deep convolutional neural network; DL, deep learning;

HVA, hallux valgus angle; ICC, intraclass correlation coefficient; ML, machine learning; NPV, negative predictive value; PPV, positive predictive value.

?Highest accuracy when ensuring that patient samples from training set are not in test set.
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Table 4. Summary of Artificial Intelligence Models for Clinical Predictions in Foot & Ankle Surgery.

Author Purpose/Outcomes(s) Models Tested Best Metrics Achieved
Diniz et al'! Level of match participation Extreme gradient boosting AUROC: 0.81

following Achilles tendon rupture Brier loss score: 0.12
Lu et al*® Sustaining a lower extremity Random forest AUROC: 0.840 (XGBoost)

Oosterhoff et al*

Vasavada et al®'

Wang et al*?
Jauhiainen et al?®

Ruiz-Pérez et al*

Hendrickx et al'”

Suda et al*®

Sharif Bidabadi et al*’

Merrill et al?®

Yin et al*®

Keijsers et al?*

muscle strain (calf, hamstring,
quadriceps, groin)

Presence of a posterior malleolar
fracture in patients with tibial
shaft fracture

Recovery of peroneal nerve palsy
from MLKI

Painful or pain-free hallux valgus

Predict moderate and severe knee
and ankle injuries

Predict lower extremity
noncontact soft tissue injury in
futsal players

Presence of a posterior malleolar
fracture in patients with tibial
shaft fracture

Classify running experience level
based on foot-ankle kinematic
and kinetic patterns

Classify foot drop due to L5
radiculopathy

|. Morbidity and mortality
2.LOS>3d
3. 30-d readmission

Decrease in VAS by at least 60%
after extracorporeal shockwave
therapy

Classify forefoot pain using plantar
pressure data

Extreme gradient boosting®

Neural network

Support vector machine

Elastic net penalized logistic
regression

Generalized logistic regression

BPM®

Support vector machine

Neural network

BDT

LR

Random forest

Support vector machine
Random forest

LI-regularized logistic regression
C45

ADTree

Support vector machine with SMO?
K-nearest neighbor

Random forest

BPM?

Support vector machine

Neural network

BDT

Support vector machines

Multilayer perceptron
k-nearest neighbor
Logistic regression
Bayes Net

Naive Bayes

C4.5 decision tree
Random forest
Random tree
Support vector machine
OneR (IR)

Deep learning model
Gradient boosting
Logistic regression

Artificial neural network

Artificial neural network

Brier score: 0.029 (RF)

AUROC: 0.89 (all except BDT)
Brier score: 0.11 (all except LR)

AUROC: 0.64
Accuracy: 75%

Fl score: 0.86
Accuracy: 76.4%
AUROC: 0.65 (LR)

AUROC: 0.767
Sensitivity: 85.1%
Specificity: 62.1%

AUROC: 0.89 (all except BDT)
Brier score: 0.106 (BPM)

Accuracy: 88.5% (less experienced)

Precision: 100% (moderately
experienced)

Fl score: 0.80 (less experienced)

Recall: 76.7% (most experienced)

Accuracy: 93.18% (RF)

AUROC: 0.97 (RF)

Accuracy: 85.0% (GB)
Sensitivity: 0.57 (LR)
Specificity: 0.88 (GB)
AUROC: 0.75 (LR)
Sensitivity: 95.0%
Specificity: 90.0%.

Accuracy: 70.4%

Abbreviations: AUROC, area under the receiver operating characteristic curve; BDT, boosting decision tree; BPM, Bayes point machine; GB, gradient
boosting; LOS, length of stay; LR, logistic regression; MLKI, multiligamentous knee injury; RF, random forest; SMO, sequential minimal optimization;

VAS, visual analog scale.

?Deemed best model in the study.
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Diniz et al'! internally validated one ML model for pre-
dicting whether soccer players would return to a similar
level of match participation following an Achilles tendon
rupture, which achieved a good AUC of 0.81 and Brier
score loss of 0.12.

Lu et al* internally validated many ML models for pre-
dicting the occurrence of a lower extremity muscle strain
(calf, groin, quadriceps, hamstring) in professional basket-
ball players, among which the XGBoost model achieved the
highest AUC of 0.840 and was deemed the best-performing
model when also considering Brier score and calibration.
Jauhiainen et al?” internally validated 2 ML models for pre-
dicting moderate and severe knee and ankle injuries in
young basketball and floorball players (age =21 years),
which performed poorly with an AUC of 0.63 for the ran-
dom forest model and 0.65 for the logistic regression model.
Ruiz-Pérez et al* internally validated many ML models to
predict lower extremity noncontact soft tissue injury in elite
futsal players, which generally performed fairly, with the
best model achieving an AUC of 0.767, sensitivity of
85.1%, and specificity of 62.1%.

Vasavada et al’! internally validated one random forest
model for predicting complete recovery of a peroneal nerve
palsy following a multiligamentous knee injury, which per-
formed poorly with an AUC of 0.64, accuracy of 75%, and
F1 score of 0.86.

Wang et al’’? internally validated a support vector
machine model for classifying hallux valgus patients as
having painful feet or pain-free feet using radiographic met-
rics such as hallux valgus angle (HVA), intermetatarsal
angle (IMA), and distal metatarsal articular angle (DMAA),
which performed fair with an accuracy of 76.4%.

Hendrickx et al'” internally validated 4 ML and DL mod-
els for predicting which patients with tibial shaft fractures
have an occult posterior malleolar fracture. The models per-
formed good with AUCs ranging from 0.81 to 0.89.

Oosterhoff et al*’ internally validated 5 models for pre-
dicting posterior malleolar involvement in distal tibial shaft
fractures using the same data set as that in the previously
described study by Hendrickx et al.'® Oosterhoff et al*
found that all the models performed good with AUCs >0.80
(highest 0.89) and 4 of 5 having a Brier score of 0.11.

Suda et al*® internally validated several support vector
machine models for classifying running experience level
based on foot-ankle kinematic and kinetic patterns to poten-
tially assist with running rehabilitation and training. The
models performed well with classification accuracies of
88.5% for less experienced runners, 87.2% for moderately
experienced runners, and 84.6% for experienced runners.*

Merrill et al* internally validated a logistic regression
and gradient boosting model for predicting short-term com-
plications, including readmissions and mortality, following
open reduction and internal fixation for ankle fractures.
Both models performed similarly, with AUCs for gradient

boosting ranging from 0.6979 to 0.7580 and AUCs for
logistic regression ranging from 0.7101 to 0.7583.3

Yin et al>® internally validated a neural network model
for predicting patients that would achieve the minimum
clinically successful therapy (decrease in visual analog
score [VAS] by 60% or more from baseline) at 6 months
after extracorporeal shock wave therapy for chronic plan-
tar fasciitis. The model performed well, with an overall
accuracy of 92.5%, sensitivity of 95.0%, and specificity of
90.0%.%

Sharif Bidabadi et al*’ internally validated many models
for classifying gait patterns as normal or due to L5 radicu-
lopathy using data from sensors called inertial measurement
units (IMUs). Their best model performed excellently as
evidenced by an AUC of 0.97 and accuracy of 93.18%.%

Keijsers et al’* internally validated a neural network
model for differentiating patients who have forefoot pain
and those that do not using plantar pressure data, which per-
formed satisfactorily with an accuracy of 70.4%.

Other

Ardhianto et al?> applied DL to help with automated mea-
surement of the foot progression angle (FPA) from plantar
pressure images to help clinicians assess gait abnormalities.
Pakhomov et al*! applied ML to automate identification and
classification of foot examination findings from clinical
notes as normal, abnormal, or not assessed, and their mod-
els performed well with overall accuracies ranging from
81% to 87%. Hernigou et al'® applied Al and ML to assist in
conducting their study for developing a method of defining
the ideal and patient-specific motion axes of the tibiotalar
joint, with the goal of improving how total ankle arthro-
plasty is performed with robotics. Zhu et al’’ aimed to
assess whether ultrasonography-guided needle knife ther-
apy with Al assistance can improve patient outcomes for
plantar fasciitis better than the same therapy without Al.
The Al technology used in this study assisted with process-
ing of the ultrasonographic images. Those receiving the
intervention with Al had significantly lower plantar fascia
thickness, lower plantar fascia elasticity scores, and higher
American Orthopaedic Foot & Ankle Society (AOFAS)
ankle-hindfoot scores at 2, 4, and 8 weeks posttreatment
compared to those without Al assistance.®’

Discussion

There is early optimism of the transformative impact that Al
may have on the health care system and change how we
practice medicine. As such, it is necessary for orthopaedic
surgeons to be aware of the advancements in Al in their
respective areas. This systematic review is the first of its
kind in orthopaedic foot and ankle surgery to explore the
subject areas in which Al is being applied, the performance
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of Al models, and the validity for the Al models. This study
found that most studies are using Al for image interpreta-
tion, especially for ankle fractures, calcaneus fractures, and
hallux valgus. The performance of current Al models is
wide ranging, from poor to excellent, but there is significant
heterogeneity in study methodologies that prevents any
pooled analysis. Additionally, very few studies have exter-
nally validated their models.

This systematic review found that most current studies
involve Al applications for imaging analysis, particularly
fracture identification and classification. This is a common
trend seen in other orthopaedic subspecialties as well. For
example, in TJA, Karnuta et al>® externally validated a DL
system for classifying hip arthroplasty femoral implants
from radiographs that performed excellently with a near
perfect AUC of 0.999. Many investigators are likely driven
to explore Al’s utility in image analysis because of their
optimism that Al will outperform or enhance humans in
speed and accuracy, translating to potential time-savings,
cost-savings, and better patient outcomes. '3

This systematic review found that models for image
interpretation are mostly performing excellent, with 75% (9
of 12) of those reporting accuracy or AUCs achieving a
value =0.90. In contrary, almost no clinical prediction
model (8.33%, 1 of 12 studies) performed excellent (AUC
or accuracy =0.90). There is a need for more research on
improving the performance of the clinical prediction mod-
els. Many factors, including the quality and size of the data
sets, types of models, and how models are optimized, influ-
ence model performance and need to be further investigated
for foot and ankle surgery. Clinicians can play a vital role in
ensuring high-quality data are available to train and test
models by helping with accurate data collection, data anno-
tation, and data auditing.

Internal validation may lead to false optimism as it does
not allow assessment of how generalizable a model is to
other populations, such as those of a different region, age,
or insurance status. It has been shown that predictive mod-
els often perform significantly worse during external vali-
dation.*® Thus, external validation is necessary prior to
clinical translation of any ML or DL model. None of the
clinical prediction studies in this systematic review per-
formed external validation of their models and only 2 of the
imaging interpretation studies did. Therefore, it is important
that clinicians are aware that most models developed in cur-
rent foot and ankle surgery studies, although promising, are
not yet ready for clinical translation.

Conclusion

Al applications are being increasingly explored in foot and
ankle surgery, but most models lack external validation.
Most models are being used for image interpretation and are
performing excellently in doing so, but model performance

is not robust for clinical predictions. More subject arecas
need to be explored in foot and ankle surgery, and models
with better performance and external validation are needed.
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