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ABSTRACT 

Background. Hyponatremia is associated with worse outcomes among patients with malignancy. However, 
contemporary cohort data on epidemiology and risk factors are lacking. 
Methods. In this single-centre, retrospective cohort study, patients who received intravenous antineoplastic agents from 

2018 to 2020 at Nagoya City University Hospital were enrolled. Associations of demographics, antineoplastic agents, 
types of malignancy and concomitant medications with hyponatremia, defined as serum sodium concentration 

≤130 mmol/l, were analysed by mixed-effects logistic regression and the machine learning–based LightGBM model 
artificial intelligence technology. 
Results. Among 2644 patients, 657 ( 24.8% ) developed at least one episode of hyponatremia. Approximately 80% of 
hyponatremia was due to sodium wasting from the kidneys. Variables associated with hyponatremia both by 
mixed-effects logistic regression and the LightGBM model were older age, hypoalbuminemia and higher estimated 
glomerular filtration rate. Among antineoplastic agents, cisplatin {odds ratio [OR] 1.52 [95% confidence interval ( CI ) 
1.18–1.96]}, pembrolizumab [OR 1.42 ( 95% CI 1.02–1.97 ) ] and bortezomib [OR 3.04 ( 95% CI 1.96–4.71 ) ] were associated with 

hyponatremia and these variables also had a positive impact on predicted hyponatremia in the LightGBM model. 
Conclusions. Hyponatremia was common among patients with malignancy. In addition to older age and poor 
nutritional status, novel antineoplastic agents, including immune checkpoint inhibitors and bortezomib, should be 
recognized as risk factors for hyponatremia. 

LAY SUMMARY 

In this study we demonstrated that hyponatremia is common among patients with malignancy in a contemporary 
cohort. Most of hyponatremia was caused by sodium wasting from the kidneys. In addition to known risk factors of 
hyponatremia, such as older age, poor oral intake, vinca alkaloids, small cell lung cancer and pancreatic cancer, 
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immune checkpoint inhibitors and bortezomib were associated with a higher incidence of hyponatremia both by 
conventional statistics and by a machine learning prediction model. 

Keywords: bortezomib, hyponatremia, immune checkpoint inhibitors, machine learning, malignancy 

I

H
c  

t  

c
h
k  

[  

p
c  

n  

c

n
m
p
i
i  

o  

o  

o
a
[

 

m
c  

t  

l
t

M

S

T  

t  

U
t
l

S

I
t
N
w
s

E

E
T  

s
t
l  

a

O

T  

c  

s  

f  

N  

l

S

D  

d  

m  

a  

a  

m  

s  

t  

f
i  

o  

t  

s  

i  

t  

o  

t  

fi  

c  

r  

p  

c  

t
 

1

M

D

W  

r  

a  

h  

n  

t  

t  

d  

t

C

W  

p  

[  

a  
NTRODUCTION 

yponatremia affects nearly half of hospitalized patients with 
ancer [ 1 ] and is associated with a poor prognosis [ 1 –4 ]. Hypona-
remia in cancer patients can have a variety of aetiologies, in-
luding poor oral intake, syndrome of inappropriate antidiuretic 
ormone secretion ( SIADH ) and sodium ( Na ) wasting from the 
idneys due to tubular damage, and often a combination of these
 4 ]. Various factors have been reported to be associated with hy-
onatremia, including types of malignancy ( small cell lung can- 
er, head and neck cancer and pancreatic cancer ) [ 2 –7 ] and anti-
eoplastic agents ( vinca alkaloids [ 8 ], cyclophosphamide [ 9 ] and
isplatin [ 10 –12 ] ) . 

Since the publication of these previous studies, many anti- 
eoplastic agents, including immune checkpoint inhibitors and 
olecular targeted agents, have become available in clinical 
ractice. However, studies on epidemiology, clinical character- 
stics and antineoplastic agents associated with hyponatremia 
n more contemporary cohorts are lacking. It is probably because
f the large number of antineoplastic agents and the complexity
f the combination of these agents used to treat different types
f malignancy. As a result, recent studies on hyponatremia 
mong patients with malignancy are limited to certain agents 
 13 , 14 ]. 

In this study we utilized a mixed effects logistic regression
odel to identify antineoplastic agents and other factors asso- 
iated with hyponatremia among a wide range of oncologic pa-
ients in real clinical practice. Moreover, we developed a machine
earning–based LightGBM model of hyponatremia and explain 
he model. 

ATERIALS AND METHODS 

tudy design 

his is a single-centre, retrospective cohort study. The study pro-
ocol and a waiver of consent were approved by the Nagoya City
niversity Institutional Review Board ( approval 60-21-0003 ) and 
he study was conducted in accordance with the Helsinki Dec- 
aration. 

etting and patients 

nclusion criteria were patients treated with intravenous an- 
ineoplastic agents from January 2018 to September 2020 at 
agoya City University Hospital. Exclusion criteria were those 
ithout measurements of serum Na concentration during the 
tudy period. 

xposures of interests 

xposures of interest were antineoplastic agents listed in 
able 1 , age, sex, estimated glomerular filtration rate ( eGFR ) ,
erum albumin, types of malignancy and concomitant medica- 
ions that could potentially affect electrolytes. eGFR was calcu- 
ated by an equation developed for the Japanese population. The
ccuracy within 30% of measured GFR was 75% [ 15 ]. 
utcomes 

he outcome was hyponatremia, defined as a serum Na con-
entration ≤130 mmol/l [ 16 , 17 ]. Serum Na levels were mea-
ured by an indirect method. Additional analyses were per-
ormed after correcting Na levels for hyperglycaemia {corrected
a ( mmol/l ) = 1.6*[glucose ( mg/dl ) – 200]/100} if serum glucose
evels were > 200 mg/dl [ 18 ]. 

tatistical analyses 

ata were shown as n ( % ) , mean [standard deviation ( SD ) ] or me-
ian [interquartile range ( IQR ) ]. Descriptive statistics were deter-
ined by Fisher’s exact test, t -test or Mann–Whitney U test as
ppropriate. To identify variables associated with hyponatremia,
 mixed effects logistic regression model was used rather than
ultivariate logistic regression, as patients had multiple mea-
urements of Na at different timings with different exposures
o covariates, while each patient has a different preponderance
or developing hyponatremia. Mixed effects logistic regression 
s suited when there are multiple observations for each unit of
bservation. This scenario also includes when there is a clus-
ered nature to the data. eGFR and serum albumin values mea-
ured at a previous visit were used as covariates ( fixed effects )
n the model, as kidney function and nutritional status before
he development of hyponatremia can determine the likelihood
f developing hyponatremia. Age, sex, types of malignancy, an-
ineoplastic agents and other medications were also treated as
xed effects and patients were treated as a random effect. We
onducted a sensitivity analysis using a mixed effects Poisson
egression model, with the number of Na measurements in each
atient ( natural log-transformed ) as an exposure variable to ac-
ount for different frequencies of Na measurements among pa-
ients. 

Statistical analyses were performed using Stata MP version
7 ( StataCorp, College Station, TX, USA ) . 

achine learning–based prediction model 

atasets 

e used clinical examination–level data for model construction,
emoving the data without serum Na level, serum albumin level
nd eGFR at the previous examination. The positive data were
yponatremia, i.e. serum Na concentration ≤130 mmol/l. The
egative data were non-hyponatremia, i.e. serum Na concen-
ration > 130 mmol/l. We randomly split these data 4:1, main-
aining positive and negative ratios to create two independent
atasets, assigning one for the training dataset and one for the
est dataset. 

lassification model for hyponatremia 

e constructed the prediction model for classification of hy-
onatremia using the LightGBM algorithm of machine learning
 19 ]. It is one of the gradient-boosting decision tree algorithms
nd has high performance among non-neural network systems.
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Table 1: Demographics. 

Characteristics 
No hyponatremia 

( n = 1987 ) 
Hyponatremia a 

( n = 657 ) P -value 

Age ( years ) , mean ( SD ) 63.9 ( 14.2 ) 66.9 ( 13.9 ) < .001 
Male, n ( % ) 1051 ( 52.9 ) 423 ( 64.4 ) < .001 
eGFR ( ml/min/1.73 m 

2 ) b , median ( IQR ) 71.0 ( 59.2–83.7 ) 
( n = 1951 ) 

69.7 ( 55.5–84.6 ) 
( n = 643 ) 

.21 

Albumin ( g/dl ) b , mean ( SD ) 4.0 ( 0.5 ) 
( n = 1802 ) 

3.8 ( 0.6 ) 
( n = 604 ) 

< .001 

Malignancy, n ( % ) 
Brain 17 ( 0.9 ) 5 ( 0.8 ) 1 .00 
Head and neck 160 ( 8.1 ) 76 ( 11.6 ) .006 
Thyroid 7 ( 0.4 ) 3 ( 0.5 ) .72 
Small cell lung cancer 34 ( 1.7 ) 17 ( 2.6 ) .16 
Non-small cell lung cancer 105 ( 5.3 ) 52 ( 7.9 ) .01 
Lung, unspecified 203 ( 1.0 ) 91 ( 13.9 ) .01 
Mesothelioma 1 ( 0.05 ) 4 ( 0.6 ) .02 
Breast 362 ( 18.2 ) 31 ( 4.7 ) < .001 
Oesophageal 107 ( 5.4 ) 46 ( 7.0 ) .12 
Gastric 137 ( 6.9 ) 54 ( 8.2 ) .26 
Hepatocellular 93 ( 4.7 ) 21 ( 3.2 ) .10 
Pancreatic 85 ( 4.3 ) 53 ( 8.1 ) < .001 
Biliary 22 ( 1.1 ) 19 ( 2.9 ) .001 
Duodenal 4 ( 0.2 ) 4 ( 0.6 ) .11 
Colon 242 ( 12.2 ) 90 ( 13.7 ) .31 
Renal cell 42 ( 2.1 ) 19 ( 2.9 ) .25 
Genitourinary 168 ( 8.5 ) 53 ( 8.1 ) .76 
Prostate 134 ( 6.7 ) 34 ( 5.2 ) .15 
Endometrial 66 ( 3.3 ) 5 ( 0.8 ) < .001 
Cervical 47 ( 2.4 ) 10 ( 1.5 ) .20 
Ovarian 74 ( 3.7 ) 19 ( 2.9 ) .32 
Lymphoma 213 ( 10.7 ) 89 ( 13.5 ) .05 
Leukaemia 54 ( 2.7 ) 43 ( 6.5 ) < .001 
Myeloma 108 ( 5.4 ) 53 ( 8.1 ) .01 
Sarcoma 52 ( 2.6 ) 18 ( 2.7 ) .87 
Neuroendocrine 11 ( 0.6 ) 6 ( 0.9 ) .40 
Non-melanoma skin cancer 37 ( 1.9 ) 15 ( 2.3 ) .50 
Melanoma 32 ( 1.6 ) 9 ( 1.4 ) .67 
Cancer of unknown origin 26 ( 1.3 ) 11 ( 1.7 ) .49 

Antineoplastic agents 
Vinca alkaloids, n ( % ) 

Docetaxel 210 ( 10.6 ) 72 ( 11.0 ) .78 
Vincristine 123 ( 6.2 ) 68 ( 10.4 ) < .001 
Irinotecan 101 ( 5.1 ) 57 ( 8.7 ) .001 
Etoposide 91 ( 4.6 ) 62 ( 9.4 ) < .001 
Paclitaxel 456 ( 22.9 ) 140 ( 21.3 ) .39 

Antimetabolites, n ( % ) 
5-fluorouracil 242 ( 12.2 ) 123 ( 8.7 ) < .001 
Gemcitabine 165 ( 8.3 ) 103 ( 15.7 ) < .001 
Cytarabine 69 ( 3.5 ) 55 ( 8.4 ) < .001 
Methotrexate 70 ( 3.5 ) 42 ( 6.4 ) .002 

Alkylating agents, n ( % ) 
Cyclophosphamide 307 ( 15.5 ) 87 ( 13.2 ) .17 

Anthracyclines, n ( % ) 
Doxorubicin 266 ( 13.4 ) 79 ( 12.0 ) .37 

Platinum, n ( % ) 
Carboplatin 266 ( 13.4 ) 121 ( 18.4 ) .002 
Cisplatin 337 ( 17.0 ) 149 ( 22.7 ) .001 
Oxaliplatin 236 ( 11.9 ) 80 ( 12.2 ) .84 

Molecular targeted drugs, n ( % ) 
Bortezomib 51 ( 2.6 ) 45 ( 6.8 ) < .001 
Bevacizumab 158 ( 8.0 ) 61 ( 9.3 ) .28 
Cetuximab 50 ( 2.5 ) 32 ( 4.9 ) .003 
Daratumumab 47 ( 2.4 ) 20 ( 3.0 ) .34 
Trastuzumab 91 ( 4.6 ) 6 ( 0.9 ) < .001 
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Table 1: ( Continued ) . 

Characteristics 
No hyponatremia 

( n = 1987 ) 
Hyponatremia a 

( n = 657 ) P -value 

Rituximab 124 ( 6.2 ) 51 ( 7.8 ) .17 
Immune checkpoint inhibitors 

Atezolizumab 34 ( 1.7 ) 22 ( 3.3 ) .01 
Nivolumab 105 ( 5.3 ) 68 ( 10.4 ) < .001 
Pembrolizumab 85 ( 4.3 ) 54 ( 8.2 ) < .001 
Ipilimumab 23 ( 1.2 ) 10 ( 1.5 ) .47 

Use of other medications, n ( % ) 
ACE inhibitors 58 ( 2.9 ) 37 ( 5.6 ) .001 
ARBs 302 ( 15.2 ) 133 ( 20.2 ) .002 
Loop diuretics 285 ( 14.3 ) 177 ( 26.9 ) < .001 
Thiazide diuretics 37 ( 1.9 ) 38 ( 5.8 ) < .001 
Potassium-sparing diuretics 94 ( 4.7 ) 73 ( 11.1 ) < .001 
Tolvaptan 4 ( 0.2 ) 8 ( 1.2 ) .003 
Acetazolamide 10 ( 0.5 ) 3 ( 0.5 ) 1 .00 
Denosumab 199 ( 10.0 ) 79 ( 12.0 ) .15 
Bisphosphonates 144 ( 7.2 ) 89 ( 13.5 ) < .001 
Vitamin D 106 ( 5.3 ) 48 ( 7.3 ) .06 

a The development of hyponatremia at any time during the observation period. 
b The first measurement of the values during the observation period. 
P -values were by Fisher’s exact test, t -test or Mann–Whitney U test. 
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e  
t operates quickly and is strong for large datasets. It is also
n excellent algorithm that does not require data standardiza- 
ion and can handle missing values. However, in our dataset,
he number of missing values was small and data with missing
alues were removed for model building. The objective variable 
as the presence of hyponatremia and the explanatory variables 
ere age, sex, antineoplastic agents, concomitant medications,
ypes of malignancy, serum albumin at a previous visit and eGFR
t a previous visit. 

First, we constructed a model using a training dataset. Data
ere pre-processed to address differences in the number of re-
eated tests per patient and imbalance issues between positive 
nd negative data. Specifically, since the number of measure- 
ents per patient varies, the inverse of the number of mea-
urements was used as the weight of the data. In the LightGBM
lgorithm, the ‘weight’ parameter and data with higher weights,
.e. patients’ data with a small number of inspections overall,
ere emphasized in the model training phase ( https://lightgbm. 
eadthedocs.io/en/latest/Parameters.html ) . Adjustment for im- 
alanced data was performed only on the training dataset. A
ery large number of negative data compared with positive data
ere reduced by undersampling to equal the number of posi-
ives. After negative data clustering by the k-means method, the
umber of data in each cluster was adjusted to equal the num-
er of positive data by resampling while maintaining the ratio
f the number of data in each cluster [ 20 ]. We performed 5-fold
ross-validation ( CV ) in the training dataset to identify the op-
imal hyperparameters through a Bayesian optimization using 
ptuna [ 21 ]. Second, the best-performing parameters were used
o predict the test data with a model built on the entire train-
ng dataset. We evaluated performance using calculated sen- 
itivity, specificity and receiver operating characteristics curve 
rea under the curve ( ROC-AUC ) in the training dataset and test
atasets. The training dataset evaluation used the average of a
-fold CV. 

Explainable artificial intelligence ( AI ) is a technique for 
xplaining the predictive results of complex machine learn- 
ng models. In this study we implemented the Shapley Ad-
itive Explanations ( SHAP ) based on Shapley values, which 
s a unified approach of any machine learning model, as a
 t  
ethod to calculate the contribution of each feature to the
redictions [ 22 ]. 

oftware 

redictive model building was conducted using the follow-
ng library in Python for Windows ( version 3.8.5 ) : light-
bm for LightGBM ( version 3.2.1 ) , scikit-learn ( version 0.24.2 ) ,
umPy ( version 1.20.3 ) and Pandas ( version 1.2.4 ) for data
rocessing. 

ESULTS 

atients’ characteristics 

mong 2709 patients who received intravenous antineoplas- 
ic agents during the study period, 2644 had data for serum
a concentration. Among them, 657 patients ( 24.8% ) developed
yponatremia at least once during the study period. Serum
a was measured 101 622 times ( 38 measurements per pa-
ient on average ) and 2854 events of hyponatremia were ob-
erved. Demographics for those who developed hyponatremia 
t least once and those who never developed hyponatremia are
hown in Table 1 . Those with hyponatremia were significantly
lder, more likely to be male and more likely to have head and
eck, lung, pancreatic, biliary cancer, leukaemia and myeloma.
hose with hyponatremia were also more likely to have re-
eived vincristine, irinotecan, etoposide, gemcitabine, cytara- 
ine, methotrexate, cisplatin, carboplatin, bortezomib, cetux- 
mab, atezolizumab, nivolumab, pembrolizumab, angiotensin- 
onverting enzyme ( ACE ) inhibitors, angiotensin receptor block- 
rs ( ARBs ) , loop diuretics, thiazide diuretics, potassium-sparing
iuretics, tolvaptan and bisphosphonates. 

rinary findings and endocrinological evaluations in 

yponatremia 

rine Na concentration and urine osmolarity were measured in
15 ( 32.7% ) and 197 ( 30.0% ) patients within 30 days from the first
vent of hyponatremia. The lowest mean serum Na concentra-
ions among those with and without measurements of urine

https://lightgbm.readthedocs.io/en/latest/Parameters.html
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Table 2: Association between demographics, antineoplastic agents 
and other medications with hyponatremia ( mixed effects logistic 
regression ) . 

Variables OR ( 95% CI ) 

Age 1 .03 ( 1.02–1.05 ) 
Male 1 .09 ( 0.82–1.45 ) 
eGFR ( per ml/min/1.73 m 

2 ) a 1 .002 ( 1.000–1.004 ) 
Albumin ( per g/dl ) a 0 .38 ( 0.35–0.41 ) 
Malignancy 
Brain 1 .47 ( 0.31–7.03 ) 
Head and neck 1 .28 ( 0.87–1.86 ) 
Thyroid 3 .92 ( 0.68–22.69 ) 
Small cell lung cancer 2 .42 ( 1.12–5.22 ) 
Non-small cell lung cancer 1 .34 ( 0.81–2.25 ) 
Lung, unspecified 1 .12 ( 0.76–1.66 ) 
Mesothelioma 4 .37 ( 0.63–16.55 ) 
Breast 0 .54 ( 0.31–0.95 ) 
Oesophageal 1 .02 ( 0.62–1.68 ) 
Gastric 0 .91 ( 0.59–1.40 ) 
Hepatocellular 0 .56 ( 0.30–1.07 ) 
Pancreatic 1 .77 ( 1.10–2.82 ) 
Biliary 3 .40 ( 1.68–6.89 ) 
Duodenal 0 .70 ( 0.14–3.58 ) 
Colon 1 .13 ( 0.78–1.62 ) 
Renal cell 1 .02 ( 0.47–2.19 ) 
Genitourinary 0 .92 ( 0.58–1.46 ) 
Prostate 0 .54 ( 0.32–0.92 ) 
Endometrial 0 .37 ( 0.12–1.16 ) 
Cervical 1 .99 ( 0.78–5.06 ) 
Ovarian 1 .90 ( 0.90–3.99 ) 
Lymphoma 1 .16 ( 0.80–1.70 ) 
Leukaemia 2 .56 ( 0.89–2.74 ) 
Myeloma 0 .60 ( 0.35–1.04 ) 
Sarcoma 0 .47 ( 0.21–1.07 ) 
Neuroendocrine 2 .18 ( 0.60–7.93 ) 
Non-melanoma skin cancer 0 .58 ( 0.25–1.34 ) 
Melanoma 0 .60 ( 0.21–1.68 ) 
Cancer of unknown origin 0 .61 ( 0.24–1.61 ) 

Antineoplastic agents 
Vinca alkaloids 

Docetaxel 1 .09 ( 1.27–2.26 ) 
Vincristine 1 .61 ( 0.99–2.62 ) 
Irinotecan 1 .65 ( 1.09–2.50 ) 
Etoposide 0 .70 ( 0.48–1.01 ) 
Paclitaxel 0 .94 ( 0.73–1.21 ) 

Antimetabolites 
5-fluorouracil 0 .80 ( 0.61–1.19 ) 
Gemcitabine 1 .09 ( 0.84–1.42 ) 
Cytarabine 0 .91 ( 0.60–1.38 ) 
Methotrexate 0 .93 ( 0.61–1.43 ) 

Alkylating agents 
Cyclophosphamide 1 .61 ( 1.10–2.37 ) 

Anthracyclines 
Doxorubicin 0 .70 ( 0.49–1.00 ) 

Platinum 

Carboplatin 0 .83 ( 0.64–1.09 ) 
Cisplatin 1 .52 ( 1.18–1.96 ) 
Oxaliplatin 0 .65 ( 0.45–0.95 ) 

Molecular targeted drugs 
Bortezomib 3 .04 ( 1.96–4.71 ) 
Bevacizumab 0 .70 ( 0.47–1.04 ) 
Cetuximab 1 .66 ( 1.04–2.65 ) 
Daratumumab 1 .03 ( 0.65–1.64 ) 
Trastuzumab 1 .74 ( 0.69–4.42 ) 
Rituximab 0 .64 ( 0.42–0.97 ) 

Table 2: ( Continued ) . 

Variables OR ( 95% CI ) 

Immune checkpoint inhibitors 
Atezolizumab 1 .38 ( 0.78–2.45 ) 
Nivolumab 1 .37 ( 1.00–1.88 ) 
Pembrolizumab 1 .42 ( 1.02–1.97 ) 
Ipilimumab 2 .30 ( 1.00–5.29 ) 

Use of other medications 
ACE inhibitors 1 .66 ( 1.10–2.50 ) 
ARBs 1 .13 ( 0.87–1.46 ) 
Loop diuretics 1 .86 ( 1.49–2.32 ) 
Thiazide diuretics 0 .73 ( 0.46–1.15 ) 

Potassium-sparing diuretics 1 .47 ( 1.04–2.08 ) 
Tolvaptan 0 .52 ( 0.21–1.26 ) 
Acetazolamide 1 .21 ( 0.24–6.14 ) 
Denosumab 1 .28 ( 0.97–1.70 ) 
Bisphosphonates 1 .28 ( 0.94–1.74 ) 
Vitamin D 0 .79 ( 0.52–1.17 ) 

a The values at the previous visits were used. 
Values in bold are statistically significant. 

N
4
d
w  

U
e
f
≥
H
w  

s
d  

r

F
e

B  

l
a
p
b
p
c
t
t
t
r
t
t
w
c
a
m
t
a

M

W
f  
a concentration were 126 mmol/l ( SD 4 ) and 127 mmol/l ( SD 

 ) , respectively ( P < .001 ) . Although statistically significant, the 
ifferences in serum Na concentration between those with and 
ithout urine Na or urine osmolarity measurements were small.
rine Na concentration and urine osmolarity closest to the first 
vent of hyponatremia were identified. Among those with data 
or urine Na or osmolarity, 80.5% had a urine Na concentration 
30 mEq/l and 99.0% had a urine osmolarity of > 100 mOsm/kg 
 2 O, suggesting that most cases of hyponatremia were due to Na 
asting from the kidneys [ 16 ]. The number of patients with mea-
urements of cortisol and free thyroxine within 30 days from the 
evelopment of hyponatremia was 27 and 58, of which 2 and 3,
espectively, had values below the reference ranges. 

actors associated with hyponatremia by mixed 

ffects models 

y mixed effects logistic regression analyses, older age, eGFR,
ower serum albumin levels, small cell lung cancer, pancre- 
tic cancer, biliary cancer, docetaxel, irinotecan, cyclophos- 
hamide, cisplatin, bortezomib, cetuximab, nivolumab, pem- 
rolizumab, ipilimumab, ACE inhibitors, loop diuretics and 
otassium-sparing diuretics were associated with a higher in- 
idence of hyponatremia. Association with hyponatremia was 
he strongest for biliary cancer among various malignancies and 
he strongest for bortezomib among antineoplastic agents. On 
he other hand, breast cancer, prostate cancer, oxaliplatin and 
ituximab were associated with a lower incidence of hypona- 
remia ( Table 2 ) . Correcting Na levels for hyperglycaemia and fur- 
her adjustment for the amount and kinds of intravenous fluids 
ithin 2 days prior to Na measurements did not substantially 
hange the results, while normal saline or lactated Ringer’s was 
ssociated with a lower incidence of hyponatremia and half nor- 
al saline was associated with a higher incidence of hypona- 

remia. Sensitivity analyses by mixed effects Poisson regression 
nalyses yielded similar results ( Supplementary Table S1 ) . 

achine learning–based prediction model 

e developed a machine learning–based classification model 
or hyponatremia based on clinical examination–level data.

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad189#supplementary-data
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Number of data: 90,348
• Positive: 2526
• Negative: 87,822

Training set
Number of data: 72,278
• Positive: 2021
• Negative: 70,257

Under-sampling
Number of data: 4043
• Positive: 2021
• Negative: 2022

Test set
Number of data: 18,070
• Positive: 505
• Negative: 17,565

4:1

Figure 1: The flow of data for a machine learning–based LightGBM model. 

T  

t  

w
8  

a  

w  

S
d  

i  

n  

d
o  

0
o  

s  

0
l  

r  

t  

a  

[  

o
p
i  

c
p  

0  

3
‘  

0
w

 

T  

t
w  

a  

t
b
c
t  

v  

a  

V  

s  

E  

Albumin at a previous visit
Age

eGFR at a previous visit
Male sex

Loop diuretics
Cisplatin

Hepatocellular carcinoma
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Figure 2: SHAP summary plot of the LightGBM model for the test dataset. Vari- 
ables are sorted by their mean absolute SHAP values in descending order with 
the most important variable at the top. The colour of the dot indicates the mag- 

nitude of each variable. Higher values are red, lower values are blue. If the SHAP 
value on the horizontal axis is positive, it increases the predictive value, i.e. it 
predicts that hyponatremia is likely to occur. This plot shows that on average 
‘albumin at a previous visit’ is the most important feature and patients with low 

albumin values ( blue ) are more likely to develop hyponatremia. 
his model can predict whether or not hyponatremia is likely
o occur at the next examination. The total number of data
as 90 348. We detected 2526 hyponatremia-positive data and 
7 822 hyponatremia-negative data. For the training dataset,
 total of 72 278 data existed in the original dataset, which
as comprised of 2021 positive and 70 257 negative data.
ubsequently, with undersampling, 4043 data remained in the 
ataset ( 2021 positive and 2022 negative data ) . The test dataset
ncluded 18 070 data, which comprised 505 positive and 17 565
egative data ( Fig. 1 ) . For the LightGBM model, the training
ataset, which resolved the data imbalance, had a sensitivity 
f 0.776, specificity of 0.706, positive predictive value ( PPV ) of
.725, negative predictive value ( NPV ) of 0.761 and ROC-AUC 

f 0.818. In contrast, the test dataset had a sensitivity of 0.834,
pecificity of 0.688, PPV of 0.071, NPV of 0.993 and ROC-AUC of
.827. The test dataset remained imbalanced, with an extremely 
ow number of positive data compared with negative data,
esulting in a low PPV. Similar ROC-AUCs in the training and
est datasets suggest that the predictive model was able to
void overfitting ( too much learning in the training dataset )
 23 ]. In the test dataset, the sensitivity and NPV were high, so
ur model provides reliable predictions with few misses. We 
erformed a Bayesian optimization using an Optuna search 
n various ranges and evaluated the log loss function of five
ross-validations as the evaluation criterion. The seven adjusted 
arameter values adopted were the following: ‘learning_rate’,
.01; ‘num_leaves’, 31; ‘min_data_in_leaf’, 16; ‘lambda_1’,
.8773179281026535e-07; ‘lambda_2’, 2.062350675098732e-07; 
feature_fraction’, 0.48000000000000004; ‘bagging_fraction’,
.9253610810045878; and ‘bagging_freq’, 0.8. Other parameters 
ere set to the default values. 
Figure 2 shows the main variables of the LightGBM model.

he ranking of the SHAP values in the final model with the
est dataset is shown. The strongest predictors of hyponatremia 
ere albumin levels at a previous visit, followed by age, eGFR
t a previous visit, sex, loop diuretics and cisplatin. Concomi-
ant use of certain medications ( carboplatin, gemcitabine, pem- 
rolizumab and vincristine ) and types of malignancy ( lung can- 
er, oesophageal cancer and pancreatic cancer ) were also among 
he main predictors of hyponatremia. Figure 2 shows the SHAP
alue plot and SHAP values, which can show whether the vari-
bles contributed positively or negatively to the prediction.
ariables are sorted by their mean absolute SHAP values in de-
cending order, with the most important variable at the top.
ach dot corresponds to one data in our study. The colour of
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Table 3: Comparison of predictors for hyponatremia by mixed effects logistic regression and AI. 

Variables significantly associated 
with hyponatremia by mixed 
effects logistic regression and with 
high SHAP scores 

Variables not significantly associated with 
hyponatremia by mixed effects logistic regression 
but with high SHAP score and with the point of 
estimates at the same direction of impact on model 
output by AI 

Variables with the point of 
estimates at the different 
directions of impact on model 
output by AI 

Albumin levels 
Age 
eGFR 
Loop diuretics 
Cisplatin 
SCLC 
Prostate cancer 
Pembrolizumab 
Pancreas 
Potassium-sparing diuretics 
Oxaliplatin 
Bortezomib 

Male sex 
Hepatocellular carcinoma 
Lung cancer, unspecified 
Gastric cancer 
Colon cancer 
Gemcitabine 
Myeloma 
ARB 
Bisphosphonates 
Oesophagus 
NSCLC 
Vincristine 
Sarcoma 
Leukaemia 
Endometrial cancer 

Carboplatin 
Lymphoma 

SCLC: small cell lung cancer; NSCLC: non-small cell lung cancer. 
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he dot indicates the magnitude of the value of the variable.
igher values are red, lower values are blue. If the SHAP 
alue on the horizontal axis is positive, it increases the predic- 
ive value, i.e. it predicts that hyponatremia is likely to occur.
upplementary Table S2 shows the mean SHAP value of each 
ariable. 

omparison of results by a mixed effects model 
nd by AI 

able 3 shows the comparison of results by a mixed effects 
odel and an AI technology-based LightGBM model. Variables 
ssociated with a higher incidence of hyponatremia both by 
ixed effects model and LightGBM model were older age, lower 
lbumin, higher eGFR, loop diuretics, cisplatin, small cell lung 
ancer, pembrolizumab, pancreatic cancer, potassium-sparing 
iuretics and bortezomib. In contrast, carboplatin was associ- 
ted with a lower incidence of hyponatremia by the mixed- 
ffects logistic regression model but a higher incidence of hy- 
onatremia by the LightGBM model. 

ISCUSSION 

his study showed that hyponatremia is common among a con- 
emporary cohort of patients undergoing treatment for malig- 
ancy affecting ≈25% of them. Most hyponatremia cases were 
ikely due to Na wasting from the kidneys. In addition to known 
isk factors for hyponatremia, we have shown that novel an- 
ineoplastic agents, including bortezomib, cetuximab and im- 
une checkpoint inhibitors, were significantly associated with 
yponatremia. 
The incidence of hyponatremia was similar to that in pre- 

ious studies, although the aetiology of hyponatremia seems 
o be different versus old studies. In our study, 25% of patients 
ith malignancy ( both inpatients and outpatients ) developed 
yponatremia during treatment, which is similar to previous 
tudies showing that 11–34% of hospitalized cancer patients had 
yponatremia ( Na < 130 mEq/l ) [ 1 , 3 ]. In terms of the aetiology
f hyponatremia, one previous study showed that the causes 
f hyponatremia among cancer patients were as follows: SIADH 

0%, volume depletion 28%, diuretic use 14% and hypervolemia 
% [ 24 ]. In our study, ≈20% of patients with hyponatremia had
rine Na < 30 mmol/l and urine osmolarity > 100 mOsm/kg H 2 O,
hich was compatible with either volume depletion or impaired 
idney perfusion due to heart failure, nephrotic syndrome or cir- 
hosis. A total of 80% of patients with hyponatremia in our study 
ad urine Na > 30 mmol/l and urine osmolarity > 100 mOsm/kg 
 2 O, suggesting that the aetiologies of their hyponatremia were 
IADH, diuretic use or Na wasting nephropathy from tubular in- 
ury [ 12 , 16 ]. The proportion of patients with hyponatremia from
a wasting from the kidneys seems to be higher than in the pre-
ious study. However, it should be noted that only one-third of 
atients with hyponatremia had urine Na and urine osmolarity 
easured and the number of patients with measurements of 
ortisol and thyroid function was small. Our data suggest that 
he importance of differentiating the causes and managing hy- 
onatremia is underrecognized. 
In this study, we used mixed effects logistic regression and 

he mixed effects Poisson model to increase the statistical power 
nd make it possible to include a large number of antineoplastic 
gents as potential predictors of hyponatremia. By using mixed 
ffects Poisson models, we also considered the effect of differ- 
nt frequencies of Na measurements. Another difficulty in iden- 
ifying predictors of hyponatremia among patients with malig- 
ancy is collinearity, i.e. certain antineoplastic agents are used 
or certain malignancies or certain antineoplastic agents are 
sed in combination with a particular antineoplastic agent. In 
uch cases, it is difficult to determine whether a certain an- 
ineoplastic agent or a certain malignancy is associated with 
yponatremia. LightGBM includes the least absolute shrinkage 
nd selection operator, which incorporates regularization terms 
nd processes to select feature values, in its algorithm. Thus 
t suffers less from the problems of collinearity [ 25 ]. Although 
he mixed effects models and the LightGBM model cannot pro- 
ide a causal relationship, similar results obtained by two dif- 
erent methods made our results robust. Although collinearity 
s not a big issue when it comes to prediction, which is the main
urpose of machine learning models, even in machine learning 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfad189#supplementary-data
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odels, if there is a pair of feature values with a strong corre-
ation, the impact of the feature value and the action of each
eature value is proportionally divided between the pairs, and 
oth are underestimated. We therefore checked the correlation 
oefficients of the explanatory variables used in the model, none
f which were > 0.8. Variables of low importance, i.e. SHAP values
f 0 ( testicular cancer, zoledronate, intestinal cancer ) , were also
emoved from the final model. In a machine learning model, the
mpact of each variable on the prediction model could be evalu-
ted by SHAP values. SHAP values used in this study evaluate the
mportance of the output resulting from the inclusion of variable
A’ for all combinations of features other than ‘A’. It ensures high
ocal accuracy, stability against missing data and consistency in 
eature impact. 

Some of the factors identified to be associated with hypona-
remia in our study were known to be risk factors of hypona-
remia. Older age [ 26 –28 ], diuretics [ 26 –28 ], ACE inhibitors [ 28 , 29 ],
RBs [ 29 ], small cell lung cancer [ 2 –5 ], pancreatic cancer [ 2 –4 , 7 ],
iliary tract cancer [ 2 ], vinca alkaloids [ 4 , 8 ], cyclophosphamide
 4 , 9 ] and cisplatin [ 4 , 12 ] were reported to be risk factors for hy-
onatremia. Hypoalbuminemia likely reflects poor oral intake,
hich is a risk factor for hyponatremia [ 4 , 26 ]. Although ad-
anced kidney diseases are associated with impaired ability of 
rine dilution [ 30 ], and thus a risk factor for hyponatremia, in our
tudy, higher eGFR was significantly associated with hypona- 
remia. In this study the median eGFR was ≈70 ml/min/1.73 m 

2 ,
uggesting that most of the patients had preserved kidney func-
ion. Higher eGFR in our study might reflect lower muscle mass
nd creatinine due to poor oral intake, which is one of the
isk factors for hyponatremia and leads to an overestimation 
f eGFR. Also, patients with low muscle mass are likely to have
ow bone mass, which is the largest store of Na in the body. It
s known that antidiuretic hormone activates osteoclasts and 
auses bone resorption, which provides Na from bone to circula-
ion [ 31 , 32 ]. Those with low bone mass might not be able to re-
ease enough Na from bone even in the setting of hyponatremia
ith elevated antidiuretic hormone. 
In addition to previously known risk factors for hypona- 

remia, we identified that immune checkpoint inhibitors, ce- 
uximab and bortezomib were significantly associated with hy- 
onatremia. Hyponatremia during the treatment with these 
gents has been reported [ 13 , 14 , 33 –36 ] and hyponatremia is de-
cribed as one of the side effects for atezolizumab, bortezomib,
embrolizumab and nivolumab, but not for cetuximab, in the 
ummaries of product characteristics. However, the strength of 
ssociations between these agents and hyponatremia have not 
een recognized. 

In our study, breast cancer, prostate cancer, oxaliplatin and 
ituximab were associated with a significantly lower incidence 
f hyponatremia. The reasons for associations were unclear.
lso, the point of estimates by the mixed effects model and the
irection of impact on the LightGBM model by AI was different
or carboplatin. This could be due to co-linearity in the mixed
ffects model. 

The strength of our study is the inclusion of a wide range
f oncologic patients, the use of the mixed-effects model 
o enable the inclusion of a large number of covariates, in-
luding types of malignancy and antineoplastic agents, and 
he use of AI to account for co-linearity between certain
alignancies and certain antineoplastic agents. Furthermore,

he machine learning–based LightGBM model has the advan- 
age of predicting hyponatremia. This AI model is expected 
o support the early detection of hyponatremia in clinical 
ractice. 
The limitations of the study need to be acknowledged. The
tudy is a single-centre retrospective study and external va-
idity is uncertain. Even with the use of AI, it is impossible to
rove a causal relationship between antineoplastic agents and
yponatremia. The serum Na levels were measured indirectly
nd the number of patients with serum osmolarity measure-
ents within 1 week of development of hyponatremia was only
8. Pseudohyponatremia could have been included in hypona-
remia in this study. Although we included medications that can
otentially affect serum Na levels, it was impossible to include
ll the medications that can potentially cause SIADH. 

In conclusion, hyponatremia was common among patients 
ndergoing treatment for malignancy. Most cases of hypona-
remia were likely due to Na wasting from the kidneys. In addi-
ion to older age, poor nutritional status and medications known
o cause hyponatremia, we demonstrated that immune check-
oint inhibitors, cetuximab and bortezomib were independently 
ssociated with hyponatremia. We should recognize that these
gents are associated with hyponatremia and vigilant monitor-
ng of serum Na is warranted. 
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