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Abstract
Introduction: In this study, we aim to compare spatial statistic models to estimate the spatial distribution of Zika and Chikungunya 
infections in the city of Recife, Brazil. We also aim to establish the relationship between the diseases and the analyzed geographical 
conditions. Methods: The models were defined by combining three categories: type of spatial unit, calculation of the dependent variable 
format, and estimation methods (Geographical Weighted Regression [GWR] and Ordinary Least Square [OLS]). We identified the most 
accurate model to estimate the spatial distribution of the diseases. After selecting the model that provided best results, the relationship 
between the geographical conditions and the incidence of the diseases was analyzed. Results: It was observed that the matrix of 100 
meters (as the spatial unit) showed the highest efficiency to estimate the diseases. The best results were observed in the models that 
utilized the kernel density estimation (as the calculation of the dependent variable). In all models, the GWR method showed the best 
results. By considering the OLS coefficient values, it was observed that all geographical conditions are related to the incidence of Zika 
and Chikungunya, while the GWR coefficient values showed where this relationship was more noticeable. Conclusions: The model 
that utilized the combination of the matrix of 100 meters, kernel density estimation (as the calculation of the dependent variable) and 
GWR method showed the highest efficiency in estimating the spatial distribution of the diseases. The coefficient values showed that all 
analyzed geographical conditions are related to the illnesses’ incidence. 
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INTRODUCTION

Over the last decade, some viral diseases have gained notoriety 
due to their serious consequences for infected people in many 
countries, becoming a global health problem. Among the viruses 
causing some of these diseases are the Zika virus (ZIKV) and the 
chikungunya virus (CHIKV). Both viruses are transmitted primarily 
by Aedes mosquitoes1.  

It is important to note that a variety of ecological and economic 
factors could contribute to arbovirus epidemics in Brazil. One 
example is poor sanitation infrastructure, which is common in 

the country and usually leads to the creation of several mosquito 
breeding sites2.  Even in poor neighborhoods, there is a high spatial 
variability in the cases of arbovirus diseases. Conditions related to 
vector proliferation and infection by arboviruses are complex and 
involve both individual and environmental characteristics that vary 
from place to place3. 

By identifying where the Zika and the chikungunya disease cases 
are located, public authorities can apply insecticides for mosquito 
control primarily in high‐risk areas, decreasing the transmission of 
these viruses. Furthermore, public educational campaigns encourage 
communities at risk to engage in preventive behaviors, as people 
who are aware of the risk in their neighborhood are more likely 
to eliminate potential breeding sites in their homes, apply insect 
repellent, dress appropriately to avoid bites, and avoid the outdoors 
during mosquito feeding hours4.
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Zika fever is an exanthematous disease, related to Dengue, 
West Nile, and Yellow fever. This infection can last one week, with 
symptoms similar to Chikungunya and Dengue, including mild 
fever rash, arthralgia, arthritis, myalgia, headache, conjunctivitis, 
and edema. Severe cases involving hospitalization are uncommon, 
and deaths are rare7.

Chikungunya is another arbovirus illness caused by the chikungunya 
virus that belongs to the genus Alphavirus of the Togaviridae family. It 
is transmitted predominantly by Aedes aegypti and Aedes albopictus 
mosquitoes. However, in some areas, transmission by Culex, 
Mansonia, and Anopheles species has also been observed14. Around 
50-97% of individuals infected with chikungunya develop clinical 
disease with fever and arthralgia8.

Since Zika and chikungunya have the same conditions to their 
proliferation, such as transmission vector, this study grouped the 
notified cases of these illnesses. 

Given the above, we aim to compare spatial statistic models to 
estimate the spatial distribution of Zika and chikungunya infections 
in the city of Recife (Pernambuco,  Brazil). In addition, we also 
aim to establish the relationship between the illnesses’ incidence 
and the analyzed geographical conditions.

METHODS 

Study Area 

Recife, located in the northeast of Brazil, is the country’s fifth 
largest urban agglomeration and capital of the state of Pernambuco. 
Its urban layout is predominantly constituted by the coast and the 
urban rivers5. Recife has 1,637,834 million residents in an area of 
218.4 km² 6. 

Data 

The Health Secretary of Recife provided all information on 
Zika and chikungunya cases, which were confirmed by diagnostic 
clinic and laboratory. From 2015 until 2017, 4,861 cases (124 
cases of Zika and 4,737 cases of chikungunya) were geocoded.  
About 17% of all cases were not geocoded due to inconsistency of 
information related to the address.  Cases notified in penitentiaries 
were eliminated from the geocoding.

•	 The explanatory variables included in the analysis were based 
on three categories:  

•	 Social/Economic: persons per household, head of household 
income, population density, which were provided by the Bra-
zilian Institute of Geography and Statistics (IBGE). 

•	 Environmental/Infrastructural: non-building structures, slope 
and green spaces. The two first factors were provided by the 
Light Detection and Ranging (LIDAR), with 1 m of spatial 
resolution. Green spaces were delimited by the Normalized 
Difference Vegetation Index (NDVI) from Sentinel satellite 
images with 10 m of spatial resolution. In all raster maps, the 
mean of the values was calculated for each spatial unit (cen-
sus areas or matrix with cells of 100 m).

•	 Climatic Factors: Annual rainfall data from 2015 until 2017 
was provided by the Brazilian Center for Monitoring and Ear-
ly Warnings of Natural Disasters (CEMADEN). 

The dependent and independent variables were grouped 
according to the spatial unit adopted in Recife. All these variables 
were transformed in an index, according to the following equation: 

 

                                                                                              (1) 

Here, Vi is the value of the independent variable in the spatial 
unit i, Va is the average of the variable V in all census areas, and 
Vstd is the standard deviation of the variable in all spatial units.

Spatial Units

Three main types of spatial units were utilized in this study: 
census areas, census areas without green spaces, and a cell matrix 
of 100 meters. The census area was provided by Brazilian Institute 
of Geography and Statistics (IBGE). For the creation of the census 
areas without green spaces, the green spaces in question were 
removed by utilizing the NDVI raster map described above. 

The cell matrix of 100 meters was created to increase the details 
of the values derived from the raster maps by each spatial unit. Thus, 
a spatial unit smaller than census areas can show more precisely 
spatial variability between variables (such as slope, green spaces, 
rainfall) and the diseases.  

Statistical Modelling

The global regression model (Ordinary Least Squares [OLS] and 
the local regression model (Geographically Weighted Regression 
[GWR]) were applied to explore risk conditions and their 
relationship with the spatial distribution of Zika and chikungunya 
cases in Recife. The OLS is a method of least square that comes 
from the fact that these estimates minimize the sum of squared 
residuals17. The technique of linear regressions takes no account 
of location in its analysis of relationships between variables9,10,11. 

The GWR method is an alternative that utilizes regression, 
by adding the location to all variables12. Thus, GWR coefficients 
values can show where the relationship between the independent 
and dependent variables is more significant. The GWR function is 
based on the following:

                                                                                              (2)

In the presented formula, i is the geographical location of the ith 
spatial unit; Y is the dependent variable; X is a matrix containing a 
set of independent or predictor variable; ℇ is a random vector whose 
distribution is N (0, σ2 ); and βj is a vector of regression coefficient 
of the variable j12. Here pi is the geographical location of the ith 
spatial unit. These βj (pi) would themselves contain coefficients to 
be estimated. 

It is important to highlight that the estimates of the coefficients 
of each spatial unit are related to the bandwidth adopted (quantity 
of spatial unit adopted or distance of the location i). 

𝐼𝑛𝑑𝑒𝑥 𝑉𝐼 =  𝑉𝑖 −   𝑉𝑎
 𝑉𝑠𝑡𝑑�

𝑌𝑖 =  ∑𝑋𝑖𝑗�
� 𝛽𝑗 𝑝𝑖 + ℇ 𝑖
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The models analyzed were divided by combining three 
categories: spatial unit (as described above), calculation of 
the dependent variable, and method to estimate the diseases  
(GWR or OLS). 

The calculation of the dependent variable was divided in four: 
number of cases by each spatial unit and the mean of the kernel 
density by spatial unit, with radius of 500, 700 and 900 meters. 

Three parameters were used to identify the efficiency of the 
models: Sum of Residuals, AICC and the adjusted R2. 

The sum of residuals (S. Res) is the absolute sum of the squared 
residuals, derived by the difference between estimates and observed 
values.

The Akaike Information Criterion Correction (AICC) is a 
measure of model performance for comparing different regression 
models. This parameter and the sum of residuals are appropriate to 
identify the best model method of the regression (global or local). 

The last parameter, adjusted R2 is a measure of goodness of fit. Its 
value varies from 0.0 to 1.0, with higher values being preferable. It 
was used because, when an extra explanatory is added to the model, 
the denominator is not altered, but the numerator is. Calculations 
for the adjusted R2 value normalize the numerator and denominator 
by their degrees of freedom, solving the alteration problem. In this 
study, the adjusted R2 was utilized to identify the best model, while 
the AICC and S. Res were adopted to identify the best method of 
each model (GWR or OLS).

To analyze the global and local relationship between the 
variables and the diseases, it was necessary to choose the best model 
according to the adjusted R2. Thus, it was possible to identify the 
intensity and spatial variability – utilizing the GWR method – of 
the coefficient values for each variable.

Three statistical variables were used to analyze the relationship 
between the variables and the diseases in the OLS method: robust 
probability,Variance Inflation Factor (VIF), and the Koenker 
Statistic. The robust probability indicates whether a coefficient is 
statistically significant (p < 0.01). The VIF values (>7.5) indicate 
redundancy among explanatory variables. If the Koenker Statistic 
indicates values smaller than 0.01, the relationships modeled are not 
consistent (either due to non-stationarity or heteroskedasticity)10.

RESULTS

By analyzing the results in Table 1, it was observed that the 
cell matrix of 100 meters showed the best efficiency to estimate 
the diseases in both methods (OLS and GWR), excepting Model 
3, which utilized the number of cases by cell matrix of 100 meters. 
By comparing the adjusted R2 between Model 1 (census areas as 
spatial unit) and Model 6 (cell matrix of 100 meters), it is possible 
to notice an improvement of 0.09 to 0.35 (OLS method) and 0.47 
to 0.92 (GWR method).

In respect to the calculation of the dependent variable, the results 
which presented higher adjusted R2 values numbers were observed 
in the models that utilized the kernel density estimation. This fact 
highlights the difference between models that utilize number of 
cases by spatial unit and the mean of kernel density estimation by 

spatial unit. However, considering the adjusted R2 in OLS method, 
the radius of kernel density of 700 meters showed the best efficiency. 
Both Models 5 and 6 (with radii of 700 and 900 meters, respectively) 
had the same adjusted R2 of 0.92. 

In all models, the GWR method showed the best results, when 
the combination of all three parameters was analyzed: adjusted R2, 
sum of residuals, and the AICC. One particularity was that in Model 
3, the OLS and GWR methods had similar adjusted R2 values. 

By analyzing the adjusted R2 values of the models, in general, 
it was identified that the best results were shown in Model 5. This 
model had the spatial unit of cell matrix with 100 meters and kernel 
density with a radius of 700 meters. 

The importance of the coefficients and parameters presented 
in the OLS method lies in the possibility of identifying how many 
variables were spatially significant and which variables were more 
significant to estimate the diseases. However, it is worth noting 
that these parameters show the global relationship between the 
geographical conditions and the diseases.  

In this case, in the OLS method, it was observed that the VIF was 
low, indicating no problems with multicollinearity in all variables.  
Thus, this parameter shows that no variables were redundant. 

Another point to consider is that the robust probability showed 
significant spatial autocorrelation for all variables. This significant 
spatial autocorrelation shows that the all variables improved the 
estimates of Zika and chikungunya cases. 

The Koenker Statistic value for all variables was statistically 
significant (p <0.01), showing that relationships modeled are not 
consistent due to non-stationarity.  This fact can indicate that the 
GWR model could show better estimations, leading to the thought 
that regression methods based on location (GWR method) are 
better than global regression methods to estimate the diseases, 
such as OLS.

In Model 5, three factors presented positive coefficients in the 
OLS method (Table 2): persons per households, population density, 
and slope. Other independent variables, such as green spaces, head 
of household income, nonbuilding structures and precipitation, had 
negative coefficients. 

By considering the coefficients’ spatial distribution of GWR 
method, it is possible to identify which variables presented spatial 
heterogeneity. Thus, it enables the recognition of disparities 
between GWR and OLS coefficient values. By analyzing the GWR 
coefficients in Figure 1, it is possible to identify that their values 
can be different according to the geographic location. Although 
the independent variables showed similarities between GWR and 
OLS coefficients, some regions presented an inverse relationship. 

Although the coefficient values of the OLS method presented 
an inverse relationship between non-building structures and the 
diseases, it is possible to see that some regions (east and southwest, 
for example) presented positive coefficient values in GWR method. 
However, negative coefficient values were found in most spatial 
units (62%). The coefficient values in GWR varied from -0.5 to 0.5, 
while the coefficient value in the OLS method was -0.12.
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TABLE 1: Models categorized by combination of spatial unit, calculation of dependent variable, and method to estimate the Zika and chikungunya cases. 

Model Method Bandwidth (m) Spatial Unit Dependent 
Variable Adjusted R2 S. Res AICC

1

OLS   census areas number of cases 0.092 1 134 5 024

GWR 500 census areas number of cases 0.47 593 37

               

2

OLS  
census areas 
without green 

spaces
number of cases 0.095 1 133 5 022

GWR 500
census areas 
without green 

spaces
number of cases 0.47 595 47

               

3

OLS   cell matrix of  
100 meters number of cases 0.11 9 121 52 935

GWR 500 cell matrix of  
100 meters number of cases 0.19 7 280 14 110

               

4

OLS   cell matrix of  
100 meters 

kernel density 
estimation  

(500 m)
0.36 9 461 45 912

GWR 500 cell matrix of  
100 meters 

kernel density 
estimation  

(500 m)
0.89 2 631 5 135

               

5

OLS   cell matrix of  
100 meters 

kernel density 
estimation  

(700 m)
0.367 9 717 45 767

GWR 700 cell matrix of  
100 meters 

kernel density 
estimation  

(700 m)
0.92 2 743 7 067

               

6

OLS   cell matrix of  
100 meters 

kernel density 
estimation  

(900 m)
0.359 9 949 45 886

GWR 900 cell matrix of  
100 meters 

kernel density 
estimation  

(900 m)
0.92 2 855 8 036

Anjos RS et al. - Spatial Analysis of Zika and Chikungunya
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TABLE 2: Independent variables utilized and their relationship with Zika and chikungunya cases according to coefficient, robust probability, and VIF in the OLS 
method (Model 5).

Variable Coefficient Robust Probability VIF

Persons per household 0.320608 0.000000 1.252564

Head of household Income -0.179351 0.000000 1.154345

Rainfall -0.120486 0.000000 1.141473

Nonbuilding Structures -0.120486 0.000005 1.578071

Slope 0.058705 0.000000 1.240517

Population Density 0.468012 0.000000 1.567344

Green Spaces -0.230611 0.000000 2.547128

FIGURE 1: Maps of GWR coefficient values divided by the geographical conditions analyzed.

The negative coefficients for the variable head of household 
income in the OLS model was confirmed by the GWR coefficient 
values in most census areas. By comparison, the coefficient value 
in OLS method was -0.17, while the coefficient values in GWR 
method varied from -2.5 to 2.7. However, about 54% of the spatial 
units showed negative coefficient values in GWR method. 

By analyzing population density, in most spatial units, the 
coefficient value in GWR model is positive, mainly where the 
disease rates were high, confirming the coefficient values in the OLS 

model (0.46). At the center of the municipality, one of the regions 
showed lower population density but higher Zika and chikungunya 
rates than its neighboring areas. This fact resulted in a negative 
coefficient value in the GWR map. The coefficient values in GWR 
method varied from -0.1 to 1.4. Despite that, about 96% of the 
spatial units showed positive coefficient values. 

Regarding the relationship between arbovirus diseases and 
persons per household, in most spatial units, the coefficient was 
positive in the GWR model (57%), agreeing with the coefficient 

Rev Soc Bras Med Trop | on line | Vol.:53:(e20200027): 2020
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values in the OLS model. It is important to note that, although some 
spatial units presented high persons per household rates, the arbovirus 
rates were low, causing a negative coefficient in GWR model. 

The relationship between slope and arboviruses presented 
positive and negative coefficients, without a spatial distribution 
pattern. However, about 60% of spatial units showed negative 
coefficients. This result differs from the OLS coefficient values. 

The inversely proportional relationship between green spaces 
and arboviruses found in the OLS method is also present in all 
spatial units. The areas where the highest positive coefficient values 
occurred (mainly in the northeast of the city) showed low presence 
of green spaces and low Zika and chikungunya rates. About 81% of 
spatial units showed negative coefficient values in the GWR method. 

Regarding the rainfall variable, the OLS coefficient values 
showed that regions with lower precipitation rates had higher 
Zika and chikungunya rates. However, the coefficient values in 
the GWR method presented negative values for 50% of the spatial 
units studied. 

By analyzing the differences between the estimated and observed 
cases of Zika and chikungunya in Figure 2, some particularities became 
evident. The OLS method presented the greatest difference when 
compared to the observed data, to which the GWR method showed 
similarities in the spatial distribution of the arboviruses. However, it 
was possible to identify the spatial variability of the diseases in both 
models, where the highest Zika and chikungunya rates were observed 
in the northeastern and some central areas of Recife.

FIGURE 2: Density of estimated (GWR model and OLS model) and observed cases of Zika and chikungunya 
in Recife, Brazil.

Anjos RS et al. - Spatial Analysis of Zika and Chikungunya
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DISCUSSION

By analyzing the results in Table 1, it was observed that the 
efficiency of the models can be assessed according to the spatial unit, 
the calculation of dependent variable, and the method of the model. 

By analyzing the different parameters utilized in all models, 
it was possible to identify some particularities. The adoption of 
spatial units smaller than census areas can improve the estimates of 
the diseases studied. Some geographical conditions, which derive 
from the raster maps, have high spatial variability inside of the 
census areas. Thus, by adopting the cell matrix of 100 meters as 
the spatial unit instead of the census areas, the relationship between 
these conditions and the diseases can be more precise, improving 
the adjusted R2 values. 

Another point to consider is that census areas without green 
spaces as the spatial unit does not improve the calculation of the 
population density, resulting in best estimates. 

The calculation of the dependent variable was another important 
parameter to estimate the Zika and chikungunya rates. The models 
that adopted the mean of kernel density to calculate the Zika and 
chikungunya rates presented better estimates than models that utilized 
the number of cases by spatial unit. This fact shows that the methods 
utilized (OLS and GWR) have a sensitivity related to the spatial 
variability of the diseases. By adopting the number of cases, their 
spatial variability was abrupt between the spatial units, decreasing 
the proximity with the spatial variability of the independent variables. 
This occurs because the variations of the geographical conditions 
are smooth, demanding this behavior of the dependent variable. It is 
important to note that the adoption of the mean of kernel density can 
be justified by two factors: (a) the best efficiency to estimate the Zika 
and chikungunya cases, utilizing the adjusted R2 values as parameter; 
and (b) the regionalization of the rates.

Regarding the search radius adopted (500, 700 and 900 meters) 
in kernel density, the adjusted R2 values were similar in all models. 
However, the model that utilized the search radius of 700 meters 
presented slightly better efficiency than others models. 

The third parameter analyzed in the model were the OLS and 
GWR methods. In all models, the GWR method showed the best 
results, according to the analysis of the sum of residuals, AICC, and 
adjusted R2 values. Although both methods estimate a dependent 
variable, their purposes are different. When the results of the OLS 
method estimates are good, the coefficient values are an important 
aspect to analyze the global relationship between the geographical 
conditions and the diseases. However, the Koenker Statistic value 
in Model 5 indicated that the coefficient values can be very different 
according to location, justifying the GWR method. On the other 
hand, the GWR method can indicate where the relationship was 
more notable or inverse of the OLS coefficient values. 

Others studies showed that this efficiency in GWR method is 
better than the OLS method. For example, the correlation between 
some factors and notifications of Dengue in Pakistan was 0.37 in 
OLS model and 0.49 in GWR model13. An aspect to consider is 
that these correlations can vary in space and time. For example, the 
correlation between population density, slope, altimetry, and malaria 
varied from 0.47 to 0.83, between 2001 and 200714. 

By considering all the parameters discussed and their efficiencies 
to estimate the Zika and chikungunya cases, in general, Model 
5 presented the best results to estimate the diseases. This model 
had a cell matrix of 100 meters as spatial unit and mean of kernel  
density with 700 meters of search radius as calculation of the 
dependent variable. 

By exploring the coefficients of both the OLS and GWR 
methods, some particularities were noteworthy. 

Regarding to the GWR and OLS coefficient of nonbuilding 
structures, the negative coefficient values can be explained because 
in areas where the distance among buildings is low, the opportunities 
of the mosquito to infect the households are increased. Another point 
to consider is that slum areas have the lowest rates of nonbuilding 
structures in Recife, justifying the correlation between the highest 
rates of Zika and lowest rates of nonbuilding structures. It is 
important to note that the building density can be an indicator of 
the temperature due to the latent heat that is absorbed in areas with 
high building density. 

A relationship between income and spatial distribution of Zika 
and chikungunya cases was observed in both coefficients methods 
(OLS and GWR). However, income is not a predominant factor 
in some census areas in the north of the city. This fact could be 
related to the decrease of arboviruses cases in areas where the 
low-income population is located. The heterogeneity of variables 
related to arboviral disease is observed in other studies, in which 
some socioeconomic indicators were not statistically significant in 
categorizing risk areas3. However, studies showed that the income 
rate is the factor that best characterized the risk areas for arbovirus 
diseases such as Dengue, for example15. 

The relationship between population density and some diseases 
can be explained by other studies that revealed areas with higher 
human population densities had lower socioeconomic position, 
poorer water and sanitation conditions, and frequent tire capping 
facilities, but had reasonable infrastructure16. For example, in Porto 
Rico, it was identified that the poor population, population density, 
urbanized areas, and high temperature presented a correlation of 
0.78 with incidence of Zika, in GWR model17. Another study in 
Pakistan verified that among variables such as altimetry, distance 
from rivers and population density, the last factor showed the highest 
correlation with notifications of Dengue13.

In general, the correlation between persons per household 
and incidence of Zika and chikungunya diseases in both methods 
showed a directly proportional correlation. Results were detected 
in Ecuador, where the relation between Zika and persons per 
households was statistically significant18.  In Venezuela, it was 
observed that the relation between Dengue and persons per 
household was directly proportional19. 

Historically, the regions with high slope degree or flat areas 
(such as mangrove) are inhabited by a low-income population in 
Recife5. This fact resulted in a high spatial variation of the GWR 
coefficient values. In any case, the OLS method showed positive 
coefficients, highlighting that the regions with high slope degree 
are more susceptible to proliferation of Zika and chikungunya 
cases in Recife.

Rev Soc Bras Med Trop | on line | Vol.:53:(e20200027): 2020
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Another point to consider is that the mosquito Aedes aegypti 
prefers urbanized areas where the presence of vegetation cover 
is more limited. Thus, the green spaces can be a factor correlated 
with urbanization and, consequently, related to spatial distribution 
of the arboviruses. This result is similar to the study that identified 
the highest chikungunya incidence is in regions with highest 
percentages of urbanized land in Rio de Janeiro2. 

A second factor to highlight is that the Aedes aegypti preferences 
for human blood decrease with the increase of vegetation cover. 
Moreover, it is important to highlight that most slum areas are 
highly compact, displaying the  highest roof coverage and low 
vegetation cover rate20. 

Some models identified that, while an increase in temperature 
should shift the Aedes aegypti boundaries towards higher latitudes, 
the increase of rainfall would be detrimental to its enlargement21. 
In most studies that analyzed the relationship between climatic 
parameters and arboviruses, it was identified that these studies 
are related to the arboviruses temporal distribution, disregarding 
the spatial distribution, due to the lack of meteorological well-
distributed stations across the cities. However, the temporal analyses 
indicate that extremely intense rainstorms that produce a high 
volume of precipitation in a few hours may flush out larvae, leading 
to decreased vector abundance and arbovirus transmission2. These 
observations can suggest that the regions with low precipitation 
volume are better for the proliferation of mosquitoes.  

Given the above considerations, the model that utilized the 
combination of the matrix of 100 meters (as the spatial unit), kernel 
density estimation (KDE) (as the calculation of the dependent 
variable) and Geographical Weighted Regression (as the estimation 
method) showed the highest efficiency to estimate the spatial 
distribution of Zika and chikungunya cases. 

It is important to note that, although the GWR method presented 
best results, regression linear methods, such as OLS, can show the 
global relationship between geographical conditions and some 
diseases. On the other hand, the GWR coefficient values show 
where this relationship is more evident. 

By comparing the GWR and OLS coefficient values in Recife, 
three geographical conditions showed a notable agreement in most 
spatial units in both methods: non-building structures, population 
density, and green spaces (more than 60% of spatial units). However, 
in the OLS method, it was possible to identify that all geographical 
conditions were relevant to the model. 
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