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ABSTRACT

Sn1-type alkylating agents, like N-methyl-N-nitro-
sourea (MNU) and N-ethyl-N-nitrosourea (ENU), are
potent mutagens. Exposure to alkylating agents
gives rise to O°-alkylguanine, a modified base that
is recognized by DNA mismatch repair (MMR)
proteins but is not repairable, resulting in replication
fork stalling and cell death. We used a somatic
mutation detection assay to study the in vivo effects
of alkylation damage on lethality and mutation
frequency in developing zebrafish embryos. Con-
sistent with the damage-sensing role of the MMR
system, mutant embryos lacking the MMR enzyme
MSH6 displayed lower lethality than wild-type
embryos after exposure to ENU and MNU. In line
with this, alkylation-induced somatic mutation fre-
quencies were found to be higher in wild-type
embryos than in the mshé6 loss-of-function mutants.
These mutations were found to be chromosomal
aberrations that may be caused by chromosomal
breaks that arise from stalled replication forks. As
these chromosomal breaks arise at replication, they
are not expected to be repaired by non-homologous
end joining. Indeed, Ku70 loss-of-function mutants
were found to be equally sensitive to ENU as wild-
type embryos. Taken together, our results suggest
that in vivo alkylation damage results in chro-
mosomal instability and cell death due to
aberrantly processed MMR-induced stalled replica-
tion forks.

INTRODUCTION

The SnI-type alkylating agents N-methyl-/N-nitrosourea
(MNU) and N-ethyl-N-nitrosourea (ENU) are strong
chemical mutagens, which cause DNA damage by trans-
ferring a methyl or ethyl group to the oxygen and nitrogen
atoms of nucleotide bases (1,2). The resulting base adducts

tend to mispair during semi-conservative replication. If not
corrected the following round of replication converts the
mismatches to point mutations (1). The recently described
structures of normal and O%-methylated guanine (O®-meG)
paired with either cytosines or thymines in the replication
complex have provided an explanation for why alkylated
bases frequently mispair (3). Normally, the relative repli-
cation efficiency of unmethylated G paired with C exceeds
that of G paired with T by 100 000-fold. In contrast, the
replication efficiency for O%-meG paired with T is 10-fold
higher than for O%-meG paired with C (3). In addition, the
proofreading activity of DNA polymerase cannot distin-
guish O°-meG paired with C or T, and the mismatch goes
unnoticed.

As DNA alkylation does occur naturally, cells have
developed repair mechanisms to prevent mutagenesis. The
molecular principles of DNA methylation have been
studied most extensively and will be discussed here. The
cell has several repair pathways to deal with the different
types of methylation adducts (2). The O°-meG adduct is
specifically removed by the enzyme O®-meG methyltrans-
ferase (Mgmt) (4-6). In addition, in the event that O®-meG
pairs with thymine during replication, this mismatch is
recognized by mismatch repair enzymes (2,4,7-9). DNA
mismatch repair (MMR) is the machinery that corrects
small replication errors, such as base—base mismatches and
insertion/deletion loops (IDLs). In mammals, there are five
MMR genes that produce the components of three different
heterodimers. The MutS heterodimer is the first to
recognize the replication error and exists in two varieties:
MutSa and MutSB. MutSa, consisting of the MMR
proteins MSH2 and MSH6, recognizes single base pair
mismatches and small IDLs. MutSpB, a heterodimer of
MSH?2 and MSH3, is primarily involved in the recognition
of larger IDLs. Subsequent to MutS binding, a MutL
heterodimer is recruited. MutLa, the predominant form
functioning in MMR, consists of MLH1 and PMS2 (10).
In addition to replication errors, MMR proteins recognize
other forms of DNA damage, such as modified basepairs.
Upon recognition of O°meG pairs, the MMR system
will induce strand excision of the bases mispaired to
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the methylated site in order to repair the damage.
However, since the methylated base is in the template
strand of the replicated DNA, it cannot be replaced.
Instead, it will continuously be paired with C or T by the
polymerase, followed by MMR recognition and excision.
This ‘futile cycle’ of repair will finally result in the stalling
of the replication fork. By subsequent activation of
checkpoints it may lead to cell cycle arrest and apoptosis.
MMR-mediated DNA damage checkpoint signalling has
been shown to occur via ATR and phosphorylation of
Chkl (11-13), while ATM plays a non-essential role
(13,14). The associated apoptotic response has been
shown to be independent of p53 (7).

In the absence of a direct DNA damage response, the O°-
meG-induced stalled replication forks may collapse,
resulting in double-strand breaks (DSBs) (13,15). A poten-
tial mechanism for this was revealed by the observation
that MMR-dependent futile cycling results in persistent
small stretches of single-stranded DNA in the first round of
replication, which become DSBs in the second cycle
of replication (16). The DSBs would then be repaired
by homologous recombination (HR), resulting in sister
chromatid exchanges (2,5,14,17,18). This hypothesis
is supported by the fact that HR-deficient yeast strains
have increased sensitivity to alkylation damage (19).

For the reasons mentioned above, O%meG is the most
toxic methylation-induced lesion, to which MMR mutants
are resistant (4,9,15,20,21). The basic molecular response
may be similar for ethylation, although affinities of DNA
polymerase, Mgmt, and MMR for O®-ethyl-guanine are
probably different. Indeed, Claij et al. (21) found a higher
survival rate of msh2 mutant cells compared to wild-type
cells after exposure to ENU, albeit to a lesser degree than
after exposure to MNNG. Also, the same homozygous
msh2 mutant cells had a selective growth advantage over
heterozygous cells when treated with ENU (20). However,
in two other studies on human and hamster cells, no dif-
ferences were observed between MM R-deficient cells and
their wild-type counterparts in response to ENU treatment
(22,23).

When alkylated mispairs in MMR-deficient cells do
not induce arrest but are allowed to persist, single base
pair mutations can accumulate, resulting in increased
genomic instability in MMR mutants. A higher mutation
frequency in MMR-deficient cell lines has indeed been
reported for methylating agents (4,18) and ethylating
agents (21).

In zebrafish, ENU mutagenesis has a long history of
efficient use in both forward and reverse genetic screens
(24-27) where it is applied to adult fish to introduce
base pair changes in germ cells. We have applied ENU
and MNU treatment to early embryos in order to study
the effect of alkylation-induced damage in fast-dividing
somatic cells, in vivo. We have found that after treatment
with alkylating agents, wild-type zebrafish embryos
accumulate high numbers of mutations due to chromo-
somal instability, and have low survival rates. These
effects are dependent on MMR activity and are strongly
reduced in embryos deficient in the MMR-component
MSHb6.

MATERIAL AND METHODS
Zebrafish lines

Msh6 mutant fish (hul811) were obtained by target-
selected mutagenesis, and the initial characterization was
described elsewhere (28). Genotyping was done by PCR
amplification and resequencing, using exon 10 specific
forward (5-GCTGGTGGCAACTTAAATC-3) and
reverse (5-GCTCAACAGATACTTGCTT TG-3') pri-
mers or using KASPAR genotyping technology
(KBioscience, Hoddesdon, UK) and forward primers for
wild type (5-GAAGGTGACCAAGTTCATGCTCGC
TTCTCAGACGTACTTGTGC-3") and mutant (5-GA
AGGTCGGAGTCAACGGATTCCGCTTCTCAGAC
GTACTTGTGT-3') and the common reverse primer (5'-C
AGTCTGTTCTACGCGAGCTACTTT-3). The wild-
type embryos that are used as controls in all experiments
have a similar genetic background as the msh6™/~
embryos, as they are derived from wild-type siblings of
the msh6~'~ fish that produced the mutant embryos.

To generate msh6, albino double mutant fish, the original
msh6 heterozygous founder was crossed with an albino line
that carries a point mutation in exon 6 of the zebrafish
SLC45A42 gene. This mutation causes a glycine to arginine
change at position 461, and although this line has not been
documented elsewhere, the phenotype is indistinguishable
from other albino lines. The allele is identified as alb™!844
(hul844), but for clarity it will be called ‘alb’ in the report.
Double heterozygous fish (hul874) were subsequently
incrossed to generate both msh6~/~, albjalb and
msh6 '™, albalb fish.

The Ku70 line (hu2485) also originates from target-
selected mutagenesis and contains a thymine to adenine
mutation in exon 10, resulting in a premature stop codon.
This line has not been reported yet. Genotyping of the
Ku70 allele was done by resequencing, similar to what was
done for the msh6 line, with forward (5-ATGACATACG
CACTGTGGAC-3') and reverse (5Y-AATCAGGAGGA
TAGACC AAATC-3') primers.

The tp53 line (zdfT), with mutation M214K, has been
described elsewhere (29) and will be identified as 7p53
throughout the study. Genotyping was done using
KASPAR forward primers for wild type (5-GAAGGTG
ACCAAGTTCATGCTGAGGATGGGCCTGCGGTTC
A-3’) and mutant (5-GAAGGTCGGAGTCAACGGAT
TGAGGA TGGGCCTGCGGTTCT-3') and the reverse
primer (5-CAACTGTGCTACTAAACTACATGTGCA
AT-3").

Somatic mutation frequency

Pair crosses of msh6, albino double mutants were
performed to assay the somatic mutation frequency. At
three days post-fertilization (dpf), both eyes of all embryos
were inspected for pigmentation. Patches of unpigmented
cells were considered the result of a somatic mutation in
the albino locus. For detailed analysis of these patches,
embryos were fixed in 4% PFA, embedded in plastic and
sectioned.



Chemical and ionizing radiation treatment of embryos

Embryos were treated at 5-6 h post-fertilization (hpf) for
1 h with ENU or MNU in 10mM NaPO, buffer pH 6.6.
After treatment they were rinsed once with NaPO, buffer
and once with embryo medium before they were put back
to embryo medium at 28.5°C. Embryos were irradiated at
5-6 hpf in a small volume of embryo medium in a
Gammacell 1000 (Gammaster, Ede, the Netherlands) and
then moved to 28.5°C in fresh embryo medium.

The survival of the embryos was monitored during the
first days post-treatment, with final scoring at 3 dpf.
Embryos that had died, were unhatched, and/or had
severe phenotypes, e.g. curled bodies, oedemas, and
reduced body size, were scored as not surviving. Albino
cells in the eye were also scored at 3 dpf, as described
above.

All experiments were done with multiple independent
crosses, and were repeated at least two times. Data were
analysed using ANOVA and significance levels P < 0.05,
and are represented as mean =+ standard error of the
mean (SEM).

Expression arrays

RNA samples from 10 embryos coming from five different
crosses treated with 0.4mM ENU and from 10 untreated
embryos from five different crosses were used to balance the
potential effects of genetic variation. Total RNA was
isolated with the mirVana miRNA isolation kit (Ambion,
Austin, TX, USA). cDNA synthesis and labeling were done
using the low RNA input linear amplification kit (Agilent,
Santa Clara, CA, USA) and Cyanine 3-CTP and 5-CTP
(Agilent). Subsequent purification was done using the
RNeasy Mini kit (Qiagen, Hilden, Germany). Duplicate
samples were run in dye-swap. Labelled samples were
hybridized overnight to 44K zebrafish expression arrays
(Agilent), washed, scanned with scanner (Agilent), and
analysed using Feature Extraction and Array-Assist soft-
ware (Agilent), all according to standard procedures and
instructions of the suppliers.

Metaphase spreads and chromosome paints

Twenty-four hours post-fertilization embryos were
dechorionated and incubated for 90 min in colchicine to
arrest cells in metaphase. After hypotonic treatment in
1.1% sodiumcitrate and fixation in 3:1 methanol:acetic
acid, cells were suspended in 50% HAc and spread onto
glass slides. Slides were mounted and stained with DAPI
vectashield (Vector Labs, Burlingame, CA, USA).

For chromosome paints, slides with metaphase spreads
were refixed in 3:1 methanol:acetic acid, dehydrated in an
ethanol series, and dried. Then the slides were washed with
2x SSC and incubated with 8 % 107°% pepsin in 0.01 M
HCI for 5min, both at 37°C. After three washes with 2x
SSC, slides were fixed in 1% formaldehyde in PBS for
Smin, rinsed three times with PBS, dehydrated and dried.
The slides were denatured in 70% formamide and probes
were hybridized overnight at 37°C. Paints for chromo-
some 4 labelled with biotin, chromosome 5 labelled with
FITC and chromosome 7 labeled with Cy3 were kindly
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provided by Dr Fengtang Yang (30). The slides were
washed two times with 50% formamide, once with 2x
SSC, and once with 4x SSC, 0.5% Tween-20, all at
42°C. To detect the biotin label, the slides were exposed
to avidin Cy5-conjugated antibodies (Amersham,
Buckinghamshire, UK). To enhance FITC staining, the
slides were exposed to rabbit Alexa Fluor® 488-
conjugated anti-fluorescein/Oregon Green® antibodies
(Molecular Probes, Invitrogen, Eugene, OR, USA). Anti-
body stainings were done in one reaction in 4x SSC, 0.5%
Tween-20 for 15min at 37°C, and subsequently the slides
were washed three times with 4x SSC, 0.5% Tween-20
at 42°C. Slides were mounted and stained with DAPI
SlowFade (Invitrogen, Eugene, OR, YSA).

RESULTS

Msh6~!~ embryos have an increased spontaneous somatic
mutation frequency

An assay was set up for the in vivo detection of somatic
mutations in zebrafish embryos using loss of heterozygosity
of the albino gene in the pigmented cells of the eye.
Pigmentation of zebrafish embryos is visible from day 2
of development as individual cells on the trunk and in a
uniformly pigmented layer of cells in the eye. Pigmentation
is totally absent in albino mutants. Because pigmentation
requires only one functional allele of the albino gene to be
present, we were able to score every inactivating mutation.
To this end, msh6~'~ zebrafish were crossed with msh6™'~,
alb/alb animals to obtain msh6 mutant embryos that are
albino heterozygotes, and msh6 " with msh6 /", alb/alb
animals to obtain embryos that are wild type for msh6 in an
albino heterozygous background. In these embryos, a
mutation that causes loss of heterozygosity at the albino
locus will result in a cell that lacks pigmentation. When this
cell divides a patch of unpigmented cells will arise, which
can easily be scored in the pigmented layer of the
embryonic eye (Figure 1A and B). In order to validate
the assay, the spontaneous somatic mutation frequency
of msh6~'~ and msh6™'" embryos was determined. The
frequency of embryos with albino patches was 17-fold
higher in the msh6 mutant background (Table 1) compared
to wild type. In the progeny of msh6~'~ females crossed
with msh6 "/ " males, the mutation frequency was similar to
that of msh6 mutant embryos. In contrast, the progeny
from msh6 /" females crossed with msh6 '~ males had a
mutation frequency similar to wild type embryos, irrespec-
tive of which of the two parents was albino (Table 1). The
fact that the maternal genotype determines the mutator
phenotype of the progeny indicates that the mutations arise
early in development, before the midblastula transition
when zygotic transcription is switched on (31). During this
period, the embryonic phenotype reflects the transcripts
and proteins that are provided in the yolk by the mother;
therefore, if the mother is mutant for msh6, up to the
midblastula transition her progeny will also be devoid of
the enzyme. To more closely investigate the number of
mutant cells in each embryo, some eyes with albino patches
were sectioned. In most cases, multiple small patches rather
than a single unpigmented patch were seen (Figure 1C).
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Figure 1. Loss of heterozygosity at the albino locus in zebrafish embryos. (A, B) Examples of unpigmented patches of cells in the pigment layer of the eye
caused by mutations in the wild-type allele of the albino gene. (C) Example of a cross-section of the eye showing the typical multiple small patches.

Table 1. Spontaneous non-pigmented patches in the eyes of
heterozygous albino zebrafish in wild-type and MMR-deficient
backgrounds

Cross No. embryos No. with Frequency
scored patches

msh6"/"F X msh6 "/ "M 2068 2 0.00097

msh6™"F X msh6~/"M 1434 24 0.017

msh6™/"F X msh6 "M 1043 1 0.00096

msh6™/"F X msh6"/ "M 1612 32 0.020

F, female; M, male.

This is likely due to the extensive cell migration that occurs
during eye development (32), as the overall mutation
frequency indicates that all patches in one eye were caused
by a single mutation. Altogether, the albino loss-of-
heterozygosity assay in zebrafish proves to be a very
powerful system for in vivo somatic mutation detection.

Msh6~'~ embryos are more resistant to ENU and MNU

In the developing zebrafish embryo, the first 10 cell
divisions occur synchronously, rapidly, and without
checkpoints. After the midblastula transition, cell cycles
become longer with more extensive G1 and G2 phases,
which supplies time for checkpoint signalling, cell cycle
arrest and DNA repair (31). To test the sensitivity of
zebrafish embryos to alkyating agents, we chose to treat
embryos of midblastula stage, 5 hpf, with the ENU and
MNU. As ENU is the most efficient mutagen in zebrafish,
we first exposed groups of embryos to increasing con-
centrations of ENU (24,25). Consistent with what has
been observed in other systems, msh6 '~ embryos had
increased survival rates at high concentrations of ENU
relative to wild-type embryos (Figure 2A). To compare the
effects of ethylation and methylation, a second group of
embryos was exposed to increasing concentrations of
MNU. Once again, we observed a higher rate of survival
for msh6~'~ embryos relative to wild-type embryos.
However, to our surprise, this difference was reproducibly
only seen at low concentrations (0.2 mM) of MNU, due to
the extreme killing of MNU in wild-type embryos
(Figure 2B). At higher concentrations, msh6~'~ and
wild-type embryos had similar survival rates. The survival
rate of wild-type embryos was significantly lower in

0.2mM than in 0.5mM MNU (Figure 2B). In addition,
we observed that embryonic phenotypes were much more
severe at 0.2mM compared to 0.5 and 1.0mM MNU
(data not shown).

The ENU- and MNU-induced mutation frequency
is reduced in msh6 '~ embryos

We used the albino loss-of-heterozygosity assay to study
the frequency of chemical-induced mutation after expo-
sure to low doses of ENU. The frequency of mutation
induced by ENU was found to be one order of magnitude
higher than the frequency of spontaneous mutation in
MMR mutants. Unexpectedly, the mutation frequency
after ENU exposure was greatly increased in wild-type
embryos compared to msh6 '~ embryos (Figure 2C). The
same experiment was done using MNU as the alkylating
agent, resulting in an even higher increase in mutation
frequency in the wild-type relative to the msh6~/~ embryos
(Figure 2D). These results indicate that the absence of
MMR recognition of alkylation damage does not result in
an increased accumulation of point mutations. However,
comparing the frequencies of mutation and survival after
treatment with ENU or MNU, the results do suggest a
correlation between mutation load and lethality. There-
fore, the mutations that accumulate after exposure to
alkylating agents might be caused by lesions other than
point mutations, and could result from MMR-dependent
replication fork stalling following O°%-alkylguanine
(0%-alkG) recognition.

Alkylation-induced lethality is caused by
MMR-dependent chromosomal aberrations

MMR-mediated stalled replication forks have the potential
to turn into DSBs, which can cause chromosomal aberra-
tions when they are not properly repaired. Metaphase
spreads were performed to investigate whether aberrant
chromosomes were the source of the high frequency of
mutations in embryos treated with ENU. Since it takes two
rounds of replication for the alkylation damage to corrupt
replication forks, treated embryos were allowed to develop
until 24 hpf before chromosomal analysis [cells in the
developing embryo undergo on average two to three cell
divisions between 6 and 24 hpf; (33)]. Several types of
aberrant chromosomes that were extremely rare in
untreated cells, such as fragments, fusions and asymmetric
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Figure 2. Msh6™'~ embryos are more resistant to alkylation damage and have reduced mutation frequencies. (A, B) Survival of wild-type (black) and
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assay in wild-type (black) and msh6~/~ (white) embryos induced by increasing doses of ENU (C) and MNU (D). Asterisks indicate significant

differences. ND, not done.

chromosomes (Figure 3A) were frequently observed in
ENU-treated wild-type cells (Figure 3B). When quantified,
the levels of chromosomal instability were much higher in
cells of ENU-treated wild-type embryos than in those of
untreated embryos. On the other hand, msh6~/~ cells had
only a mild increase in the frequency of chromosomal
aberrations with ENU-treatment (Figure 3C). To confirm
that the observed aberrations were indeed random
chromosomal rearrangements, we painted three individual
chromosomes with previously described zebrafish paints
(30). The three pairs of chromosomes were easily distin-
guished in cells from untreated wild-type embryos
(Figure 3D). However, in wild-type cells that had been
exposed to I mM ENU, we observed painted chromosome
fragments (Figure 3E), as well as chromosomes that were
detected by two different paints, indicating chromosome
rearrangements (Figure 3E, inset).

When the same experiment was performed with MNU-
treated embryos, the mutation frequency was also low in
treated msh6~/~ embryos. The frequency of aberrant
chromosomes was higher in wild-type embryos exposed to
0.2mM MNU than in those exposed to 0.5mM MNU.
Therefore, the frequency of chromosomal rearrangements
observed after MNU exposure correlates well with the
degree of lethality and frequency of mutation (Figure 3F).

Altogether, these results strongly indicate that chromoso-
mal instability is the source of MMR-dependent muta-
tions and lethality induced by alkylation.

To systematically determine which signalling and repair
pathways are triggered by these chromosomal aberrations
in vivo, we used microarrays to look for changes in
transcriptome expression in low-dose ENU-treated
embryos. TP53 expression was increased 3-fold in treated
wild-type embryos, but not in treated msh6~'~ embryos.
No other significant changes in the expression of DNA
metabolizing or signal transduction genes were found,
including ATR and ATM pathway genes and factors
downstream of TP53 (data not shown).

ENU-induced chromosomal instability arises at replication

To investigate whether wild-type and MMR mutant cells
respond differently to DSBs that arise through means
other than alkylation, we tested the ability of 5 hpf wild-
type and msh6 '~ embryos to survive increasing doses of
ionizing radiation (IR). Ionizing radiation induces
random DSBs, independent of cell cycle phase. We
observed no differences in the survival rates of msh6~'~
mutant and wild-type embryos for any of the IR doses
tested (Figure 4A).
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Figure 4. MMR-dependent ENU-induced chromosomal instability
arises during replication. (A) Induction of random DSBs during all
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between msh6~'~ and wild-type embryos. (B) ENU sensitivity of wild-
type and ku70 mutant. (C) IR sensitivity of wild type, 7p53 mutant
(control) and homozygous ku70 mutant. Asterisks indicate significant
differences.

DSBs can be repaired via two different mechanisms
that act in different phases of the «cell -cycle.
Homologous recombination (HR) is active during the S
and G2 phases when sister chromatids are available. Non-
homologous end joining (NHEJ) is the predominant
pathway for the repair of DSBs during G1 phase. To
determine which repair pathway is important for the
repair of alkylation damage in vivo, we treated a NHEJ-
defective mutant (ku70~'") with ENU and assayed
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survival. This experiment was performed only in the
wild-type background, as ENU-induced damage only
results in the stalling of replication forks and DSBs in
the presence of functional MMR. No difference in
sensitivity to ENU was observed for ku70 knockouts as
compared to wild-type embryos (Figure 4B), indicating
that HR, not NHEJ, is most likely involved in the repair
of ENU-induced DSBs. To confirm that ku70~/~ is a loss-
of-function mutant, a range of IR doses was applied to
ku70~'~ mutant embryos. A small but significant decrease
in survival was observed with increasing irradiation
(Figure 4C), indicating that the ku70 mutant is defective
for DSB repair by NHEJ. In addition, these results
confirm that NHEJ is active in developing embryos. The
observed IR sensitivity of our ku70 mutant embryos is
analogous to morpholino knockdown experiments of ku70
and ku80, which have previously been shown to result in
increased apoptosis in response to irradiation (34,35). As a
control, tp53 mutant embryos, which have been shown to
have reduced levels of apoptosis upon irradiation, were
exposed to similar doses of IR (29). The #p53 mutant
embryos indeed had increased survival frequencies at the
highest IR dose (Figure 4B).

Taken together, the observations that the msh6 mutant
is equally sensitive to IR as wild type and the ku70 mutant
is equally sensitive to ENU as wild type indicate that
MMR-dependent ENU-induced DNA damage arises
during replication and not during interphase.

DISCUSSION

Although the in vitro effects of alkylating agents have been
studied extensively, in vivo studies in vertebrate species are
still lacking. Here, for the first time, we have studied the
in vivo effects of alkylation-induced damage in wild-type
and MMR-deficient zebrafish embryos. Msh6 mutant
zebrafish have previously been shown to display micro-
satellite instability and have a predisposition to cancer
(28), illustrating that they are MMR deficient. To study
somatic mutation accumulation in vivo, an assay was
developed for the detection of loss-of-heterozygosity at the
albino locus in the pigmented cells of the embryonic eye.
Using this assay, the background somatic mutation
frequency in the msh6 mutant was found to be 17-fold
above that of wild-type embryos. This is consistent with
studies in other organisms, where 10-100-fold increases in
the mutation frequency were observed in MM R-deficient
backgrounds (21,36-38). Since the zebrafish albino gene
does not contain obvious repeat sequences, the
underlying mutations are expected to be point mutations,
although their nature has not been determined
experimentally.

Mutant and wild-type embryos were treated with Syl
alkylating agents. Previous studies using cell culture
experiments did not give conclusive evidence that ethyla-
tion lethality is dependent on MMR. Some of these studies
reported an increased resistance to alkylation in MMR
mutants (20,21), but others reported no differences
compared to wild type (22,23). Here, we show that msh6
mutant embryos survive ENU treatment significantly
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better than do wild-type embryos. Surprisingly, MNU
reproducibly induced severe MMR-dependent lethality
only at the lowest concentration tested (0.2mM). It is
difficult to explain why a given compound is more lethal at
lower than at higher concentrations. We speculate that
this may be related to the fact that DNA methylation is
itself a natural regulatory mechanism, and therefore a
threshold exists above which the DNA damage response
and repair pathways are triggered. In this scenario, low-
dose methylation damage could still deregulate cellular
processes and result in cell death. Alkylating agents and
DNA demethylating agents are currently used in che-
motherapy. In that respect, this type of in vivo study may
be clinically significant, as epigenetic changes are frequent
in cancers (39).

According to this study, the alkylation damage response
in zebrafish is similar to what has been reported for the cells
of other organisms. However, more detailed studies will be
needed to firmly establish zebrafish as a general model for
studying human DNA repair processes. For example, it is
not known whether zebrafish has a functional mgmt
homologue. The Ensembl database (www.ensembl.org)
suggests an orthologue (ENSDARGO00000043275), but
data on how and when it functions and whether it is
maternally provided are lacking.

As discussed, O%-alkG-induced stalled replication forks
can be converted to DSBs. These DSBs arise in a MMR-
dependent manner, which has been confirmed by the
observation that msh6 mutant embryos are not resistant to
the DSBs induced by IR. Additionally, DSBs that arise
during replication are normally repaired by HR and not
by NHEJ (5,14,17,18). Ku70 mutant zebrafish, which were
shown to be NHEJ-deficient, were as sensitive to ENU as
wild-type zebrafish, indicating that NHEJ does not repair
ethylation-induced DSBs. Previously, it was shown that
Ku80 mutant hamster cells are able to repair MNNG-
damage but not IR-damage (40). These data confirm that
DSBs resulting from MMR-recognized O°-alkG arise at
replication.

The observed decrease in ENU- and MNU-induced
mutation rate of msh6 mutants can now be explained by
the fact that the albino loss-of-heterozygosity mutations
are large chromosomal lesions. Chromosomal aberrations
have also been reported after MNU treatment of human,
mouse, and hamster cells (14,22,23). They occur when
DSBs caused by O°%alkG are aberrantly repaired or
unrepaired, which subsequently results in cell death.
Although DNA checkpoint signalling induced by
0°-alkG-mediated stalled replication forks was shown to
depend on ATR/Chkl signalling (11-13), secondary
lesions may induce a different DNA damage response.
This could explain why we found TP53 to be upregulated
in embryos with high levels of chromosomal instability,
while MMR-dependent alkylation DNA damage signal-
ling was reported to be independent of TP53 (7). Similarly,
it explains the involvement of ATM-signalling after
alkylation damage (14). In our in vivo zebrafish experi-
ments, the alkylation response appears to be mostly
directed towards chromosome instability. It should be
mentioned that while DNA damage checkpoints are
absent during the first cell divisions of zebrafish
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Figure 5. Schematic overview of the responses to alkylation damage
and the three possible outcomes, ‘cell death’, ‘point mutation’ and
‘repair’ (capitals) via routes involving different types of DNA repair
(italics). Loss of functions, such as MMR, will shift the balance of these
three outcomes rather than result in one specific outcome. MMR,
mismatch repair; mgmt, O°methylguanine methyltransferase; BER,
base excision repair; DSBs, double-strand breaks; HR, homologous
recombination.

development, the ability to undergo checkpoint-induced
apoptosis was found to start even later (41), which may
explain why the O°%alkG damage is able to cause high
levels of chromosomal aberrations in zebrafish embryos.
At high concentrations, alkylating damage kills MMR-
deficient embryos just as it does wild-type embryos. This is
probably due to the accumulation of additional types of
alkylation-induced DNA damage, such as N-alkylation
products, which can also induce apoptosis through
incomplete base excision repair (2). The potential effects
of alkylation treatment are schematically summarized in
Figure 5. The three different outcomes of alkylation
damage, (i) cell death, (ii) point mutation and (iii) repair,
can be reached via different repair and signalling routes.
This indicates that absence of one function, such as
MMR, will shift the equilibrium of the three potential
outcomes rather than result in one specific outcome.
According to the observed mutation frequency, the
induction of DSBs by alkylation far exceeds the number of
point mutations in developing wild-type embryos.
Considering that ENU and MNU have primarily been
used to induce germ-line point mutations, this suggests
that the effect of these drugs may be different for embryos
and germ cells. Nevertheless, DSB-related mutations have
been observed in several mutagenesis studies aiming for
point mutations, indicating that this process also occurs in
the germ line. In the mutagenesis treatment of post-
meiotic zebrafish germ cells, two out of six resulting
mutations were found to be dominant lethal in embryos,
suggesting that they represent larger lesions than point
mutations (42). Of five mutants from a similar



mutagenesis experiment, the mutation was found to be a
translocation in one line and a large deletion in the four
others (43). ENU and MNU germ-line mutagenesis in
mice has also caused large lesions in many cases (44).

Taken together, the results of this study show that
alkylation damage induces high levels of chromosomal
aberrations in early zebrafish embryos in an MMR-
dependent fashion, which results in reduced embryonic
survival. Overall, the data indicate that the basic responses
to alkylation damage in zebrafish are similar to other
organisms. However, the observed high frequency of
chromosome rearrangements compared to point muta-
tions in these embryos is clearly different from what has
been reported from germ line mutagenesis studies and
in vitro experiments. These experiments show that in
somatic cells chromosomal instability is a more physiolo-
gically relevant outcome of alkylation damage than point
mutations. These findings are relevant in considering the
role of alkylating events in carcinogenesis, as well as for
alkylation chemotherapy.
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