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The mutREAD method detects mutational
signatures from low quantities of cancer DNA
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Mutational processes acting on cancer genomes can be traced by investigating mutational

signatures. Because high sequencing costs limit current studies to small numbers of good-

quality samples, we propose a robust, cost- and time-effective method, called mutREAD, to

detect mutational signatures from small quantities of DNA, including degraded samples. We

show that mutREAD recapitulates mutational signatures identified by whole genome

sequencing, and will ultimately allow the study of mutational signatures in larger cohorts and,

by compatibility with formalin-fixed paraffin-embedded samples, in clinical settings.
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Genome instability is a hallmark of many cancers and leads
to the accumulation of single nucleotide variants and copy
number alterations in tumor cells. The analysis of the

prevalence of specific nucleotide substitutions throughout the
genome has revealed that mutational processes, to which the cells
are exposed, leave footprints, termed mutational signatures1–3.
Large-scale genome sequencing efforts on different cancer types
have identified over 50 mutational signatures2,4,5 and their
detailed characterization has improved our understanding of the
cellular defects acting on cancer genomes6–9 and their evolution
in normal tissues10–12. Recent studies have shown that the
mutational signatures can be used for patient stratification, for
example, to help tailor therapies to exploit specific defects in these
patient sub-groups or to improve early detection and cancer
prevention strategies13–18.

Mutational signatures in a tumor genome usually have been
derived from whole-genome sequencing (WGS)4,5,19,20. Due to
the associated sequencing costs, WGS is generally limited to
studies with small numbers of high-quality samples. The suc-
cessful application of mutational signatures in clinical settings will
thus depend on the availability of a cost-effective, scalable
detection method that can handle samples of low quality con-
taining small amounts of DNA.

The relative contribution of mutational processes to the overall
mutational spectrum in DNA samples is deciphered mathemati-
cally from the frequency of substitutions in their trinucleotide
context. Under the assumption that the frequencies can be
accurately estimated from a subset of mutations, sequencing at
lower genome-wide coverage, i.e. shallow WGS at 10× coverage
(10× sWGS)13, and whole-exome sequencing (WES) have been
proposed as potential alternatives to WGS for detecting muta-
tional signatures. However, the low coverage of 10× sWGS can
lead to spurious mutations calls and will likely bias the detected
mutations to those highly abundant in the cell population of the
DNA sample. On the other hand, WES masks the contribution of
intergenic mutations to the mutational spectrum, potentially
leading to a biased estimation of the presence of mutational
signatures.

Here, we propose an easy-to-use method for mutational sig-
nature detection building on reduced representation sequencing
(RR-seq) approaches that have been successfully applied in
population genetics analyses21,22. Our protocol is based on
sequencing a reproducible, random subset of genomic regions
generated by double-enzymatic digestion and subsequent frag-
ment size-selection of the DNA sample. As a result, sufficient
coverage for somatic mutation calling is achieved without bias in
the type of detected mutations. The proposed method can detect
mutational signatures from small quantities of DNA, including
degraded samples from formalin-fixed paraffin-embedded (FFPE)
material, in a robust, cost- and time-effective manner.

Results
Performance of mutREAD in computational simulations. Our
proposal assumes that obtaining a random subset of all mutations
is sufficient to determine the presence of mutational signatures.
To test this assumption, we first performed computational
simulations (see “Methods” section) using available data from
whole-genome sequencing of 129 esophageal adenocarcinoma
(EAC) samples and the six mutational signatures derived from
them13.

The stability of the mutational signature profile was evaluated
as a function of the number of randomly selected mutations
detected in the WGS samples (Fig. 1a). The cosine similarity
relative to the original mutational signature profile increases with
the number of mutations available for estimation. A plateau is

reached at 500 mutations, suggesting that fewer than the WGS-
derived number of mutations (on average 26k mutations per EAC
sample) are sufficient to obtain the mutational signature profile.

The second assumption is that the mutation subset generated
by RR-seq is an unbiased representation of the mutational
spectrum. We simulated subsets of mutations for RR-seq using
different enzyme combinations, as well as for 10× sWGS and
WES (see “Methods” section). In this simulation, RR-seq with at
least 161 out of 169 enzyme combinations outperforms
(expanded) WES and 10× sWGS in terms of average cosine
similarity between the WGS-derived and simulated signature
profile in EAC (Fig. 1b). This difference can in part be attributed
to the number of mutations recovered by the different methods
(WES: 211, expanded WES: 282, 10× sWGS: 462 and RR-seq: 381
mutations on average). Notably, RR-seq derived mutations
originate from a much lower proportion of the genome (a range
of 0.2–82Mbps, mean: 10Mbps, 0.3% of WGS) than (expanded)
WES-based mutations (WES: 46Mbps/1.39% of WGS; expanded
WES: 62Mbps/1.88% of WGS).

We further investigated the applicability of RR-seq for
estimating mutational signatures in different cancer types using
the WGS data collected by the Pan-Cancer Analysis of Whole
Genomes (PCAWG) network2. RR-seq accurately estimated the
mutational signature profiles across the majority of the 20 cancer
types, including cancers with highly diverse mutational signature
content, e.g. liver hepatocellular carcinoma (Liver HCC), and a
non-solid tumor, i.e. B-cell non-Hodgkin lymphoma (Lymph-
BNHL, Supplementary Fig. 1A). As expected from our simula-
tions above, the performance of the method was correlated with
the mutational load across cancer types (Supplementary Fig. 1B).
Finally, RR-seq outperformed (expanded) WES in all cancer types
(Supplementary Fig. 1C).

Implementation and optimization of mutREAD. Having
established the superiority of RR-seq over other methods in the
simulation, we implemented our approach, which we called
mutREAD (mutational signature detection by restriction enzyme-
associated DNA sequencing), by adapting and improving on the
principles of the quaddRAD protocol21. Key features of the
protocol include incorporation of unique molecular identifiers
(UMI) and inline barcodes, which allow for computational
identification of PCR duplicates and larger multiplexing cap-
abilities, respectively (Fig. 1c). The protocol is further streamlined
by simultaneous enzymatic digestion and adapter ligation and
removal of unnecessary purification steps. Here, we optimized the
protocol towards application to EAC, for which six mutational
signatures have been previously identified from WGS on fresh-
frozen samples13. In particular, we chose the optimal pair of
enzymes based on the simulation described above. The enzyme
combination PstI and ApoI showed one of the highest cosine
similarities to WGS results in EAC (Fig. 1b), as well as broad
genome coverage and even distribution of target loci throughout
the genome (Supplementary Fig. 2). Hence, we designed adapter
sequences that terminated with PstI and ApoI restriction enzyme
compatible sites and that are devoid of PstI or ApoI restriction
enzyme sites to avoid digestion of the adapters (Supplementary
Table 1).

We further optimized the protocol to suit either fresh-frozen or
FFPE samples (see ”Methods“ section), the latter being the
standard sample preservation strategy in clinical practice.
Restriction enzyme double digestion, adapter ligation conditions,
and size selection were optimized for optimal digestion, adapter
annealing, and size selection using an EAC cell line (FLO-1). The
protocol was further adjusted for FFPE derived DNA from the
same EAC cell line (Supplementary Fig. 3).
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mutREAD outperforms other approaches for calling muta-
tional signatures. We then applied mutREAD to fresh-frozen
tumor and matched blood samples from biopsies of three dif-
ferent EAC patients and evaluated the quality of the library under
several criteria (Supplementary Table 2, Supplementary Fig. 4).
The mutational signatures, derived from 530 to 1471 mutations

detected using GATK Mutect223, showed cosine similarities of
0.95–0.96 when compared with the WGS-derived mutational
signature profiles (Fig. 1d). We observed similar cosine similarity
between mutREAD and WGS when mutations were derived using
an alternative mutation caller, Strelka24 (Supplementary Table 3).
We note that two mutation callers agree in 41–85% of mutations,
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suggesting that for optimal sensitivity dedicated benchmarking
and optimization is necessary when applying different mutation
callers. In summary, the mutREAD protocol results in repro-
ducible, good quality, target-specific libraries from which muta-
tional signatures can be successfully derived.

Next, we compared mutREAD with WES and 10x sWGS
libraries of the same samples sequenced to similar depth. Quality
measures for the resulting libraries of the different methods are
summarized in Supplementary Table 4. WES resulted in 46–325
mutations per sample and 10x sWGS identified 21–83 mutations
per sample. mutREAD consistently achieved high cosine
similarity to the corresponding WGS-derived signatures. Con-
versely, WES and 10x sWGS had lower cosine similarities and
much higher variability between patients (Fig. 1d).

High performance of mutREAD on FFPE-derived samples.
Finally, we investigated if mutREAD can be used to study his-
torical samples by sequencing FFPE specimens matching the
previously analyzed frozen samples. Fresh frozen and FFPE-
derived samples generated similar signature patterns (Fig. 2a),
despite the lower sequencing depth and smaller fragment dis-
tribution of final FFPE-derived libraries (Supplementary Fig. 4,
Supplementary Table 2). Cosine similarities to WGS-derived
mutational signatures were between 0.89 and 0.96 based on
47–383 detected mutations.

We replicated the good cosine similarity to WGS-derived
mutational signatures in additional nine FFPE samples (Fig. 2b).
Of note, samples were derived from tumor resections and
pathology estimates for these samples show low tumor content
(10–70%, Supplementary Table 5), explaining the lower number
of mutations and higher variability across samples compared to
the previously tested biopsy samples. Given the high degradation
expected in FFPE samples which can result in variability, we also
tested the reproducibility of FFPE-derived mutREAD libraries.
Technical replicates of the nine FFPE samples showed high
concordance in sequenced regions and fragment size distribution
(Fig. 2c, Supplementary Fig. 5). Hence, while it is expected that
the performance on FFPE is lower compared to fresh-frozen
samples, our results suggest that mutREAD can also be applied to
FFPE-derived DNA samples with low tumor content and leads to
reproducible results.

Discussion
We have presented the development and application of a cost-
effective and scalable method for the detection of mutational
signatures in DNA samples. mutREAD produces reproducible
and highly specific reduced representation libraries and the
derived mutational signatures mirror the WGS-derived signatures

with high cosine similarity. Importantly, this also holds true even
when used with highly degraded DNA samples. Our method will
ultimately allow the study of mutational signatures in much larger
cohorts and in clinical settings where FFPE-derived DNA samples
are routinely collected.

Applied to tumor samples from EAC patients, we showed that
mutREAD outperforms the previously proposed methods WES
and 10× sWGS. EAC is characterized by abundant somatic
mutations, which are most prevalent in intergenic and intronic
regions13,25. The choice of library preparation methods to study
mutational signatures in other cancer types will depend on the
overall mutation rate and the genomic distribution of the somatic
mutations.

In terms of scalability and cost mutREAD outperforms other
methods (Supplementary Table 6). In our hands, the cost
associated with mutREAD libraries synthesis is 80% lower than
for 10× sWGS and 96% lower than for WES libraries.
Sequencing costs on the Illumina HiSeq 4000 are comparable
for WES and mutREAD libraries, while sequencing 10× WGS
libraries is at least three times more expensive. Further, due to
its high multiplexing capabilities for sequencing and for library
preparation mutREAD is highly scalable for studying larger
cohorts.

Given its ease of use and low cost, we envision a wide range of
applications for mutREAD to study mutational signatures in basic
research and translational settings. For example, clinical trials
using mutational signature-based patient stratification to assign
optimal therapies become feasible. mutREAD could further
improve the mutational signature-based prediction of homo-
logous recombination deficiency in clinical samples14,26. Together
with computational tools for coarse-grained copy alteration
detection22,27, mutREAD could provide a detailed view of the role
of mutational processes in cancer progression and evolution from
archived material. Finally, correlative analyses of mutational
signatures with endogenous and environmental parameters to
understand the source of so far unknown mutational signatures
will shed light on the etiology of cancers.

Methods
Enzyme selection criteria. The enzyme combination is an important parameter to
optimize for the mutREAD method. We focused on high-fidelity restriction
enzymes provided by New England BioLabs Inc. (Ipswich, Massachusetts USA) to
allow for fast DNA digestion and maximum target specificity under a broad range
of experimental conditions. Since cancer samples frequently exhibit DNA hyper- or
hypo-methylation, which could affect restriction enzyme sites, we required
insensitivity to CpG methylation status. To simplify the adapter design, only
enzymes with a unique cut-site including only A, C, G, and T were considered.
Finally, cut sites were required to have a maximum length of six base pairs to
increase the number of generated fragments. The tested list of enzymes is given in
Supplementary Table 7.

Fig. 1 Comparative analysis of mutational signatures and method overview. a Cosine similarity (y-axis) of whole-genome sequencing (WGS)-derived
mutational signatures for EAC samples (n= 129 independent patients) and signatures derived from random subsets of mutations with increasing number
of mutations (x-axis). Data are shown as boxplots, where the bold line at the center indicates the median and the upper and lower hinges extend to the
25th and 75th percentile, respectively. The upper/lower whisker extends from the upper/lower hinge to the largest/smallest value no further than 1.5 times
the interquartile range from the upper/lower hinge. Samples outside this range are indicated as points. Only samples having sufficient number of mutations
(at least the number indicated on the x-axis) contribute to the boxes. b Cosine similarity (y-axis) of WGS-derived mutational signatures for EAC samples
(n= 129 independent patients) and signatures derived from subsets of mutations simulating different sequencing approaches (x-axis). Data are
represented as mean cosine similarity values ± standard deviation. Different enzyme combinations were simulated for RR-seq, each shown as a different
point. For the simulated 10x sWGS samples, the mean (n= 21 independent patients) is given as dashed horizontal line and the standard deviation is given
as dotted line. RR-Seq, reduced representation sequencing; 10× sWGS, 10× shallow whole-genome sequencing; WES, whole-exome sequencing; expanded
WES, whole-exome sequencing expanded to untranslated regions and miRNAs. c Schematic overview of the individual steps in mutREAD. Details for each
step are given in the “Methods” section. SB, sample barcode; UMI, unique molecular identifier; RE, restriction enzyme. d Comparison of the mutational
signature profiles for three EAC samples across different sequencing methods (x-axis). Each bar indicates the contribution of the mutational signature (y-
axis) to the overall mutational spectrum. Pairwise cosine similarities to WGS for mutREAD, WES and 10× sWGS are indicated above the bars.
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Simulations. We opted for a double-digest protocol to produce fragments that are
reproducible between libraries. To simulate the performance of all possible enzyme
combinations fulfilling the above criteria, we use ddRADseqTools (v0.45)28 to
perform in silico digestion of the human hg19 reference genome and size selection
for fragments of expected length between 350–450 bp. The expected fragment size
range of 350–450 base pairs was chosen as the maximum fragment size such that
the complete library fragments (insert, adapters and primers) could still be
sequenced on a standard Illumina HiSeq system. WGS-based mutations were
selected if they overlap the resulting expected fragments and mutational signatures
were calculated based on this selection. Similarly, WES and expanded WES
sequencing is simulated using the target regions provided by Nextera for the rapid
capture exome/expanded exome kit (v1.2)29, where the exome kit comprises 45
Mbps of coding regions and the expanded exome kit comprises 62 Mbps of coding
regions, untranslated regions and miRNAs. Further, the 21 simulated 10x sWGS
libraries from a previous study13 were used. In short, the 10x sWGS were simulated
by down-sampling the WGS libraries and re-running the mutational calling.

Cosine similarity. We measure similarity between two mutational signature pro-
files P and Q using the cosine similarity. The cosine similarity between the non-
zero vectors P and Q with n mutational signatures is defined as

cossim P;Qð Þ ¼
Pn

i¼1
PiQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
P2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Q2

i

p . Two mutational signature profiles that are

independent have cosine similarity of 0. Conversely, identical mutational signature
profiles obtain a cosine similarity of 1.

Computational simulations using Pan-cancer analysis of whole-genomes data.
We also performed computational simulations on the WGS data from the PCAWG
network. The collection was downloaded from https://dcc.icgc.org/releases/
PCAWG/consensus_snv_indel. We have used the signature compendium from
COSMIC (v3, downloaded from https://dcc.icgc.org/releases/PCAWG/
mutational_signatures/Signatures/SP_Signatures/SigProfiler_reference_signatures)
to capture all mutational signatures relevant to the different cancer types. Only
cancer types with at least 10 samples present in the collection were analyzed.

Ethical approval, sample collection. Esophageal adenocarcinoma samples were
collected by the Oesophageal Cancer Classification and Molecular Stratification
(OCCAMS) project, a multi-center UK-wide study. The study was approved by the
Institutional ethics committee (REC 07/H0305/52 and 10/H0305/1) and included
individual informed consent.

Assay optimization. All optimization experiments were performed using 500 ng of
genomic DNA from an EAC cell line (FLO-1), commercially available from culture
collection of Public Health England. In-house STR analysis was done in the lab to
confirm a >90% match prior to assay optimization. Experiments were then repe-
ated with frozen tumor, matched blood and FFPE tumor DNA from EAC patients.

DNA extraction and quantification. DNA was extracted from FLO-1 cell line and
frozen tumors using the Allprep DNA/RNA mini kit (Qiagen, Hilden Germany)
and DNA from blood was isolated using QIAmp DNA blood maxi kit (Qiagen,
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Fig. 2 mutREAD reproducibly detects mutational signatures in FFPE samples. a Comparison of the mutational signature profiles between WGS, fresh-
frozen (FF) and FFPE samples for the same three EAC samples as in Fig. 1. Each bar indicates the contribution of the mutational signature (y-axis) to the
overall mutational spectrum. Pairwise cosine similarities to WGS for the two mutREAD libraries are indicated above the bars. b Cosine similarity between
mutational signatures derived from nine additional FFPE and WGS sample pairs and the number of detected mutations in the FFPE samples used to derive
the mutational signatures. c Reproducibility of the sequenced regions between the first FFPE-derived technical replicate and the blood sample, the second
FFPE-derived technical replicate and the blood sample, and between the two technical replicates (x-axis). The bars indicate the size of the overlapping
regions in million base pairs (Mpbs, y-axis) for each comparison. Only regions covered at least 10× contribute to the comparison. The second technical
replicate was sequenced to lower coverage and we down-sampled the first technical replicate by 50% to approximately match the sequencing coverage for
comparison.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16974-3 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3166 | https://doi.org/10.1038/s41467-020-16974-3 | www.nature.com/naturecommunications 5

https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel
https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures/SP_Signatures/SigProfiler_reference_signatures
https://dcc.icgc.org/releases/PCAWG/mutational_signatures/Signatures/SP_Signatures/SigProfiler_reference_signatures
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Hilden Germany). AllPrep DNA/RNA FFPE Kit (Qiagen, Hilden Germany) was
used to extract DNA from FFPE tumors. DNA quantification was done using Qubit
dsDNA Broad Range (BR) assay kit on Qubit 3.0 fluorometer (Thermo Fisher
Scientific, Waltham Massachusetts USA).

Restriction digestion optimization for ApoI HF-PstI HF double digest. High-
fidelity (HF) ApoI and PstI restriction enzymes were obtained from New Eng-
land BioLabs Inc. (Ipswich, Massachusetts USA). The optimization of
restriction enzyme digestion (Supplementary Fig. 4) was performed on 500 ng of
FLO1 cell line genomic DNA and included optimization of enzyme concentra-
tion, library purification procedure, PCR cycle optimization and removal of
FFPE artefacts.

Adapter design and primers. Adapters (i5 and i7, Supplementary Table 1) were
designed to target DNA fragments with restriction overhangs for the selected
restriction enzymes (PstI and ApoI) and achieve specific and uniform sampling of
the genome by modifying Illumina adapter sequences30 following the general
principles of the quaddRAD protocol21. The random 4 bp degenerate barcode
included in both, i5 and i7, was designed to avoid creating new restriction sites. The
6 bp unique inner barcode sequences were balanced for A/C and G/T content to
increase the sequence diversity at each position across the inner barcodes. Addi-
tionally, PhiX control was spiked in to 20% to improve the overall sequencing
quality. The i5 upper adapter was phosphorylated to abolish the ligation at the 3’
end and the lower i5 adapter was phosphorylated for its ligation with the DNA
insert. To avoid non-specific amplification during the PCR stage the i7 adapters
were designed in a Y-shape conformation to amplify only those DNA fragments
with specific adapters ligated to them. Illumina universal PCR primers (i5nn and
i7nn) were used for amplification (Supplementary Table 1). A phosphorothioate
bond at the 3’ end of the outer barcodes/primers (i5nn/i7nn) was added to protect
from nonspecific or proofreading nuclease degradation.

Adapter preparation. Lyophilized adapters obtained from Integrated DNA
Technologies (IDT, Leuven Belgium) were reconstituted in Tris-EDTA (TE pH:8)
buffer to get 100 μM stock. Complementary upper and lower single strands of i5
and i7 were annealed at 10 μM each using annealing buffer (500 mM NaCl,100 mM
Tris-HCl, pH 7.5–8) on a thermal cycler with the following conditions: Denature at
97.5 °C for 2.5 min and then bring down to 4 °C at a rate of 3 °C/min. Hold at 4 °C.
Adapters were stored in −20 °C. This 10 μM working dilution of adapters stock
was used in the ligation reaction.

Library preparation and sequencing. Both restriction digestion and ligation
reaction were performed simultaneously. 500 ng of genomic DNA was digested
with 50 U of PstI-HF and ApoI-HF in presence of 0.187 mM mutREAD i5 and i7
adapters, 400 U of T4 ligase and 1 mM ATP in 1X CutSmart buffer. The reaction
was incubated on a thermal cycler at 30 °C for 3 h. Ligation reaction was stopped by
addition of 10 µl of 50 mM EDTA.

Two step size selection for 400–500 bp inserts (DNA fragments, excluding
adapters) was performed using Agencourt AMPure XP beads (BECKMAN
COULTER, Brea California US). Unwanted larger fragments were removed with
0.6× ratio of AMPure beads to ligation product and the short fragments were
removed by 0.15× size selection.

The size selected DNA fragments ligated with adapters (20 μl) were amplified
using PCR primers (i5nn/i7nn) compatible with Illumina sequencing platform. The
reaction was performed in total volume of 100 µl with 0.8 U of Phusion high-
fidelity polymerase, in the presence of 0.2 mM dNTPs and 1X Phusion High
Fidelity buffer. PCR was performed in the following conditions: 98 °C/2 min
denaturation, 12 cycles of amplification at 98 °C/10 s, 65 °C/30 s, 72 °C/30 s and
final extension at 72 °C for 5 min. Libraries were purified using 0.8X AMPure beads
(80 μl beads+ 100 μl library), this step was repeated one more time to remove all
unwanted leftover reactants during PCR. Libraries were eluted in 20 μl TE buffer
(Tris-EDTA buffer 10 mM Tris-HCl and 0.1 mM EDTA, pH 8) and stored at −20 °
C. Quality control was performed on Agilent 2100 Bioanalyzer using Agilent High
Sensitivity DNA kit (Santa Clara, California, US) or High Sensitivity D1000
TapeStation kit (Agilent). Quantification of the libraries was performed using
KAPA Library Quantification kit (KK4953-07960573001 for Illumina platforms,
Kapa Biosysytems Roche Holding AG Basel Switzerland) on the Light cycler 480
(Roche Life Sciences, Basel Switzerland). Libraries with unique adapters were
pooled and sequenced on the HiSeq4000 using paired end, 150 bps chemistry.

De-multiplexing and PCR duplicate identification. After sequencing, all libraries
were de-multiplexed using the outer barcodes. Next, for libraries containing ran-
dom/degenerated molecular barcodes, PCR duplicates were identified and removed
using Stacks’ clone_filter (version 1.46)31, allowing for random oligos of length 4 bp
at both ends of the read pair. Another round of de-multiplexing using all possible
combinations of inner barcodes, low quality read filtering and filtering of reads
without the appropriate RAD-tag was performed with Stacks’ process_radtags.

Read mapping and quality metrics. The final libraries were mapped to the hg19
human reference genome (GRCh37_g1k) using BWA MEM (0.7.15)32. Resulting
sam files were converted to bam, sorted and indexed using samtools (1.3.1)33.
Quality metrics were calculated using GATK callableLoci (v3.7-0) for identifying
loci with at least 10x coverage, Picard (2.9.0)34 CollectInsertSizeMetrics to calculate
fragment size histograms from mapped read pairs, and samtools flagstat to obtain
mapping statistics.

Somatic mutation calling. Mutation calling was performed using GATK
Mutect223, taking into account for the SNV metrics only reads with minimum
mapping quality of 1, minimum base quality of 10 and excluding supplementary
alignments, as well as discarding both reads in an overlapping read pair if they have
different base calls at the locus of interest, or using just the read with highest base
quality if they have the same base.

Additionally, Strelka (v 2.0.15) with disabled read depth filter was run on a
subset of samples, taking into account for the SNV metrics only reads with
minimum mapping quality of 1, minimum base quality of 10 and allowing a
minimum alternate allele count of 2 and a minimum alternate allele frequency of
0.05 for a position to be considered in detecting SNV clusters.

For Mutect2- and Strelka-derived mutations, low-quality and spurious
mutation calls were filtered by applying the following criteria13:
VariantAlleleCountControl > 1, VariantMapQualMedian < 40.0,
MapQualDiffMedian < -5.0 or MapQualDiffMedian > 5.0, LowMapQual > 0.05,
VariantBaseQualMedian < 30.0, VariantAlleleCount >= 7 && VariantStrandBias
< 0.05 && ReferenceStrandBias >= 0.2. The parameter ReadCountControl was set
to be <20 for the three fresh-frozen and FFPE paired samples and <10 for the
additional FFPE samples.

Additionally, based on the cosine similarity of WGS-derived mutational
signatures and the mutational signatures derived for the initial three samples, we
optimized the minimum number of reads supporting a SNV (fresh-frozen samples
mutREAD= 5, WES= 7, 10× sWGS= 5, mutREAD FFPE= 10) and the minimal
variant allele frequency of a SNV (fresh-frozen samples mutREAD= 0.03, WES=
0.01, 10× sWGS= 0.11, mutREAD FFPE= 0.13). The cut-offs were optimized
separately for Strelka-derived mutations (fresh-frozen samples= 20 reads and 0.11
variant allele frequency, mutREAD FFPE= 11 and 0.03 variant allele frequency).

Mutational signature profile. The tri-nucleotide context for each SNV was
determined using the SomaticSignatures R package35. Mutational signature profiles
were derived for each sample using EAC-specific mutational signatures13. Finally,
non-negative least squares in R was used to derive the contributions of each
mutational signature to the overall mutational spectrum. The estimated coefficients
were scaled to sum up to one.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All mutREAD data generated for the article will be available from European Genome-
phenome Archive upon publication(accession number EGAD00001006170). WGS data
for the matched patient samples is available from the ICGC data portal (https://dcc.icgc.
org/, information about the patient ID are provided in Supplementary Table 8). The
remaining data are available within the Article, Supplementary Information or available
from the authors upon request.

Code availability
All analysis code is freely available from https://github.com/jperner/mutREAD.
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