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Abstract. We purified a protein from Drosophila $3 
tissue culture cells that has many of the diagnostic fea- 
tures of spectrin from vertebrate organisms: (a) The 
protein consists of two equimolar subunits (Mr = 234 
and 226 kD) that can be reversibly cross-linked into a 
complex composed of equal amounts of the two 
subunits. (b) Electron microscopy of the native mole- 
cule reveals two intertwined, elongated strands with a 
contour length of 180 nm. (c) Antibodies directed 
against vertebrate spectrin react with the Drosophila 

protein and, similarly, antibodies to the Drosophila 
protein react with vertebrate spectrins. One monoclo- 
hal antibody has been found to react with both of the 
Drosophila subunits and with both subunits of ver- 
tebrate brain spectrin. (d) The Drosophila protein ex- 
hibits both actin-binding and calcium-dependent 
calmodulin-binding activities. Based on the above 
criteria, this protein appears to be a bona fide member 
of the spectrin family of proteins, 

S 
PECTRIN plays a critical role in the structure and func- 
tion of the mammalian erythrocyte (Bennett, 1985; 
Marchesi, 1985; Elgsaeter et al., 1986) but there is lit- 

tle information about its function in other cell types. By anal- 
ogy to the red blood cell, it has been suggested that 
nonerythroid spectrin modulates membrane domain compo- 
sition, regulates the distribution of cell surface components, 
or links other cytoskeletai elements to the plasma membrane 
(Baines, 1984; Bennett, 1985; Nelson and Veshnock, 1986). 
Recent work suggests that in chromatfin cells spectrin is in- 
volved in secretion (Perrin et al., 1987), but another set of 
experiments directed at assessing nonerythroid spectrin's 
function in several fibroblastic and epithelial cell types did 
not demonstrate an obvious role for this widely distributed 
molecule (Mangeat and Burridge, 1984). 

To elucidate the role of nonerythroid spectrins, we have 
initiated investigations of Drosophila spectrin. Studies of 
human and mouse mutants that express altered spectrin phe- 
notypes provide some of the most persuasive evidence re- 
garding the role of erythroid spectrin (Shohet, 1979; Palek 
and Lux, 1983; Bodine et al., 1984). Similarly, the wide ar- 
ray of molecular and genetic tools that can be applied to 
Drosophila should facilitate investigations of nonerythroid 
spectrin. Here we report the identification of spectrin in 
Drosophila and describe several properties that Drosophila 
spectrin shares with vertebrate spectrins. In the accompany- 
ing paper we describe the isolation and properties of Dro- 
sophila spectrin cDNA clones (Byers et al., 1987). 

A preliminary report of some of these findings was presented at the 1986 
meeting of the American Society for Cell Biology (1986. 9'. Cell Biol. 10315, 
Pt. 2]:540a.[Abstr.]). 

Materials and Methods 

Preparation and Homogenization of Cells 
Drosophila cells (line $3; Schneider and Blumenthal, 1978) were cultured, 
harvested, and homogenized as described (Kiehart and Feghali, 1986), ex- 
cept that the cells were lysed in a buffer (,,o30 g wet wt of  cells in a total 
volume of 100 ml) that consisted of 0.34 M sucrose, 20 mM Tris-HC1, 
pH 7.5, 1 mM EGTA, 0.5 mM ATE 0.5 mM dithiothreitol, 8 mM NAN,, 
with 5 mM phenylmethylsulfonyl fluoride, 22 I~M pepstatin A, and 0.25 
mg/mi soybean trypsin inhibitor as protease inhibitors. The cell homogenate 
was separated into a supernatant and pellet fraction by centrifugation at 
50,000 rpm ( g ~  = 250,000) for 90 rain in a 60 Ti rotor (Beckman Instru- 
ments, Inc., Palo Alto, CA). 

Spectrin Purification 
The Drosophila cell supernatant fraction was applied to a 200-ml column 
of DEAE Sephacel (Sigma Chemical Co., St. Louis, MO) equilibrated in 
lysis buffer without protease inhibitors. The column was washed with 2 vol 
of lysis buffer followed by 200 mi of 0.1 M KCI in elution buffer (20 mM 
Tris-HC1, pH 7.5, 0.1 mM EGTA, 0.5 mM dithiothreitol, and 8 ram 
NAN3). Spectrin was eluted with an 800-mi linear gradient of 0.1-0.4 M 
KC1 in elution buffer. Spectrin-containing fractions were identified by SDS 
gel electrophoresis (see below). Solid ammonium sulfate was added to these 
pooled fractions to 50% saturation and, after 1-2 h at -10~ precipitated 
proteins were collected by centrifugation at 8,000 gmax for 15 min in a rotor 
(Sorvall GSA; DuPont Instruments, Sorvall Operations, Newtown, CT). 
The precipitate was solubilized in no more than 10 ml of Sepharose column 
buffer (I M KC1, 10% glycerol, 50 mM Tris-HCl, pH 7.5, 2 mM EGTA, 
0.5 mM dithiothreitol, 8 mM NAN3) and applied to a column (2.6 • 94 cm) 
of Sepharose CL-4B (Sigma Chemical Co.) equilibrated in the same buffer. 
Fractions (8 ml) were collected at 30 ml/h and the fractions containing spec- 
trin were identified by SDS gel electrophoresis. 

The spectrin-containing fractions (typically a total of 60-80 ml) were 
pooled and dialyzed into two changes of 1 liter each of phosphocellulose 
column buffer (10 mM K phosphate, pH 7.0, 0.5 mM dithiothreitol, 0.1 mM 
EGTA, 1 mM NAN3). The dialyzed material was applied directly to a 
20-30-ml column (2.5 cm diam) of P-I1 phosphocellulose (Whatman Ltd., 
Clifton, NJ) equilibrated in phosphocellulose column buffer. Bound pro- 
teins were eluted at 20 ml/h with 160 ml of the same buffer containing a 
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linear gradient of 0.01-0.4 M K phosphate. Fractions containing purified 
spectrin were identified by SDS gel electrophoresis and the potassium phos- 
phate concentration in these fractions was estimated from conductivity mea- 
surements. 

A membrane fraction enriched in vertebrate brain spectrin was prepared 
from a calf brain homogenate as described by Davis and Bennet (1983). 

SDS-PAGE 
Except where otherwise noted, spectrin was resolved on SDS polyacryl- 
amide gels containing 7% acrylamide monomer and 0.08% bisacrylamide 
in the Laemmli buffer system (Laemmli, 1971) with a 3 or 4% acryl- 
amide/0.1% bis-acrylamide stacking gel. We refer to these gels as our stan- 
dard system: they produced a separation of Drosophila spectrin subunits 
that was more distinct and consistent than several other gel combinations 
tested. 

Protein fractions for electrophoresis were routinely concentrated by 
precipitation with 10% TCA and 0.1% Triton X-100 as carrier. The precipi- 
tates were solubilized in Laemmli sample buffer and neutralized by vapor 
phase addition of NH4(OH) until the indicator dye turned btue. Gels were 
stained for protein with either Coomassie Blue (Fairbanks et al., 1971) or 
with silver nitrate (Merril et al., 1981). Protein standards (Sigma Chemical 
Co.) included myosin (205 kD), beta-galactosidase (116 kD), phosphorylase 
a (97.4 kD), BSA (66 kD), ovalbumin (45 kD), and carbonic anhydrase 
(29 kD). Purified spectrin (240 and 220 kD) from human erythrocytes was 
provided by Dr. Athar Husain (from our laboratory). Protein concentrations 
were determined with the bicinchoninic acid reagent (Smith et al., 1985) 
using BSA as a standard. Densitometric scans of Coomassie Blue-stained 
gels were done with a GS 300 apparatus (Hoefer Scientific Instruments, San 
Francisco, CA). 

Protein Blots 

For antibody staining and calmodulin-binding assays, proteins separated on 
SDS polyacrylamide gels were electrophoretically transferred to nitrocellu- 
lose sheets (0.2 p.m; Schleicher & Schuell, Keene, NH) by a modification 
of standard procedures (Burnette, 1981). Gels were preincubated for 15 min 
in 20% ethanol, 20 mM Tris, 150 mM glycine, 0.01% SDS and proteins were 
transferred in the same buffer for 3-4 h at 8 V/cm. To monitor the efficiency 
of protein transfer before further processing, the nitrocellulose blots were 
reversibly stained with 0.2% Ponceau red S. The complete pattern of trans- 
ferred proteins was visualized by staining the blots with 0.1% India ink 
(Hancock and Tsang, 1983). 

Production of Antibodies 
Rabbit antibody BR-1, directed against chicken erythroid alpha-spectrin 
(Repasky et al., 1982), was generously provided by Dr. Elizabeth Repasky. 
Rabbit antibody 675 (anti-Drosophila spectrin) was produced against an en- 
riched Drosophila spectrin fraction that was prepared from $3 cells by an 
actin-affinity/gel filtration procedure described elsewhere (Kiehart and 
Feghali, 1986). The rabbit was immunized by popliteal injection (Sigel et 
al., 1983) of this spectrin fraction in Freund's complete adjuvant followed 
40 d later with a subcutaneous injection of antigen in incomplete adjuvant. 
Immune serum was collected 1 wk after the boost. The rabbit continued to 
produce high titer antibody for several months without further boosts. The 
IgG fraction of immune serum was purified by ammonium sulfate precipita- 
tion and DEAE chromatography and affinity purified by adsorbtion to alpha- 
and beta-Drosophila spectrin that had been transferred to nitrocellulose 
from a SDS gel (Olmsted, 1981). Production and characterization of a third 
anti-Drosophila spectrin serum (905) is described elsewhere (Byers et al., 
1987). 

BALB/c female mice were immunized with a purified Drosophila alpha- 
spectrin fusion protein produced in Escherichia coli (from cDNA clone 10, 
Byers et al., 1987). Immune spleen cells were mixed with the FoxNY my- 
eloma line (Taggart and Samloff, 1983) and hybridomas were obtained by 
standard polyethylene glycol-mediated fusion techniques (Cuello et al., 
1983) and selection with adenine-aminopterin-thymidine (Taggart and 
Samloff, 1983). Antigen-specific hybrids were identified by ELISA assay 
(Engvall, 1980) on Immulon I assay plates (Dynatech Laboratories, Inc., 
Alexandria, VA) coaled with 25 ng/well of fusion protein. The secondary 
antibody is described below. Positive cultures were cloned at least three 
times in soft agar before use. Antibody subisotypes were determined by 
ELISA assay of culture supernatants from clonal lines using a screening kit 
from HyClone Laboratories (Logan, UT). 

Antibody Reactions 
Nitrocellulose sheets with electrophoretically blotted proteins were cut into 
individual strips for separate reactions and preincubated for 30 min at room 
temperature in Tris-HCl, pH 7.5, 0.15 M NaC1, 0.1% Tween 20 (Sigma 
Chemical Co.), 8 mM NaN3 (Tween buffe0 with 5% newborn calf serum 
(HyCIone Laboratories). Subsequent incubations with antibody were car- 
ried out in Tween buffer with 5 % serum whereas all washes were done in 
Tween buffer alone. Primary antibodies were reacted for 2-4 h at room tem- 
perature, at the indicated dilutions, or overnight at 4~ Strips were rinsed 
in four changes of buffer and subsequently reacted with a 1:1,000 dilution 
of affinity-purified alkaline phosphatase-conjngated secondary antibody 
(Zymed Laboratories, South San Francisco, CA) for 1-2 h at room tempera- 
ture. Bound antibodies were visualized by incubating the nitrocellulose 
strips in a substrate solution prepared from a stock of 0.6 mg/ml nitro blue 
tetrazolium (Sigma Chemical Co.) in t.5 M Tris-HCl, pH 8.8 and 60 mg/ml 
bromochloroindolyl phosphate (Sigma Chemical Co.) in DMSO. Immedi- 
ately before use, the nitro blue tetrazolium stock was diluted 1:10 in distilled 
water and 0.01 vol of bromochloroindolyl phosphate stock was added. The 
stock solutions were stable for many weeks at -20~ After reaction with 
substmte, the nitrocellulose strips were rinsed in several changes of distilled 
water and air dried. Stained strips were stored in commercially available 
"magnetic" photo album pages, which serve as a convenient, reversible 
mounting support for storage and reproduction of large numbers of stained 
strips. 

Electron Microscopy 
Purified spectrin molecules were viewed by low angle, rotary replication 
with platinum and carbon as described by "I~yler and Branton (1980). The 
purified proteins were desalted by passage over a small G-25 spin column 
(Tuszynski et al., 1980) and prepared for shadowing in 0.25 M ammonium 
formate, pH 7.5, with 70% glycerok Replicas were viewed on a Philips EM 
301 microscope at 80 kV. 

Cross-linking Experiments 
Purified spectrin (10 gg/ml) was reacted with 50 I.tg/ml dimethyl dithio- 
bispropionimidate (Pierce Chemical Co., Rockford, IL) in 0.I M tri- 
ethanolamine, pH 7.5 for 30 min at room temperature. The propionimi- 
date reagent was quenched by reaction with glycine-NaOH, pH 7.5 (added 
to a final concentration of 0.1 M) for 15 min. Spectrin was precipitated in 
10% TCA with 0.1% Triton X-100 as carrier. Cross-linked proteins were 
resolubilized in SDS sample buffer without reducing agent and subjected 
to electrophoresis on 3-10% polyacrylamide gradient gels. The major cross- 
linked protein band was located by copper staining (Lee et al., 1987) of a 
parallel lane of cross-linked sample. The band was excised with a razor 
blade, incubated for 15 min in SDS gel sampte buffer containing 5% 2-mer- 
captoethanol, and placed in the sample well of a second gradient gel for 
electrophoresis of the reduced products. 

Calmodutin Binding 
Catmodulin was purified from the heat-stable fraction of calf brain homoge- 
hate by sequential chromatography on phenyI-Sepharose (Sigma Chemical 
Co.) and DEAE Sephacel (Dedman and Kaetzel, t983). Purified calmodu- 
lin (2.5 mg/m|) was reacted with a 10-fold M excess of biotinyl-epsilon- 
aminocaproic acid N-hydroxysuccinimide ester (Calbiochem Biochemicals, 
San Diego, CA) in 20 mM Hepes, pH 7.4, 10 mM CaC12 for 2 h at 4~ 
(Billingsley et al., 1987). Unreacted succinimide ester was quenched and 
removed by dialysis against 50 mM Tris-HCl, pH 7.5, 0.15 M NaCI, I mM 
CaC12, 8 mM NAN3. Biotinylated ealmodulin was stored at 0~ in 25 mM 
Tris-HC1, pH 7.5, 0.15 M NaCI, 0.1 mM CaClz, 8 mM NAN3. 

Calmodulin-binding proteins were detected on nitrocellulose blots (Fla- 
nagan and Yost, 1984) of purified Drosophila spectrin or partially purified 
calf brain spectrin. Strips cut from the nitrocellulose blots were blocked 
with Tween buffer, reacted with biotinylated calmodulin (diluted 1:100 in 
the same buffer) for 2-3 h at room temperature, then washed in six changes 
of Tween buffer. Separate reactions were carried out in the presence of 
l mM CaCI2 or 1 mM EGTA (included during all subsequent steps). Bio- 
tinylated calmodulin was detected with alkaline phosphatase-conjugated 
streptavidin (Bethesda Research Laboratories, Gaithersburg, MD), diluted 
1:1,000 in the above buffer, and reacted for 30 rain at room temperature. 
Strips were washed and incubated with alkaline phosphatase substrate solu- 
tion as described for antibody reactions. 
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Actin Cosedimentation 

Cosedimentation studies were carried out in 10 mM imidazole, pH 7.0, 75 
mM KC1, 0.2 mM dithiothreitol, 0.2 mM EGTA. Gel-filtered rabbit skeletal 
muscle G-actin (250 l~g/ml; Spudich and Watt, 1971) was mixed with either 
Drosophila spectrin (70 ~tg/ml) or human erythroid spect_rin (200 I.tg/ml) 
in the presence or absence of 25 ~tg/ml of human erythroid band 4.1 (human 
spectrin and band 4.1 were generously provided by Dr. Athar Husain). Be- 
fore mixing, all protein solutions were cleared by centrifugation for 30 min 
at 28 psi in an Airfuge (Beckman Instruments, Inc.). Polymerization of actin 
was initiated by the addition of MgC12 to a final concentration of 2 mM. 
After 45 min at room temperature, actin-spectrin complexes were pelleted 
by centrifugation for 30 min at 28 psi. Pellets and superuatants were solubi- 
lized in equal amounts of SDS gel sample buffer and loaded in equal propor- 
tions onto acrylamide gels consisting of 8% acrylamide monomer and 
0.08% bisacrylamide. The percentage of spectrin that cosedimented with 
F-actin was quantified from densitometric tracings of stained gels. 

Results 

Purification of  Drosophila Spectrin 

We initially identified a spectrinlike protein in homogenates 
of  Drosophila tissue culture cells on the basis of  molecular 
mass after SDS-PAGE, cosedimentation, or association with 

actin filaments, immunological cross-reactivity with anti- 
vertebrate spectrin antibodies, and electron microscopic ap- 
pearance after rotary replication. Further purification (see 
below) yielded a highly enriched preparation of  two polypep- 
tide chains (Mr 234 and 226 kD in our standard gel system; 
Fig. 1) that closely resembled the two subunits of  vertebrate 
spectrins and which we will refer to as alpha- and beta- 
Drosophila spectrin. 

In contrast to both erythroid and nonerythroid vertebrate 
spectrins, which remain associated with the plasma mem- 
brane after cell lysis (Davis and Bennett, 1983; Glenney et 
al., 1982a), a large proportion of  Drosophila spectrin re- 
mained in the high speed supernatant fraction of  cell lysates 
(Fig. 1, A and D, compare lanes 2 and 3). Similar results 
were obtained when cells were lysed in a buffer containing 
0.15 M NaCI (not shown). Since the high speed supernatant 
fraction (Fig. 1, A and D, lane 2) represented an enrichment 
of Drosophila spectrin relative to the total proteins of  the cell 
lysate, it was chosen as the starting material for further 
purification. 

The high speed supernatant was first fractionated over a 
column of DEAE Sephacel and proteins were eluted with a 

Figure 1. SDS-PAGE of various fractions obtained during purification of Drosophila spectrin. (See Materials and Methods for details.) 
(A) Starting materials. Lane 1, Drosophila $3 cell homogenate; lanes 2 and 3, supernatant and pellet fractions, respectively, of the homoge- 
nate; lane 4, pooled spectrin-containing fractions from the DEAE-Sephacel column. (B) Fractions from the Sepharose CL-4B column. 
Each lane contains a sample from every second 8-ml fraction. Lanes 1-5, early fractions containing two putative spectrin subunits; lanes 
6--8, later fractions that contained only one spectrin subunit (arrow), referred to in the text as excess alpha-spectrin. (C) Fractions from 
the phosphocellulose column. Lanes 1-7, every third fraction (2.2 ml) eluted by a linear gradient of potassium phosphate. The putative 
Drosophila spectrin (lanes 1-3) eluted with 0.11 M potassium phosphate; myosin and other low molecular mass contaminants eluted in 
later fractions (lanes 4-7). Lane 8, 1.5 lag purified Drosophila spectrin, pooled from lanes 2-4, was silver-stained to demonstrate the purity 
of the preparation. Lane 9, a sample of the phosphocellulose flow through fraction containing excess alpha-spectrin. The migration of protein 
standards is shown to the left of B in kilodaltons. (D) A nitrocellulose blot probed with anti-spectrin antibody (675, see Fig. 3). Lane 
1, $3 cell homogenate; lanes 2 and 3, supernatant and pellet fractions, respectively, of the homogenate. Except for D and lanes 8 and 9 
in C, all lanes were stained with Coomassie Brilliant Blue. 
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gradient of KC1. Spectrin eluted at 0.27 M KC1, slightly after 
the peak of cytoplasmic myosin (Kiehart and Feghali, 1986). 
Spectrin-containing DEAE fractions were pooled (Fig. 1 A, 
lane 4), concentrated by ammonium sulfate precipitation, 
and resolubilized for gel filtration. Two forms of Drosophila 
spectrin were identified after size fractionation on Sepharose 
CL-4B (Fig. 1 B). The first form (Fig. 1 B, lanes 1-5), which 
eluted just after the void volume, contained both the 234- and 
226-kD spectrin subunits. A second form, shown in Fig. 1 
B, lanes 6-8, appeared to consist of only the 234-kD subunit. 
As described below, its structure, antigenic properties, and 
calmodulin-binding activity indicate that this second form 
represents an excess of the alpha-spectrin subunit in the su- 
pernatant fraction of the cell lysate. The Sepharose fractions 
containing the first form (Fig. 1 B, lanes 1-5) were pooled 
and further purified by phosphocellulose chromatography. 

A slight excess of the alpha-spectrin subunit was present 
in the Sepharose fractions that were pooled for further puri- 
fication. The excess alpha subunit did not bind to phospho- 
cellulose, but was enriched in the flow through fraction (Fig. 
1 C, lane 9). Equivalent amounts of the alpha- and beta-sub- 
units coeluted from the column with 0.11 M potassium phos- 
phate (Fig. 1 C, lanes 1-3). Myosin and other lower molecu- 
lar mass contaminants were eluted at 0.16 M potassium 
phosphate (Fig. 1 C, lanes 4-7). Densitometric scans of the 
Coomassie Blue-stained SDS gels (Fig. 1 C, lane 2) indi- 
cated that the 234- and 226-kD polypeptides accounted for 
at least 82 % of the stainable material in the Drosophila spec- 
trin peak. An additional 10 % of the stainable material was 
present at the dye front and 6 % was accounted for in minor 
bands migrating between spectrin and the dye front. 

Phosphocellulose-purified Drosophila spectrin, similar to 
that shown in Fig. 1 C, lanes 2-4, was used in all of the ex- 
periments that follow. Typical yields from 30 g of cells were 
in the range of 50-200 gg protein. Three minor con- 
taminants found to some extent in all of our preparations 
were a >300-kD component, most of which elutes from 
phosphocellulose after spectrin (Fig. 1 C), a lower molecu- 
lar mass component (•170 kD), and a minor band that 
comigrated with actin. 

Electron Microscopy 
Purified Drosophila spectrin appeared in the electron micro- 
scope as a highly asymmetric molecule composed of two 
closely apposed or intertwined strands (Fig. 2, A and B). 
The appearance was similar to that of vertebrate spectrins in 
which the subunits associate laterally to form heterodimers 
and the heterodimers in turn associate bead-to-head to form 
the native spectrin tetramer (Shotton et al., 1979; Glenney et 
al., 1982a; Bennett et al., 1982). The average contour length 
of the molecule was 179.9 + 6.1 nm (n = 78). Visible separa- 
tion of the two strands (Fig. 2 B) was relatively infrequent, 
as was the occurrence of half-length molecules that may cor- 
respond to Drosophila spectrin dimers (not shown). An en- 
riched fraction of the excess alpha-spectrin fraction was also 
examined by electron microscopy (Fig. 2 C). These mole- 
cules were 91.2 5:21.8 nm long (n = 65) and did not appear 
to be double stranded. 

Immunological Cross-Reactivity 

Drosophila spectrin and vertebrate spectrins both reacted 
with several polyclonal and monoclonal antibodies (Fig. 3; 

Figure 2. Electron micrographs of rotary replicated Drosophila 
spectrin. (A and B) Phosphocellulose-purified spectrin (50 gg/ml 
in ammonium formate/glycerol, shown in Fig. 1 C, lane 8). (C) An 
enriched fraction of excess alpha spectrin (prepared from a fraction 
similar to that shown in Fig. 1 B, lane 7). Bars, 100 rim. 

Table I). Two sources of polyclonal antibody were used here. 
The first was a rabbit anti-spectrin antiserum, produced 
against avian alpha-spectrin and shown to react with alpha- 
spectrins from a variety of vertebrate sources (Repasky et 
al., 1982), and the second was an affinity-purified anti-Dro- 
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Figure 3. Immunological cross- 
reactivity of Drosophila and 
vertebrate spectrin. Nitrocel- 
lulose blots of (A) purified 
Drosophila spectrin, (B) a 
membrane fraction enriched 
for calf brain spectrin, (C) 
a Drosophila $3 cell lysate, 
and (D) Drosophila head pro- 
teins; lanes 1, stained with 
India ink for total protein; 
lanes 2, probed with anti- 
avian erythroid spectrin anti- 
serum (1:1,000); lanes 3, anti- 
Drosophila spectrin IgG (af- 
finity-purified antibody 675); 
lanes 4, preimmune 675 serum 
(1:2,000); lanes 5, mAb MlO-2 
(undiluted culture superna- 
tant); lanes 6, mAb M10-1 
(undiluted supernatant). Anti- 
body reactions were visual- 
ized by reaction with an alka- 
line phosphatase-conj ugated 
anti-mouse or anti-rabbit sec- 
ondary antibody followed by 
incubation in substrate solu- 
tion. Arrowheads mark the 
position of alpha-spectrin. 

sophila spectrin antibody (675; see Materials and Methods). 
Both reacted extensively with the alpha-subunit of  brain 
spectrin (240 kD) and with the 234-kD subunit of  purified 
Drosophila spectrin. Anti-Drosophila spectrin also showed 
a slight reactivity toward vertebrate brain beta-spectrin as 
well as the 226-kD Drosophila subunit, but neither antibody 
detected the lesser amounts of Drosophila beta-spectrin ei- 
ther in blots of  the $3 cell lysate or in blots of  the total 
homogenized Drosophila head polypeptides. For compari-  
son, the reactivity of  a third polyclonal antiserum directed 
against Drosophila spectrin is also indicated in Table I. 

Monoclonat antibodies produced against a Drosophila 
spectrin fusion protein expressed in bacteria (see Materials 
and Methods) were also used to compare the antigenic prop- 
erties of Drosophila and vertebrate spectrin (Fig. 3; Table I). 
Of  the monoclonal antibodies that reacted with the 234-kD 
subunit of  Drosophila spectrin, most did not react with bo- 
vine brain spectrin (Fig. 3, lanes 5: antibody M10-2, an IgG1) 
or human erythrocyte spectrin (not shown). One monoclonal 
antibody (M10-1, an IgM) recognized an epitope present on 
both subunits of  Drosophila spectrin, brain spectrin (Fig. 3, 
lanes 6), and human erythrocyte spectrin (not shown). Three 

Table L Summary of Antibody Cross-Reactions with Drosophila and Vertebrate Spectrins 

Antibody~ t 
Composit ion Reactive 
o f  blot antigen BR- 1 675 Pre675 M 10-2w M 10-1 9051] Pre905 

P u r i f i e d  A l p h a - s p e c t r i n  + + *  + + 

Drosophila Beta - spec t r i n  + + 

spectrin 

Purified Alpha-spectrin + + + + 
e x c e s s  

alpha-spectrin 

Bovine Alpha-spectrin + + + + 
brain Beta-spectrin - + 
membranes 

$3 cell Alpha-spectrin + + + + 
homogenate Beta-spectrin - - 

Fly head Alpha-spectrin + + + + 
homogenate Beta-spectrin - - 

+ +  + +  + +  -- 

--  + + --  

+ +  + +  + +  --  

+ +  

+ 

+ +  

+ 

+ +  + +  + +  - 

+ +  + +  + +  --  

* + and - ,  a reaction or  no reaction o f  spectrin with antibody; + + ,  a preferential reaction with one subunit. 
BR-1, anti-avian erythrocyte alpha spectrin; other antibodies were produced against Drosophila spectrin. 

w Identical reactions were detected with M10-3,  MI0-4 ,  MlO-5, and MlO-6. 
It See Byers et al. (1987) for  details of  antibody production and characterization. 
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Figure 4. Chemical cross-linking of Drosoph- 
i/a spectrin subunits. Lane I, purified Drosoph- 
ila spectrin (10 Ixg/ml in 0.1 M triethanolamine) 
before cross-linking; lane 2, a parallel sample 
after reaction with 50 Ixg/ml dimethyl dithio- 
bispropionimidate; lane 3, the major high mo- 
lecular mass cross-linked product from lane 2 
(upper arrowhead) after reelectrophoresis un- 
der reducing conditions. Lanes 1 and 2 were 
stained with Coomassie Blue and lane 3 was 
silver stained. 

polypeptides that migrated between Mr = 220 and 240 kD 
were also detected with this antibody in fly head homog- 
enates. This observation suggests that multiple spectrin iso- 
forms exist in Drosophila. 

Chemical Cross-linking 

To verify the association between the 234- and 226-kD poly- 
peptides in solution, purified Drosophila spectrin was react- 
ed with the reversible cross-linking reagent dimethyl dithio- 
bispropionimidate (Fig. 4). After cross-linking, the amount 
of the 234- and 226-kD subunits was diminished relative to 
an untreated control (lower arrowhead, Fig. 4, lane 1) and 
the relative amount of a high molecular mass complex, barely 
detected in the control, was increased after cross-linking 
(Fig. 4, compare lanes I and 2, upper arrowhead). Reelec- 
trophoresis of the cross-linked complex under reducing con- 
ditions (to cleave the cross-linker) yielded equivalent amounts 
of the 234- and 226-kD subunits (Fig. 4, lane 3). In parallel 
experiments, Drosophila spectrin was cross-linked into a 
complex that comigrated with cross-linked human erythro- 
cyte spectrin (not shown). 

Calmodulin Binding 

Like the alpha subunit of most vertebrate spectrins (Palfrey 
et al., 1982; Glenney et al., 1982b), Drosophila spectrin 
bound calmodulin in a calcium-dependent manner (Fig. 5). 
The alpha-subunits of both Drosophila spectrin and bovine 
brain spectrin bound calmodulin in the presence of 1 mM 
CaCI2 (Fig. 5, lanes 1) but not in 1 mM EGTA (lanes 2); 
binding was displaced by the presence of a fivefold M excess 
of unlabeled calmodulin (lanes 3). Similar results were ob- 
tained with ~SI-labeled calmodulin, which botmd to a 234-kD 
polypeptide on nitrocellulose blots of the $3 cell lysate as 
well as to the excess alpha-spectrin found in our extracts (not 
shown). 

Interaction with Actin 

Drosophila spectrin was compared with human erythroid 
spectrin in an actin sedimentation assay conducted in the 
presence or absence of purified band 4.1 from human eryth- 
rocytes (Table II). Erythroid and brain spectrins from vet- 

Figure 5. Drosophila spectrin-cal- 
modulin interaction. Nitrocellulose 
blots of purified Drosophila spectrin 
(left) and a membrane fraction en- 
riched for calf brain spectrin (right) 
were reacted with 23 I~g of biotin-la- 
beled calmodulin in Tween buffer + 
1 mM CaCI2 (lanes 1), Tween buf- 
fer + 1 mM EGTA (lanes 2), or 
Tween buffer + 1 mM CaC12 + 
t25 Ixg unlabeled calmodulin (lanes 
3). CaCI2 or EGTA was included 
during all subsequent steps. After 
reaction with calmodulin, strips were 
rinsed extensively in Tween buffer 
and biotinylated calmodulin was de- 
tected with streptavidin-alkaline phos- 
phatase followed by incubation in 
substrate solution. The positions of 
Drosophila and brain alpha-spectrin 
are marked with arrowheads. 

tebrates both are known to cosediment with F-actin and the 
spectrin-actin interaction is enhanced in the presence of 
band 4.1 (Ungewickell et al., 1979; Burns et al., 1983). We 
observed that Drosophila spectrin also cosedimented with 
F-actin. But, whereas the binding of human spectrin to F-ac- 
tin was increased in the presence of band 4.1, the Drosophila 
spectrin-actin interaction was, if anything, slightly reduced 
in the presence of band 4.1. These fndings are consistent 
with the behavior of another spectrin molecule (TW-260/240 
from chicken; Coleman et al., 1987) which does not appear 
to interact with band 4.1 in a similar assay. 

Discussion 

The similarities between Drosophila spectrin and known 
vertebrate spectrins are striking. The overall structure and 
length of Drosophila spectrin (Fig. 2) is comparable to that 
of vertebrate spectrins. Its immunological reactivity (Fig. 3; 
Table I) also demonstrates homology to authentic spectrins. 
Its susceptibility to cross-linking agents (Fig. 4) is similar to 

Table II. Cosedimentation of Drosophila Spectrin 
with Actin 

Percent speetrin in pellet 

Reactants Experiment I Experiment 2 

D. spectrin (without additions) 12 
D. speetrin + band 4.1 8 
D. spectrin + actin 66 
D. speetrin + actin + band 4.1 55 
RBC spectrin (without additions) 2 
RBC spectrin + band 4.1 31 
RBC spectrin + actin 46 
RBC spectrin + actin + band 4. t 90 

29 

72 
44 

Drosophila spectrin (D. spectrin, 70 txg/ml), human erythroid spectrin (RBC 
spectrin, 200 gglml), rabbit skeletal muscle actin (250 I~gtml), and purified hu- 
man erythroid band 4.1 (25 gg/ml) were combined and reacted as indicated. 
Actin-spectrin complexes were centrifuged and analyzed by SDS gel elec- 
trophoresis. The proportion of spectrin pelleted in each sample was determined 
from densitometric scans of Coomassie Blue-stained gels. See text for details. 
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that of erythroid spectrin and indicates that the molecule is 
composed of two different polypeptides, the 234- and 226- 
kD subunits, which are closely associated in solution. Fi- 
nally, Drosophila spectrin is both a calmodulin-binding pro- 
tein and an actin-binding protein (Fig. 5; Table II), as is the 
case for all vertebrate spectrins so far examined. The larger 
subunit (234 kD) appears to be an alpha-spectrin, based on 
antibody and calmodulin-binding data. The 226-kD subunit 
appears to be a beta-spectrin based on its copurification with 
alpha-spectrin, antibody reactivity (present study), and its 
reassociation with an alpha-spectrin fusion protein (Byers et 
al., 1987). The conservation of these multiple characteristics 
indicates that the Drosophila protein we have described is a 
member of the spectrin family of proteins. It also suggests 
that many of spectrin's cellular roles may have been con- 
served between the vertebrates and the invertebrates. 

In view of these similarities between Drosophila and ver- 
tebrate spectrins, it is surprising that such a large porportion 
of the spectrin isolated from $3 cells was found in the super- 
natant fraction of the homogenate (Fig. 1, A and D). Gener- 
ally, vertebrate spectrins have been found to be associated 
with a sedimentable membrane fraction, which is consistent 
with the observations that they are concentrated close to the 
cell membrane and have specific binding sites on the mem- 
brane (Bennett, 1985; Marchesi, 1985; but for exceptions 
see: Hirokawa et al., 1983; Mangeat and Burridge, 1984; 
Black et al., 1986). Indeed, when homogenized under the 
same salt conditions as the $3 cells, adult Drosophila heads 
released only a small percentage of their spectrin into the su- 
pernatant fraction; nearly all the spectrin could be extracted 
with 0.1 M NaOH (not shown). It may be that spectrin plays 
a different or more limited role in the economy of cultured 
Drosophila cells than it does in the intact organism where 
preliminary immunofluorescence studies have revealed a dis- 
tinct pattern of close membrane association throughout fly 
development (Pesacreta, T. C., manuscript in preparation). 
It is also possible that the homogenization procedures we used 
with $3 cells destroyed the in vivo spectrin-membrane inter- 
actions, although homogenization in a variety of salt condi- 
tions appeared to have little effect on the resultant distribu- 
tion of spectrin between the pellet and supernatant fractions. 
Distinguishing between these possibilities will require a bet- 
ter understanding of the localization and role of spectrin in 
cultured Drosophila cells and the intact organism. 

The significance of the excess alpha-spectrin in our ex- 
tracts is unclear. The presence of"excess" alpha-spectrin may 
be artifactual, the consequence of differential extractability 
or resistance to postlysis proteolysis of one subunit. Pollard 
(1984) suggested that differential extractability might account 
for his purification of only one spectrinlike polypeptide from 
Acanthamoeba, where a second immunoreactive form ap- 
pears to be present in the cell. Alternatively, the amount of 
alpha-spectrin in our extracts may accurately reflect an ex- 
cess of this subunit that is en route to degradation, as has 
been observed for chicken erythrocyte spectrin subunits 
(Moon et al., 1984; Lazarides and Moon, 1984). Finally, the 
excess alpha-spectrin may represent a pool of spectrin that, 
either as a monomer or a homodimer, functions in a manner 
that has not been recognized in vertebrates. We are presently 
developing beta-specific spectrin probes to resolve these 
questions by direct analysis of the quantity and distribution 
of each subunit. 

It has been suggested that spectrin may be important in 
persistent, repetitive, or cyclic cell shape and motility 
processes (Elgsaeter et al., 1986). If so, spectrin function in 
nonerythroid cells may be most evident during development, 
as cells undergo major changes in morphology in response 
to environmental or hormonal stimuli. Now that spectrin has 
been identified in Drosophila and its genetic components are 
being investigated (Byers et al., 1987), it will be possible to 
explore the role or roles of this widely distributed protein 
using genetic and molecular approaches in a well character- 
ized developmental system. Although such studies may re- 
veal aspects of spectrin function that have not been detected 
or do not occur in vertebrates, the similarities between inver- 
tebrate and vertebrate spectrin imply that functions eluci- 
dated in Drosophila will be relevant to understanding func- 
tion in other organisms. 
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