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The gut microbiome is intimately related to human health, but it is not yet known which functional 

activities are driven by specific microbes’ ecological configurations or transcription. We report a 

large-scale investigation of 372 human fecal metatranscriptomes and 929 metagenomes from a 

subset of 308 men in the Health Professionals Follow-up Study. We identified a 

metatranscriptomic “core” universally transcribed over time and across participants, often by 

different microbes. In contrast to the housekeeping functions enriched in this core, a “variable” 

metatranscriptome included specialized pathways that were differentially expressed both across 

participants and among microbes. Finally, longitudinal metagenomic profiles allowed ecological 

interaction network reconstruction, which remained stable over the six-month timespan, as did 

strain tracking within and between participants. These results provide an initial characterization of 

human fecal microbial ecology into core, subject-specific, microbe-specific, and temporally-

variable transcription, and they differentiate metagenomically versus metatranscriptomically 

informative aspects of the human fecal microbiome.
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Introduction

Alterations in the human gut microbiome have been implicated in a wide range of complex, 

chronic conditions including inflammatory bowel disease (IBD), obesity, diabetes, cancer, 

and cardiovascular disease1,2. There is an appreciable body of work on the metagenomic 

potential of fecal communities3–6, yet little information is available regarding transcriptional 

activity of the microbiome. The metatranscriptome represents a link between the 

metagenome and community phenotype, and surveying its molecular activity is important to 

understanding the functional ecology of the human gut microbiome.

Metatranscriptomics has most commonly been applied to ecological profiles of 

environmental microbial populations. For instance, deep sequencing of marine 

bacterioplankton RNA established transcript inventories, uncovered gene expression trends 

among metabolic generalists and specialists, and identified patterns of substrate use and 

elemental cycling in the ocean ecosystem7. Early human fecal metatranscriptomics 

suggested subject-specific relationships between microbiome transcripts and gene copy 

number, differing across biological functions8. Our own pilot work with the cohort studied 

here introduced protocols for integrating metatranscriptomic sampling into large scale 

epidemiological studies, demonstrating that metatranscriptional profiles are less variable 

than fecal taxonomic profiles but more individualized than metagenomic function9.

Previous studies have not, however, surveyed the human fecal metatranscriptome at 

sufficient scale to identify areas in which it is uniquely informative relative to the underlying 

metagenome. It is not yet clear, for example, which human conditions are associated with 

specific microbes in the gut, versus their metagenomic functional profiles, versus 

metatranscriptomic activity10. Culture-independent fecal microbial transcription has been 

used in only a few cases to date to identify causal mechanisms in health outcomes, such as 
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strain-specific variation in Eggerthella lenta expression influencing the efficacy of cardiac 

therapy11. Integrated metagenomics and metatranscriptomics have also been used in 

molecular diagnostics for cancer risk and transplant rejection12. Correspondingly, it remains 

to be determined what short- or long-term health-linked exposures can be assessed using 

fecal metagenomes or metatranscriptomes in prospective cohorts.

To address these gaps, we interrogated the human fecal metagenome and metatranscriptome 

in 929 and 372 samples, respectively, collected at up to four time points each from 308 

healthy senior men participating in the Men’s Lifestyle Validation Study (MLVS), nested 

within the Health Professionals Follow-up Study (HPFS)13. This manuscript provides an 

overview of these communities’ molecular biology and microbial ecology; a companion 

paper (Mehta in review) investigates the stability of features in such data for human 

population epidemiology. We differentiated “core” versus variably transcribed functions, 

assigned them to specific microbes, and assessed differences between subjects cross-

sectionally and within subjects over time. Finally, ecological co-occurrence and strain 

diversity were assessed metagenomically, both remaining strikingly stable over time and the 

latter comparing near-identically between this and an independent population from the 

Human Microbiome Project (HMP). Together, these findings thus provide an in-depth large-

scale exploration of the human fecal metatranscriptome in a species-specific context.

Results

Meta’omic taxonomic and functional profiling

We generated taxonomic and functional profiles of 308 participants’ stool microbiome 

samples at up to four time points each from DNA (n=929) and RNA (n=372) reads using 

MetaPhlAn214 and HUMAnN215 (Fig. 1 and Methods). From the former, a total of 468 

microbial species were detected, with individual samples containing 72 ± 13 (mean ± s.d.) 

species. HUMAnN2 identified 1,569,171 unique UniRef90 gene families in metagenomes 

and 602,896 in metatranscriptomes (Supplementary Table 1). Overall, 75.3% of all DNA 

reads and 64.1% of all RNA reads were assignable to UniRef90 gene families by 

HUMAnN2; of these, 54.8% and 58.1% UniRef90 gene families possessed functional 

characterization, respectively, and finally 10.7% and 13.2% of characterized gene families 

were assignable to MetaCyc pathways16. Intriguingly, an average of 69% and 85.4% 

UniRef90 relative abundances for metagenomes and metatranscriptomes, respectively, were 

attributable to gene families lacking biochemical characterization. Stool sample collection, 

sequence data generation, and quality control are described in Methods.

Prior to investigating the metatranscriptome, we compared the metagenome-based 

taxonomic profile of this older cohort to previous population studies (Supplementary Fig. 1), 

since the mean age of our participants was 69 ± 6 years. As in earlier studies with 

comparable populations and protocols17,18, and in contrast to younger cohorts with different 

sample handling methodology3, Firmicutes were generally prevalent and abundant, in 

contrast to previous studies of comparable but smaller populations such as ELDERMET18,19 

(Supplementary Fig. 2). Additionally, a small number of both DNA and RNA viruses were 

quantified confidently by MetaPhlAn2, which is likely an underestimate of the gut virome 

diversity since our extraction protocol did not enrich for virus-like particles. Although gut 
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viral ecology is more difficult to analyze than that of the bacteriome due to inadequate viral 

reference sequences20, these methods allow for some incidental analysis of DNA phage and 

RNA plant viruses in human fecal metagenomes and metatranscriptomes. (See 

Supplementary Information).

As a first indication of important differences between fecal metagenomic and 

metatranscriptomic profiles, each sample’s metatranscriptome contained, on average, 5.4% 

of the total pool of gene families observed across the dataset; metagenomes averaged >10% 

of the pool (Supplementary Table 1). This indicates that, as in a single organism’s genome, 

only a subset of fecal functional potential is active under the circumstances captured by a 

typical sample. Technical factors played a minor role in this, since although RNA was 

sequenced at slightly shallower depth (Supplementary Dataset 1), rarefaction indicates that 

metagenomic taxa, functions, and metatranscriptomic functions were well-saturated at these 

depths (Supplementary Fig. 3). Biological factors appeared to dominate, since transcribed 

elements should typically be at most those also observed metagenomically. Ecologically, this 

is also in agreement with our previous observation that the metatranscriptome is more 

variable than the metagenome9.

Core and variable fecal metatranscriptomes differ from the metagenome

To identify important pathways expressed (and not just metagenomically encoded) by 

microbes in the human gut, we delineated “core” and “variable” portions of the fecal 

metatranscriptome (Fig. 2; Supplementary Datasets 2 and 3). The former was defined as a 

set of prevalently transcribed pathways that was robust to sequencing depth and specific 

prevalence threshold (Supplementary Fig. 4). From 289 pathways with detectable 

transcription in at least two samples, 81 (28%) were core by this definition, 48 of which had 

a mean DNA-normalized transcript abundance >1 when transcribed (see Methods for 

quantification of metatranscriptional activity). This was remarkably smaller than a similarly 

defined core metagenome in this cohort: from 407 pathways with detectable DNA in at least 

two samples, 182 (45%) were similarly prevalent, even though there were almost three times 

more metagenomes than metatranscriptomes. It is noteworthy that neither GC content nor 

ORF length had effects on transcription ratios (see Supplementary Information and 

Supplementary Fig. 5). This suggests that gene expression rather than gene abundance 

underlies qualitative and quantitative differences among metatranscriptomes.

Unlike the core metagenome, which includes a variety of host-adapted microbial community 

features3, the core metatranscriptome was enriched mainly for housekeeping functions. 

Nineteen nucleotide biosynthesis pathways, 19 glycolysis and carbohydrate metabolism 

pathways, and 15 amino acid biosynthesis pathways accounted for the majority of core 

metatranscribed pathways. Note that as annotated in MetaCyc, glycolysis represents an 

umbrella term that also includes anaerobic fermentation, not an indicator of aerobic 

respiration. Glycolysis in this sense had the highest transcript abundance (mean 8.30 ± s.d. 

5.69) and, together with three nucleotide metabolism pathways, was over-transcribed 

(relative to DNA abundance) in virtually all metatranscriptome samples (Figs. 2A–B and 

Supplementary Fig. 6).
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Other notable core metatranscriptome pathways included the non-oxidative pentose 

phosphate cycle (to support nucleic acid synthesis), breakdown of carboxylates, synthesis of 

cofactors (folate, flavin, pantothenate, and Co-A), unsaturated fatty acids, and microbial 

recycling of uric acid (the end product of purine breakdown) to salvage nitrogen. 

Conversely, cell wall peptidoglycan and phospholipids, and amino acid synthesis were 

pathways with the lowest transcript abundance in the core metatranscriptome. Interestingly, 

the core metatranscriptome also included synthesis of preQ0 and queosine, pleiotropic 

bacterial metabolites21 that the human host salvages for regulating translational efficiency 

and fidelity22.

In contrast to the limited core set of metatranscriptomic pathways, the variable 

metatranscriptome comprised 95 functionally diverse pathways well-detected in DNA but 

below detection in at least half of RNA samples (Fig. 2C). 36 of these had no detectable 

RNA in greater than two-thirds of metatranscriptome samples. The bulk of these pathways 

are involved in biosynthesis: various amino acids, long fatty acids, terpenoids, polyamines, 

cofactors (NAD, heme and tetrapyrolle), and the (p)ppGpp alarmone23. A smaller number 

were pathways involved in degradation of various alcohols, sugars, formaldehyde, and 

sulfate reduction. Finally, 26 pathways were below detection in most DNA (and matching 

RNA) samples. When transcribed, however, some of these pathways had the highest 

transcript abundance; e.g. methanogenesis and factor 420 biosynthesis (Fig. 2D and 

Supplementary Fig. 6F), suggesting that metagenomically rare but overtranscribed pathways 

may be uniquely responsible for subject-specific gut microbial bioactivity.

Fecal microbiome pathways are transcribed by a limited subset of microbes encoding 
them metagenomically

Using paired metagenomic and metatranscriptomic functional profiles, we next assessed the 

relationship between fecal microbes that tend to carry pathways metagenomically versus 

those that express them metatranscriptomically (Fig. 3 and Supplementary Fig. 7). At a 

global level, these two aspects of functional diversity corresponded (in large part since only 

microbes carrying a pathway can express it), with three main groups of pathways 

dominating the functional diversity of these samples. First, housekeeping functions 

(nucleotide, carbohydrate, amino acid metabolism, etc.) were carried by virtually all stool 

species (high contributional alpha diversity); they were also actively transcribed by abundant 

and prevalent microbes, predominantly Bacteroides, Eubacterium, and Ruminococcus spp 

(Fig. 3A, bottom cluster). A second pathway cluster (Fig. 3A, top left) with modest 

contributional alpha diversity was dominated by F. prausnitzii, a particularly prevalent 

organism in this cohort that, when abundant, tended to contribute the majority of all 

pathways it encodes (synthesis of various amino acids, non-oxidative pentose phosphate 

pathway, putrescine synthesis, etc.) The third, low diversity, cluster (Fig. 3A, top right) was 

encoded by limited numbers of opportunists, e.g. E. coli, Sutterella, Enterobacter, and 

Enterococcus spp. It included pathways such as synthesis of the enterobactin siderophore, 

lipid A, and sulfate reduction. Pyruvate fermentation to acetate and lactate, synthesis of 

glycogen, and tetrapyrrole were examples of pathways with fairly even metagenomic and 

metatranscriptomic species contributions. Thus in overall summary, the same microbes were 

principal contributors to RNA and DNA abundances in roughly one third of pathways. For 
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the majority of pathways, however, overtranscription was observed from members of either 

the Bacteroidetes (mainly for pathways contributing to active growth in the gut) or the 

Proteobacteria (for the subset of generalists’ pathways upregulated in feces) relative to the 

baseline level of metagenomic carriage (e.g. by the Firmicutes).

These three major patterns in the functional structure of the fecal metatranscriptome are 

explained in greater detail by the pathways most commonly expressed by abundant 

microbes. First, all species shared enrichments for housekeeping functions (e.g. nucleotide 

synthesis, fermentation, etc.) (Fig. 3B, left columns). A set of anaerobic biosynthesis 

pathways were mainly expressed by Firmicutes from the upper left cluster of the ordination 

(Fig. 3B, middle columns). Transcription of cell structure, secondary metabolites, and co-

factor synthesis pathways was characteristic of Bacteroides spp (Fig. 3B, right columns). 

Finally, the Enterobacteriaceae were not abundant in most subjects, so few of their pathways 

were prevalent enough to appear in those selected for visualization, but the subset of their 

large pangenome upregulated in feces overlapped to a degree with the anaerobic metabolism 

expressed by the Firmicutes (Fig. 3B, middle columns).

Many pathways are transcribed by few organisms per community, even when broadly 
encoded metagenomically

Finally, we noted that per-microbe pathway expression is often very different among 

individual hosts than is metagenomic pathway carriage, indicating that these two molecular 

measurements may have distinct applications in human population studies (Fig. 4). Overall, 

metagenomic richness (number of contributing species) generally exceeded 

metatranscriptomic richness, as expected. As above, a subset of pathways were both broadly 

encoded and expressed (high diversity), with relatively few differences between individuals, 

and these were again mainly housekeeping functions. However, at the other end of the 

spectrum, many pathways of greater biochemical interest were transcribed by only one or a 

few species, even when diversely carried metagenomically. An extreme example of low 

transcriptional diversity pathways was methanogenesis, encoded and transcribed solely by 

Methanobrevibacter smithii; that this class of metatranscriptomic functions may indicate 

keystone processes and their associated microbes in the gut.

To better understand this phenomenon, and to expand our previous observation of basal 

transcription in a substantial fraction of gut pathways9, we next identified pathways for 

which microbes’ transcriptional activities mirrored their metagenomic carriage (Fig. 4B). 

For this, we used the weighted mean of the Spearman correlation between taxonomically 

stratified metagenomic and metatranscriptomic profiles (see Methods). To emphasize the 

correlation of the principal species encoding each pathway, correlation coefficients were 

weighted by the mean metagenomic potential of the species. High values indicated that 

species-level RNA abundances closely follow DNA abundances, while low values indicated 

departure from basal expression. In general, carbohydrate metabolism and nucleotide 

biosynthesis particularly tended to be enriched for high correlations, while amino acid 

biosynthesis was enriched among low correlations. Low correlations indicate more context-

specific, variable expression of the pathway, consistent with the generally amino acid-rich 

environment of the gut. Cofactor biosynthesis pathways were roughly in the middle of this 
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range, perhaps due to the diversity of compounds produced with these functions and their 

variable availability in the gut. For example, pantothenate is found in most foods and easily 

salvaged from the gut environment, while folate transformations are critical for C1 

metabolism24, making this pathway more widely transcribed when present in species.

Notably, pathways with similar metagenomic contributions were not necessarily similarly 

transcribed (Fig. 4C–D). Core pathways were both metagenomically and 

metatranscriptomically diverse, carried and expressed by many organisms per community 

(Fig. 4D and Supplementary Fig. 8). Typical variable pathways, however, even when broadly 

distributed metagenomically, were often transcribed by one or few organisms per individual. 

Transcribing organisms were often neither the most abundant nor the same species across 

individuals (Fig. 4C). Similar patterns were observed for L−isoleucine biosynthesis III 

(PWY-5103), L−tryptophan biosynthesis (TRPSYN-PWY), degradation of various sugars 

(stachyose (PWY-6527), sucrose (PWY-621), rhamnose (RHAMCAT−PWY)), non-

oxidative pentose phosphate pathway, preQ0 biosynthesis (PWY−6703), and others 

(Supplementary Fig. 8). This finding highlights another aspect of inter-individual diversity in 

the microbiome: different microbes may activate shared pathways among individuals, with 

as-yet-unknown functional specializations and consequences.

Inter-microbial species interactions are stable in the stool ecosystem of older men

To leverage this cohort’s taxonomic profiles independently of their metatranscriptomes, we 

also inferred metagenomic microbial interaction networks25 using the BAnOCC Bayesian 

framework (see Methods, Fig. 5 and Supplementary Fig. 9). We generated one network per 

time point, allowing the stability of co-occurrence and -exclusion relationships to be 

determined. Negative associations between Bacteroides and Ruminococcaceae or 

Prevotellaceae observed previosly25 were not recapitulated in this population, and 

Firmicutes species predominantly co-occurred with other members of the phylum. This is 

consistent with the observation that co-occurrence/-exclusion among microbial community 

members is not based solely on phylogenetic relatedness, but also on how microbes 

complement each other functionally26.

Genetic divergence patterns of stool-associated bacterial strains is species-specific and 
preserved among host populations

Finally, we assessed strain-level variation in stool bacterial populations using StrainPhlAn 

(see Methods) and provided a comparison of species population structure between the 

MLVS and the Human Microbiome Project3,27 cohorts (Fig. 6). Twenty-one species had 

sufficient genomic coverage for reliable strain identification from metagenomes in both 

cohorts. Eubacterium siraeum, for example, demonstrated discrete strain clustering 

indicative of a clonal population, with strains from the same individual remaining near-

identical over the sampling period. Conversely, nucleotide variation among Faecalibacterium 
prausnitzii strains did not reveal a discernible pattern and was characterized by the highest 

median and widest range of nucleotide substitution rates, consistent with extreme genomic 

diversity whereby each strain can be substantially distinct from another. Several species, 

including Bacteroides stercoris, B. uniformis, and Butyrivibrio crossotus presented an 
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intermediate structure with weak clonal propagation of a potential outgroup (Supplementary 

Fig. 10).

Remarkably, nucleotide substitution rates were near-identical between the two unrelated 

cohorts (Fig. 6C). The average ratio of between-cohort to within-microbe divergence was 

1.0±0.03 (mean±s.d.), indicating that bacterial population structure is consistent across host 

populations. Previous studies have shown that human gut microbes can diverge between 

geographically and genetically distinct host populations28. However, the existence of such 

closely related microbial strains between independent North American cohorts with very 

different age ranges (18–40 vs. 65–81) suggests that specific microbial strains (or related 

strain groups) may be a useful, stable feature to assay during epidemiological studies.

Discussion

The present study has provided an overview of the fecal metatranscriptome in a prospective, 

large-scale cohort of elderly males; identified core and variably transcribed pathways; 

delineated how these differ from metagenomic functional potential; and ascribed them to 

specific contributing organisms. Finally, paired metagenomes in this study also allowed 

species-specific ecological interaction networks to be reconstructed, which proved stable 

over time, as did strain tracking within species. This stability, in combination with the 

commonality of strain-level microbial population structures between cohorts, suggests that 

they might represent particularly effective measurement targets for the microbiome in 

population studies. Together, these findings extend our earlier pilot study in eight 

individuals9 and accompany epidemiological work (Mehta et al, in press) to integrate 

metatranscriptomics into population studies.

It is evident from our results that the metatranscriptome is more temporally dynamic, 

context-sensitive, and species-specific than the metagenome. The observed incongruence 

between species abundance and transcriptional activity agrees with an earlier study of taxa-

function relationships in the human fecal metatranscriptome29. This is expected, as 

transcription is a highly variable process even among cells of the same species under steady-

state conditions30. Heterogeneity among species’ transcriptional contributions in otherwise 

similar metagenomes, however, may be influenced by many factors, including nutrient 

availability, preferential utilization, or xenobiotics; temporal differences in environmental 

sensing that stagger response to stimuli among species; and metabolic dependence that 

drives cross-feeding of intermediate metabolites through community members31,32. This 

extends the typical model of transcriptional behavior from individual microbial or metazoan 

cell populations to niche ecology.

A feature of the metatranscriptome, which is critical for human microbiome population 

studies, was the propensity of different organisms to appear as primary transcribers of 

pathways between individuals. In relating metagenomic features to the metatranscriptome, 

we observed only 44% of the “core” metagenomic potential (81 transcribed pathways out of 

182 prevalent metagenomically) to be transcribed in the cohort. In combination with 

previous studies of “core” metagenomics17,33,34, this suggests a functional ecological model 

in which a prevalent metagenome encoding substantial redundancy is distributed among 
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many microbes per individual, with the microbes containing this core varying among hosts. 

Transcription at any one time or in any given environment is then typically dominated by 

one or a few members. This model of microbial ecology would be analogous to silencing 

versus upregulation of distinct portions of the human genome among cell types, which also 

consists of a “core” underlying DNA genome with long-term (epigenetics, instead of 

phylogeny) and short-term (transcriptional) regulatory mechanisms35.

In addition to these insights into metatranscriptional activity, stool taxonomic profiles in the 

MLVS cohort remained diverse and stable, in agreement with previous studies of the 

microbiome in the elderly19. Few profiles of this unique ecosystem have yet been generated, 

however, and those that do exist tend to employ widely varied technical characteristics and 

study design, prohibiting direct comparisons. ELDERMET36, for example, posited a trend 

toward Bacteroidetes dominance in aging, but this replicated neither across technologies 

within this cohort nor in our MLVS data. As MLVS data are drawn from within the broader 

HPFS, for which several decades of dietary and environmental data are available, we 

anticipate that future studies focusing on these detailed metadata will further detail microbial 

links to lifestyle and nutrition.

A challenge going forward will thus be to identify epidemiological contexts in which 

metatranscriptomic features are specifically informative, and the appropriate ways in which 

to measure them. This might include, for example, tests for health outcomes that are 

predicted uniquely by metagenomic activities. These may, based on this study’s results, be 

functionally consistent but contributed by different microbes across individuals, even when 

not differentially represented in underlying metagenomes. It also remains to associate 

metatranscriptomic responses with detailed information on immediate lifestyle exposures, 

such as recent diet, to determine temporal responses of the metatranscriptome to key 

environmental perturbations. Ultimately, if there exist health outcomes for which causal 

molecular mechanisms are uniquely detectable in the fecal metatranscriptome, its functional 

profile will need to be better characterized and integrated as a measurement in human 

epidemiological population studies.

Methods

MLVS Cohort, stool sample collection, shotgun sequencing and quality control.

The Health Professionals Follow-Up Study (HPFS) is a prospective cohort study aimed at 

investigating the determinants of men’s health, into which 51,529 U.S. men aged 40–75 

were recruited in 1986 and subsequently followed biennially13. For this analysis, we used 

data from a sub-study of the HPFS, the Men’s Lifestyle Validation Study (MLVS), in which 

308 participants provided up to two pairs each of self-collected stool samples from 

consecutive bowel movements, during 2012. The second pair of samples was collected 

approximately six months after the first. The median time between consecutive bowel 

movements for a pair of samples was 48 hours; collection dates are in Table S2. At the time 

of collection, age of participants ranged between 65 and 81 years. Cohort details, sample 

collection and immediate ex-situ conservation of metagenomic and metatranscriptomic 

components, laboratory handling, and paired-end (100 × 100 nt) shotgun sequencing of 

RNA and DNA are detailed in the companion manuscript (Mehta et al., in press) and in our 
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pilot study9, respectively. Study protocol 22067–102 titled “Men’s Lifestyle Validation 

Study and Microbiome Correlation” was approved by the Harvard Chan School of Public 

Health Institutional Review Board, and informed consent was obtained from all participants.

The gut microbiome, as captured by stool, was sampled from 308 male participants (ages 

65–81) within the MLVS sub-cohort of the HPFS (Fig. 1). Each participant provided up to 

two pairs of self-collected stool samples from consecutive bowel movements; with the 

second pair of samples collected approximately six months after the first. DNA was 

extracted from all 929 resulting samples, in addition to RNA from a subset of 372 samples 

spanning 96 participants. Illumina HiSeq sequencing yielded a total of 4.5 Tnt of paired-end 

reads (100×100 nt). This included an average of 3.8 Gnt ± 1.5 Gnt (mean ± s.d. Giga 

nucleotides) before quality filtering (see below) and 1.9 Gnt ± 0.7 Gnt afterward per 

metagenome, and 3.0 Gnt ± 2.4 Gnt and 1.3 Gnt ± 1.0 Gnt before and after quality control 

for metatranscriptomes. Forty-one samples (16 DNA and 25 RNA) had <1M reads after 

quality filtering and were excluded from further analysis. Thus, the final datasets analyzed 

comprised 913 metagenomes and 347 metatranscriptomes.

Taxonomic and functional profiling of metagenomic and metatranscriptomic samples.

Sequence reads were passed through the KneadData v0.3 quality control pipeline (http://

huttenhower.sph.harvard.edu/kneaddata), which incorporates the Trimmomatic37 and 

BMTagger38 filtering and decontamination algorithms to remove low quality read bases 

(thresholding Phred quality score at <20) and remove reads of human origin, respectively. 

Trimmed non-human reads shorter than 70 nt were discarded. Taxonomic profiling was 

performed using the MetaPhlAn2 classifier14, which relies on approximately 1 M clade-

specific marker genes derived from 17,000 microbial genomes (corresponding to >7,500 

bacterial, viral, archaeal, and eukaryotic species) to unambiguously classify metagenomic 

reads to taxonomies and yield relative abundances of taxa identified in the sample. We 

quality controlled taxonomic profiles by requiring at least 10% of clade-specific markers to 

recruit at least 1 read per kilobase (RPK) for inclusion in subsequent analyses. In addition to 

DNA, RNA (cDNA) reads were also analyzed with MetaPhlAn2 to quantify RNA viruses.

Metagenomes and metatranscriptomes were functionally profiled using HUMAnN215 to 

quantify genes and pathways (http://huttenhower.sph.harvard.edu/humann2). Briefly, for 

each sample, taxonomic profiling is used to identify detectable organisms. Reads are 

recruited to sample-specific pangenomes including all gene families in any detected 

microbes using Bowtie239. Unmapped reads are aligned against UniRef9040 using 

DIAMOND translated search41. Hits are counted per gene family and normalized for length 

and alignment quality. For calculating abundances from reads that map to more than one 

reference sequence, search hits are weighted by significance (alignment quality, gene length, 

and gene coverage). UniRef90 abundances from both the nucleotide and protein levels were 

then i) mapped to level 4 Enzyme Commission (EC) nomenclature and ii) combined into 

structured pathways from MetaCyc16. We used the MinPath42 and gap filling options in 

HUMAnN2 version 0.8.0. For the purposes of functional profiling, each read can be i) 

mapped to a specific organism’s characterized gene family in one or more known pathways, 

ii) mapped to a characterized protein family (without assignment to a specific organism), iii) 
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mapped to an uncharacterized gene family (not in any pathway), or iv) not mapped to any 

gene family. HUMAnN2 refers to these as i) species-specific, ii) unclassified, iii) 

unintegrated, and iv) unmapped reads, respectively. Per sample breakdown of HUMAnN2 

mapping categories (i.e. mapped, unclassified, unintegrated, and unmapped RPKs) are in 

provided in Supplementary Dataset 5. Reads mapped only at the amino acid level are not 

used when calculating specific taxa’s functional contributions. Instead, only reads mapped 

(unambiguously) at the nucleotide level are included in these totals.

Quantification of metatranscriptomic functional activity

Metatranscriptomic functional activity was assessed in the 341 samples with both RNA and 

DNA data in a manner not unlike two-channel microarrays using RNA:DNA ratios (see 

RNA/DNA normalization below). Due to the compositionality of RNA and DNA 

measurements, the resulting ratio is relative to the mean transcript abundance of the entire 

microbial community. That is, a ratio of 1 implies that the pathway is transcribed at the mean 

transcription abundance of all pathways in the microbial community. These quotients of 

RNA:DNA feature abundances allowed unbiased comparison of transcript abundances of 

metagenomic features between samples and also provided a comparative index of over/

under-transcription (relative to DNA copy number) within individual microbiome samples. 

Pathways that had <1 RPK (reads per kilobase) of either RNA or DNA were treated as not 

detected in the analyses.

RNA/DNA normalization.

Metatranscriptomic features (i.e. RNA abundances of genes, enzymes, pathways) were 

normalized to corresponding metagenomic features to obtain an estimate of the mean 

transcription abundance λ as follows:

λ f , i =
R f , i ⋅ H R f , i − t

∑i R f , i
⋅

∑iD f , i
D f , i ⋅ H D f , i − t

Rf,i and Df,i are the counts, in RPK, of feature f in sample i, for the metatranscriptome and 

metagenome respectively. H(x) is a unit step function with threshold x, and t is the detection 

threshold, here set to 1 RPK. This threshold ensures that RNA and DNA abundances that are 

confidently quantified (>1 RPK) are included, reducing the effect of increased noise due to 

genes and transcripts with low sequencing coverage. Summary statistics and analyses were 

only performed where both the numerator and denominator are measurable, although such 

gene families were tracked in RNA or DNA alone, respectively. Note that a value λf,i = 1 

does not imply that the feature has an equal number of copies in RNA as it does in DNA. 

Rather, it implies that the mean transcription abundance is equal to the global mean 

transcription abundance of all organisms in the community in sample i. Thus, λf,i > 1 

implies a transcript abundance above the community mean, which may be different in 

different samples.
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EC dispersion.

Co-expression of functionally-related ECs was quantified by the mean variance of the 

standardized EC expression log-ratios for the set of ECs contributing to a given pathway. 

Specifically:

1
N ∑

i = 1

N 1
P − 1 ∑

c ∈ P
zc, i − z • , i

2,  zc, i =
xc, i − x • , i

Var xc, i

where xec,i is the expression ratio for EC ec in sample i, P is a given pathway, ⟨●⟩ represents 

the mean, and Var[●] the variance. When the expression of functionally-related ECs is not 

related (i.e. uncorrelated), then this value is expected to be 1. Lower values indicate the 

presence of co-expression of ECs, with 0 indicating a perfect relationship.

Species-specific meta’omic concordance.

Concordance between species-level metagenomic and metatranscriptomic pathway 

abundances was assessed using the mean of the Spearman correlation, weighted by the mean 

metagenomic contribution of each species to the overall pathway abundance. After 

averaging across multiple samples per subject, we calculated:

WSpear p =
∑s Spearman dp, s, •, rp, s, • ∑idp, s, i

∑s ∑idp, s, i

where dp,s,i and rp,s,i are the relative abundances of pathway p, contributed by species s in 

sample i in DNA and RNA, respectively. Spearman is the Spearman correlation between two 

vectors, where ties are given the mean rank of the tied values, and defined to be 0 when 

either vector has no variance. This weighting downweights the concordance for species 

which do not contribute much of the pathway’s abundance, mitigating the uncertainty 

inherent in estimating transcript abundances of low-abundance species and genes.

Microbial ecology networks.

Ecological covariation was assessed using BAnOCC (Bayesian Analysis of Compositional 

Covariance), a Bayesian model for detecting significant pairwise associations in 

compositional data25 (http://huttenhower.sph.harvard.edu/banocc). Briefly, BAnOCC models 

the sequence generation process using a lognormal distribution on unobserved absolute 

counts and constrains the associated correlation matrix through a sparsity-inducing prior. For 

posterior inference, we use the 95% credible interval, i.e. a correlation estimate is considered 

significant if the corresponding 95% credible interval excludes zero. We estimated 

ecological networks for the two sampling time points independently, from within-subject 

means of species abundance profiles, and then overlaid the networks to assess similarities 

and differences between networks over the length of the sampling period.
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Inference of strain-level population structure.

Strain profiling was carried out using StrainPhlAn v1.028 (http://segatalab.cibio.unitn.it/

tools/strainphlan). Briefly, after mapping reads to MetaPhlAn2 species-specific markers for 

sufficiently abundant species in each sample, a per-sample consensus sequence is built for 

each marker. For each species, these are concatenated, aligned, and variants identified 

relative to reference. Here, pairwise evolutionary distances were calculated from these 

variant alignments, with the Kimura Two-Parameter distance43 for ordination analysis using 

R packages vegan and ggplot2.

Structure of the stool metagenome and metatranscriptome as contributed by diverse 
species.

The input for the joint ordination of pathways and species (Fig. 3A) was the pathway 

genomic and transcriptional abundance of known taxonomic provenance only, averaged over 

913 metagenomes and 341 metatranscriptomes. Species contributing <1.0E-7 metagenomic 

relative abundance to a pathway in <5% of pathways were removed, and the same criteria 

were used to remove metagenomic pathways found in species. Out of 339 species that were 

found to contribute to 219 pathways, 223 (65.8%) species and 109 (34.2%) pathways 

satisfied the filtering criteria. The metatranscriptome pathway by species matrix was subset 

to the same 109 pathways as for metagenomes, which were contributed by 194 species, and 

merged with the DNA pathway by species matrices into a single input matrix.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Metatranscriptomic and metagenomic taxonomic and functional profile of a 
prospective human cohort.
A) 308 participants from the Men’s Lifestyle Validation Study (MLVS), embedded within 

the Health Professionals Follow-up Study (HPFS) prospective cohort13, provided a target of 

four stool samples each. These were self-collected in two pairs, six months apart, with each 

pair spanning 2–3 days. This yielded 929 total metagenomes and 372 metatranscriptomes, 

sequenced using previously published protocols9 and functionally profiled using 

HUMAnN215. B) To estimate gene family, enzyme class, and pathway relative transcription, 

RNA abundances were normalized to corresponding DNA abundances. We then evaluated 

“core” (prevalently transcribed) and variable transcriptional elements, in addition to the 

ecological and phylogenetic diversity of metatranscription and carriage of functional 

elements among species. C) Taxonomic profiles were determined using MetaPhlAn214 from 

both DNA and RNA data (for RNA viruses). These were also used for ecological interaction 

network reconstruction25 with BAnOCC (Schwager in review) (http://

huttenhower.sph.harvard.edu/banocc) and for strain tracking with StrainPhlAn28.
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Figure 2. Core and variable metatranscriptomes of the stool microbiome.
DNA-normalized transcript abundances for 239 gut microbiome pathways with detectable 

RNA in >10 of the 341 metatranscriptomes, collected from 96 MLVS participants. Samples 

(columns) were sorted left to right based on decreasing number of transcribed pathways per 

sample. A) Core metatranscriptome pathways (transcribed in >80% of samples) with 

RNA:DNA transcription ratio >1. B) Low-expression core metatranscriptome pathways with 

transcript abundance detectable in >80% of samples but an RNA:DNA ratio <1. C) Variably 

metatranscribed pathways detected in DNA but below detection in at least half of RNA 

samples, and D) variably metatranscribed pathways below detection in DNA (and matching 

RNA) in 30%−80% of the 341 samples. Several pathways representative of functional 

categories are annotated, and the complete annotation of all pathway names and definitions 

are in Supplementary Fig. 6A–D. Thirty-eight pathways that did not fall into either of the 

four sections based on these criteria are in Supplementary Fig. 6E. The distribution range of 

pathways with the overall 30 highest and 30 lowest mean DNA-normalized transcript 

abundances among the 341 metatranscriptome samples are in Supplementary Fig. 6F. The 

grey color represents pathways that were below detection in both DNA and RNA in a given 

sample; the black color represents pathways that were detected in DNA but below detection 

in RNA.
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Figure 3. The gut metatranscriptome is personalized and broadly taxonomically distributed.
A) Structure of the stool metagenome and metatranscriptome as contributed by diverse 

species. Principal coordinates analysis of pathways with microbial species’ contributions to 

their DNA and RNA abundances using Bray-Curtis dissimilarity, with a biplot overlay 

indicating centroids of abundant species’ contributions. Each pathway is thus denoted by 

two points, summarizing the organisms contributing them metagenomically (averaged over 

913 samples from 307 participants) and metatranscriptomically (341 samples from 96 

participants), and a subset of examples are labeled. The resulting joint ordination indicates 

broad agreement between species carrying (metagenomically) and expressing 

(metatranscriptomically) groups of pathways in the fecal microbiome. B) Transcription 

ratios of 30 pathways that were most prevalently transcribed among the top 30 species, using 

the same datasets as in A. Pathways for which DNA or RNA were not detected in a given 

species are grey. A given pathway-species combination in the heatmap represents the 

transcript abundance averaged over all samples that measured a non-zero RNA/DNA ratio 

for that species. Only pathway-species combinations in at least 5 samples (from a total of 

341) were considered. Columns in the heatmap were ordered based on average linkage 

clustering on a Euclidean distance matrix of log2 pathway transcription ratios.
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Figure 4. Transcriptional landscape of the stool microbiome.
A) Distributions of alpha diversity (Gini-Simpson index) for the species-specific 

metagenomic and metatranscriptomic contributions to each pathway, for 70 non-redundant 

pathways with the highest community level RNA abundances, averaged across 341 

metatranscriptomes from 96 participants. Pathways were sorted by the sum of the median 

metagenomic alpha diversity and the weighted Spearman correlation from B. Boxplot 

whiskers represent 1.5 times the inter-quartile range from the first and third quartiles. B) 
Concordance of metagenomic potential with metatranscriptomic activity (metagenome-

weighted mean of per-species Spearman correlations; see Methods). Metatranscriptomic 

diversity is, as expected, consistently lower than metagenomes, with pathways carried by 

only a few organisms also more differentially transcribed. Metagenomic potential (bottom) 

and metatranscriptomic activity (top) for example pathways with differing ecological 

structure, specifically C) GDP-mannose biosynthesis and D) adenosine ribonucleotide de 

novo biosynthesis. Abundances were normalized within each pathway for 189 subject-week 

pairs, from 96 participants. Subjects were ordered to emphasize blocks of subjects with 

similar metatranscriptomic profiles (see Methods). The top 8 (C) and top 15 (D) species in 

terms of their mean metatranscriptomic contribution to the pathways in C and D are shown 

for clarity. Examples show transcriptional ecologies that either differ strikingly from (C) or 

generally mirror (D) their metagenomic diversity.
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Figure 5. Ecological interactions in the gut microbiome.
Significant co-variation and co-exclusion relationships among 104 species in 913 stool 

metagenomes from 307 MLVS participants. Each node represents a species and edges 

correspond to significant interactions inferred by BAnOCC (see Methods). Stool 

microbiome taxonomic profiles were averaged within each subject for the first and second 

collection pairs (separated by 6 months). Interactions in at least one time point are included 

here. No alternating associations (positive at one time and negative in another) were 

detected. 95% credible interval criteria was used to assess significance, and only estimated 

absolute correlations with effect sizes >=0.15 are reported. Networks for individual time 

points are in Supplementary Fig. 9.
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Figure 6. Species-specific patterns of evolutionary divergence within species preserved across 
cohorts.
Panels show strain-level diversity within A) Eubacterium siraeum and B) Faecalibacterium 
prausnitzii. Each point represents one sample’s strain, ordinated by principal coordinate 

analysis of sequence dissimilarity (Kimura Two-Parameter distance). C) Pairwise nucleotide 

substitution rates within and between cohorts for 21 out of 30 species in Fig. 3 with 

sufficient prevalence in both cohorts for informative comparison. Lines represent median 

values, points denote outliers outside 1.5 times the interquartile range. All numbers in 

parenthesis are sample counts in which indicated strains were above limit of detection; from 

a total of 913 MLVS stool metagenomes and 553 HMP stool metagenomes (from 253 male 

and female HMP participants) that were analyzed with StrainPhlAn.
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