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Abstract 

Conscious states—state that there is something it is like to be in—seem both rich or full of detail and ineffable or hard to fully describe 
or recall. The problem of ineffability, in particular, is a longstanding issue in philosophy that partly motivates the explanatory gap: the 
belief that consciousness cannot be reduced to underlying physical processes. Here, we provide an information theoretic dynamical 
systems perspective on the richness and ineffability of consciousness. In our framework, the richness of conscious experience corre-
sponds to the amount of information in a conscious state and ineffability corresponds to the amount of information lost at different 
stages of processing. We describe how attractor dynamics in working memory would induce impoverished recollections of our original 
experiences, how the discrete symbolic nature of language is insufficient for describing the rich and high-dimensional structure of 
experiences, and how similarity in the cognitive function of two individuals relates to improved communicability of their experiences 
to each other. While our model may not settle all questions relating to the explanatory gap, it makes progress toward a fully physical-
ist explanation of the richness and ineffability of conscious experience—two important aspects that seem to be part of what makes 
qualitative character so puzzling.
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Introduction
Conscious states—state that there is something it is like to be in 
(Nagel, 1974)—present many apparent contradictions. On the one 
hand, every time we have a thought, look out at the world, or feel 
an emotion, we have a rich experience that seems impossible to 
fully describe. At the same time, conscious experiences are con-
ceptualizable, with similar properties across individuals, and can 
often be communicated with a degree of fidelity.

This paper provides an information theoretic dynamical sys-
tems perspective on how and why consciousness may appear to 
us the way it does, namely, as both “rich” or full of detail, and 
“ineffable” or hard to fully describe or recall—in other words, why 
it seems that an experience is “worth a thousand words.” Our key 
contention is that these aspects of consciousness are implicated 
by a dynamical systems model of neural processing, in particular 
by “attractors”: patterns of joint neural activity that remain rel-
atively stable over short timescales and yield a discrete partition 
over neural states. Importantly, interpreting cognitive processing 

through the lenses of dynamical systems and information the-
ory will give us the ability to reason about richness, ineffability, 
and communicability in general terms, without relying on imple-
mentation details of the neural processes that may give rise to 
consciousness. Broadly, the suggestion is that the rather abstract 
level of explanation afforded by information theory is the com-
mensurate level of explanation for some key questions about 
richness and ineffability.

By “consciousness,” we mean phenomenal consciousness, i.e. 
the felt or subjective quality of experience. A state is phenom-
enally conscious when, in the words of Nagel (1974), there is 
“something it is like” to be in that state. Phenomenal conscious-
ness is the form of consciousness that gives rise to what Joseph 
Levine calls the “explanatory gap” (Levine, 1993) and what David 
Chalmers calls the “hard problem of consciousness” (Chalmers, 
1996): the problem of showing that phenomenal consciousness 
can be explained in terms of, or reduced to, underlying physical 
processes. The explanatory gap is one of the central problems in 
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the philosophy of mind, and it relies heavily on the intuition that 
“physicalist theories leave out [phenomenal consciousness] in the 
epistemological sense, because they reveal our inability to explain 
qualitative character in terms of the physical properties of sensory 
states” (Levine, 1993).

Here, we address one aspect of this problem by developing a 
structural/mechanistic explanation of the richness and ineffabil-
ity of conscious experience, one that is given entirely in terms 
of information processing in a dynamical system such as the 
brain. Our model assumes that conscious experiences are derived 
from neural processes according to known physical laws and can 
therefore be understood using the standard methods of cogni-
tive neuroscience. While our model may not settle all questions 
related to the explanatory gap, it will make progress toward a fully 
physicalist explanation of the richness and ineffability of con-
scious experience—two important aspects that seem to be part 
of what makes qualitative character so puzzling. The aim of this 
paper is to propose and justify a formal description of how neu-
ral dynamics could give rise to the ordinary sense of richness and 
ineffability in the brain. Our key contributions are summarized as 
follows:

(i) We relate the philosophical notions of richness and ineffa-
bility to the computational notion of information. Assuming 
that brain dynamics are cast as information processing func-
tions, we contend that the richness of conscious experience 
can be interpreted as the amount of information in conscious 
state, and ineffability as the amount of information lost in 
processing.

(ii) Attractor dynamics are empirically ubiquitous in neural 
activity across cortical regions and have been proposed as a 
computational model for working memory (Khona and Fiete, 
2022; Rolls, 2010), while prominent models of consciousness 
argue that conscious experience is a projection of working 
memory states (Baars, 2005; Dehaene and Naccache, 2001). 
We connect these theories by contending that significant 
information loss induced by attractor dynamics offers an 
account for the significant ineffability of conscious experi-
ence.

(ii) By considering information at multiple stages during inter-
personal communication, we show how different point-to-
point pathways of information loss arise during cognitive 
processing, going beyond the specific case of ineffability of 
conscious experience at verbal report.

(iii) Using Kolmogorov information theory (Kolmogorov, 1965), 
we prove a formal result that connects cognitive dissimilarity 
between individuals with increasing ineffability of conscious 
experience. This highlights the difference between cognitive 
dissimilarity and knowledge inadequacy, shedding light on 
the philosophical conundrum of what color scientist Mary 
learns when leaving her black and white room (Jackson, 
1986).

(iv) Since information loss is a function of neural states, it can 
be approximately computed by cognitive processing, pro-
viding a mechanistic justification for the report of ineffa-
bility or the contention that consciously inaccessible rich 
representations exist (Sperling, 1960).

Instead of defining “access” as triggering correct behavior on 
a per-experience basis (Colagrosso and Mozer, 2004), we con-
tend that there is a natural correspondence between access 
and preservation of information, which allows for quantification 

using mutual information and analysis by applying information 
theoretic reasoning to the abstract computation graph. Cast-
ing ineffability as information loss allows us to reason about 
the ineffability of conscious experience from the computation 
graph without depending on the exact definition of conscious
experience.

The paper is structured as follows. We present our dynamical 
systems model of conscious experience in the “An information 
theoretical dynamical systems perspective on conscious experi-
ence” section, beginning with the “Motivating attractor dynamics 
as a model for conscious experience” section, which motivates 
the use of attractor dynamics for modeling conscious process-
ing using prior arguments from the literature that are indepen-
dent of our own, including evidence for the Global Workspace 
Theory (Baars, 1993; Baars, 2005; Dehaene et al., 1998). The 
“Richness and ineffability” section formalizes the notions of rich-
ness and ineffability using both Shannon information theory 
(Shannon, 1948) and Kolmogorov complexity (Kolmogorov, 1965), 
which play a central role in making our later arguments pre-
cise. Core contributions are presented in “Intrapersonal ineffabil-
ity” and “Interpersonal ineffability” sections, which discuss var-
ious sources of ineffability in conscious experience and explain 
the conditions under which these experiences can be partially 
communicated to others. We then briefly discuss the implica-
tions of our model on the debate surrounding “phenomenal” vs. 
“access” consciousness (Block, 1995), before concluding with a 
high-level discussion in the “Conclusion” section. A background 
summary of related work, concepts in philosophy, and computa-
tional neural dynamics is given in Appendices “Illusionism and 
overflow”, “Computation through neural dynamics” and “Related
Work”.

Results
Motivating attractor dynamics as a model for 
conscious experience
To contextualize our argument, we begin by drawing on exist-
ing work on working memory to highlight several connections 
between attractor dynamics and conscious experience.

The contents of working memory are typically considered to 
be the attended contents of short-term memory: a function of 
short -term representations held in the brain and context from 
task information or other executive functioning objectives (Engle, 
2002; Cowan, 2008). A central claim in several leading theories 
of consciousness is that what we are consciously aware of is the 
contents of working memory. For example, the Global Workspace 
Theory (Baars, 1993; Baars, 2005) and its neuronal extension 
(Dehaene et al., 1998) state that information becomes conscious 
by gaining entry into a limited workspace that serves as a bottle-
neck for the distributed activity present across the brain. Pairs of 
brain regions are largely isolated from each other, and arbitrary 
point-to-point communication is only possible via the workspace, 
which itself can both receive and broadcast information globally. 
The workspace, then, serves as a hub capable of coordinating 
brain-wide activity for centralized control and decision-making. 
It is easy to see the connection between the concepts of a global 
workspace and working memory (attentional selectivity, influence 
on executive decision-making, availability to verbal and behav-
ioral reporting processes, limited capacity, and arbitrary modal-
ities), and there is little distinction between them in the Global 
Workspace Theory (Dehaene and Naccache, 2001). Similarly, the 
notion of “access consciousness” introduced in Block (1995) can 
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be framed through the lens of a working memory whose contents 
are globally accessible across the brain.

The link between working memory and attractor dynamics, 
in turn, is well established. Empirical studies have demonstrated 
that attractor dynamics are ubiquitous in the brain, both across 
species and levels in the brain’s hierarchy (Rolls, 2010; Khona 
and Fiete, 2022). The attractor model for working memory postu-
lates that working memory emerges from recurrently connected 
cortical neural networks that allow representations to be main-
tained in the short term (on the order of seconds) by self-generated 
positive feedback (Durstewitz et al., 2000; Curtis and D’Esposito, 
2003; Deco and Rolls, 2003; Barak and Tsodyks, 2014; Seeholzer 
et al., 2019). Attractor dynamics can support both “suppres-
sion” of inputs, for example, in decision-making where the brain 
state flows rapidly toward a discrete attractor and subsequent 
inputs or perturbations are discounted, as well as “integration” 
over inputs, where the incremental response to inputs causes 
reversible flow along continuous attractor manifolds (Redish et al., 
1996; Wang, 2008; Khona and Fiete, 2022). Neural winner-take-
all models implement hybrid analog-discrete computation (Wang, 
2008; Wong and Wang, 2006). Robustness, discreteness, and tem-
poral integration of information are all traits apparent in working 
memory (Khona and Fiete, 2022).

Richness and ineffability
What is meant by the richness of experience? Intuitively, while we 
find it easy to communicate certain aspects of our mental state, 
we struggle to convey their full content or meaning. One can con-
sider color as an example. We are tempted to think of color space 
as a simple 3-dimensional surface, on the basis of perceptual sim-
ilarity judgments that people tend to make. However, there is a 
far richer and higher dimensional structure to experiencing color. 
For instance, most people would describe the color “red” as warm 
and aggressive. There are myriad associations that we make with 
various colors that are not functions of their nominal definitions, 
and all these associations as a whole contribute to the richness of 
the experience (Chalmers, 2010).

Broadly, richness means having a lot, the condition of being 
“well supplied or endowed” (Merriam Webster Dictionary, 2023). 
In the context of mental state attribution, richness gauges the 
amount of specificity—detail, texture, nuance, or informational 
content—contained by a mental state. It is a common principle 
in aesthetics that experience is rich (a picture speaks a thou-
sand words), and many philosophers acknowledge that conscious 
states at least appear to be highly detailed, nuanced, and content-
ful (Tye, 2006; Chuard, 2007; Block, 1995), although some takes this 
appearance to be ultimately illusory (Dennett, 1993; Cohen et al., 
2016).

This conception of richness corresponds well to the mathe-
matical notion formalized by Shannon (1948), where richness of 
a random variable X is given by its entropy H(X). Here, a ran-
dom variable represents a state type, e.g. experience of some face 
or other. To say that such a variable is high in entropy is to say 
that the number of values it could take (the number of possible 
states the system could be in, e.g. the different experiences of 
faces one could possibly have) is relatively large and the proba-
bility distribution over these is relatively flat, and thus, the state 
is unpredictable. Specifically, Shannon entropy H(X) quantifies the 
average number of bits (answers to yes-or-no questions) required 
to specify which state X takes as a measure of informational 
content.

The notion of ineffability is closely related. In popular usage, 
ineffable can be defined as “too great for words” (Oxford English 
Dictionary, 2023). The concept is often used in theological con-
texts, but it has been applied to descriptions of qualitative expe-
rience since at least Dennett (1993). Given the term’s theological 
associations, the claim that experience is ineffable might sound 
like a profession of dualism: consciousness is something magic 
that no physicalist theory can account for. However, strictly speak-
ing, to claim that experience is ineffable is simply to claim that its 
informational content exceeds what we can remember or report. 
Much hinges on what exactly we mean by “can remember or 
report.” Of course, one can say a thousand words, so the fact 
that a picture speaks that many words do not necessarily make a 
picture ineffable. Later, we will develop tools to allow us to pre-
cisely refine the senses of ineffability at issue, and we will see 
that experience is ineffable in multiple senses (although none 
of them need involve magic or anything anathema to physicalist
theories).

We propose that ineffability corresponds to the mathemati-
cal notion of information loss when trying to express a conscious 
state in words. Given a function that processes an input vari-
able X and produces an output variable Y, information loss of 
the input incurred by the output is measurable by conditional 
entropy H(X|Y) or entropy of the input variable given the out-
put variable. Intuitively, conditional entropy H(X|Y) measures how 
well Y describes X: how much uncertainty remains about the 
value of X, once the value of Y is given. Conditional entropy 
H(X|Y) is mathematically equivalent to the entropy of the input X
minus the mutual information between input and output, H(X|Y) =
H(X) − I(X;Y), where the latter is a measure of information shared 
between them; the amount of information about the state of one 
variable obtained by observing the state of the other. Note the 
difference between conditional entropy and mutual information: 
mutual information is how much uncertainty one random vari-
able removes from another, while conditional entropy describes 
how much uncertainty remains in the first variable after the value 
of the second is given.

Usefully, quantifying ineffability in this manner allows us to 
offer a precise definition of effability as the negation of ineffa-
bility. Where ineffability is given by H(X|Y), negating ineffability 
gives effability: −H(X|Y) = I(X;Y) − H(X). Recalling that entropy is a 
measure of uncertainty or spread in a probability distribution, the 
smaller the H(X|Y) is, the less uncertain the X is given Y, the less 
information is lost, and the more effable or communicable X is
via Y.

In the foregoing, we draw on the framework of Shannon infor-
mation, but there are advantages, for our purposes, to using 
Kolmogorov information (Kolmogorov, 1965) as an alternative way 
to characterize richness and ineffability. In the Kolmogorov for-
malism, richness of a state x corresponds to its complexity K(x), 
which is the length in bits of the shortest program written in a 
general programming language that outputs x and halts. Inef-
fability then corresponds to conditional Kolmogorov complexity 
of an input x given an output y, K(x|y), the length of the short-
est program needed to produce x if y is given, or intuitively the 
complexity of x minus the number of bits that can be saved from 
knowing y, which is the Kolmogorov analog of Shannon infor-
mation loss as conditional entropy. Note that since Kolmogorov 
complexity is defined on strings of bits, we restrict the domain 
of our functions to discrete variables and assume that floating 
point representation is used to encode real values (Box 1). Float-
ing point representations are discrete in the sense that they form 
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a countable finite size space. They are, however, an approxima-
tion of the reals, with an approximation error that decreases as 
the precision/computer memory allowed for the representation 
increases. Construction of the computational model thus incurs 
a separate form of information loss resulting from discretization 
of real-valued continuous-time observations of neural states. 

Box 1. Notation

Let x denote an instance of random variable X, 𝒳 denote 
the set of possible states for X with probability distribu-
tion P(X), ∑x∈𝒳P(X = x) = 1, p(x) denote P(X = x), expectation 
𝔼p(x)[f (x)] denote ∑x∈𝒳p(x)f (x), and likewise for other vari-
ables. We restrict function domains to discrete variables 
including floating point representation of reals. [n] denotes 
the list of natural numbers 1,… ,n.

Shannon entropy and Kolmogorov complexity are closely 
related metrics of richness and are described in more detail in 
Box 2 and Fig. 1. If the probability distribution over states is given, 
taking an expectation over the distribution on Kolmogorov com-
plexity of its states allows Shannon entropy to be approximately 
recovered (Grünwald and Vitányi, 2004). Under either framework, 
richness is characterizable as information measured in bits, inef-
fability is characterizable as information loss or richness reduc-
tion, and communicability and ineffability are neither separate 
nor Boolean traits, but direct opposites of each other and varying 
on a scale.

A major difference between Shannon entropy and Kolmogorov 
complexity is that the former requires knowledge of the probabil-
ity distribution over variable states, whereas the latter is defined 
on individual states without assuming a given probability distri-
bution. The distribution may be undefined or highly privileged 
information in itself (that is, the meta-distribution over the dis-
tribution’s parameters is rich). Consider, for example, measuring 
the amount of information in a book by considering the set of 
all possible books and the distribution over them (Grünwald and 
Vitányi, 2003) or the information in a temporal snapshot of a 
high-dimensional brain state by considering the distribution over 
all possible states. In these cases, we want a way to measure 
informational content that does not require knowledge of a hard-
to-specify distribution. This is especially salient for us where inter-
personal ineffability is concerned. Even if we assume that a brain’s 
parameters fully determine the distribution over its own states 
(and so in some sense, individuals have direct access to their own 
distributions), still individuals cannot have this level of knowl-
edge of the distributions of their interlocutors’ brains. Explic-
itly allowing the communicator’s distributional parameters to be 
unknown is therefore convenient for characterizing interpersonal 
ineffability from the perspective of the listener.

A second drawback of Shannon’s framework is that entropy 
is a measure of statistical determinability of states; informa-
tion is fully determined by the probability distribution on states 
and unrelated to the meaning, structure, or content of individ-
ual states (Grünwald and Vitányi, 2003). For example, consider 
again a case where we want to measure interpersonal ineffa-
bility, as a relationship between a communicator’s experience 
and a listener’s. It might just happen to turn out that whenever 
Alice thinks and talks about tennis, Bob almost always thinks 
about Beethoven. In this case, conditional entropy will be low, 
but conditional Kolmogorov complexity will be high and therefore 

Box 2. Metrics for richness and ineffability

Shannon entropy is given by 

If variable Y is produced by processing Z, y = f (z), with joint 
distribution denoted by p(z,y) and f  stochastic in the general 
case, then information loss from Z to Y is given by conditional 
entropy H(Z|Y) = H(Z) − I(Z;Y), where I(Z;Y) denotes Shannon 
mutual information between variables, 

and H(Z|Y) is given by 

,

The Kolmogorov complexity of a state z, K(z), is the length 
l(r) in bits of the shortest binary program r that prints z
and halts. Specifically, let U be a reference prefix universal 
machine. The prefix Kolmogorov complexity of z is 

Conditional Kolmogorov complexity is the length of the 
shortest program that takes y as an input, prints z, and halts. 
It is given by 

where I(z : y) denotes Kolmogorov mutual information 
between states, y* denotes the shortest program that pro-

duces y and halts, standard notation 
+
= and 

log
=  are used 

to denote equality up to constant and logarithmic factors, 
respectively (Grünwald and Vitányi, 2004; Li et al., 2008). As 
Eq. (5) shows, K(z|y*) and K(z|y) are comparable and either 
may be used to characterize information loss; in subsequent 
sections, we will generally refer to K(z|y).

Shannon entropy and Kolmogorov complexity are related 
by the following constraints (Grünwald and Vitányi, 2004): 

which conveys how Kolmogorov complexity pays a penalty 
for not assuming knowledge of the distribution, since it must 
be encoded within the program.

suited to capture the absolute difference between their experi-
ences. For these reasons, we argue that particularly in the case 
of interpersonal communication, Kolmogorov complexity should 
be used to characterize richness and ineffability of experiences.
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Figure 1. Illustrating Shannon entropy and Kolmogorov complexity for 
discrete color distributions. Entropy (Eq. (1)) involves an expectation over 
the states of stochastic variable X, whereas Kolmogorov complexity (Eq. 
(4)) is defined for an instance of state, x. Assume a universal 
red-green-blue (RGB) representation for colors where each RGB 
component ranges between 1 and 256. Without assumptions on the 
distribution over colors, the Kolmogorov complexity of each state is not 
greater than 24 (excluding program overheads) since color can be 
represented with 38-bit binary sequences, but may be lowered for 
smaller RGB values that do not require 8 bits if an optimized number 
encoding scheme is used (Grünwald and Vitányi, 2003). While entropy is 
the same for the same probability distribution over “any” states, 
Kolmogorov complexity would increase for states whose values are 
algorithmically more difficult to construct.

However, Shannon entropy is functionally equivalent if the distri-
bution is given, and we will refer to both frameworks. 

Intrapersonal ineffability
In this section, we will develop our model of intrapersonal inef-
fability, that is, ineffability between stages of processing within a 
single experiencer. We will be concerned with the following vari-
ables: Let X (with value x) be a trajectory of neural activities that 
determine working memory content and conscious experience, 
and let it consist of a sequence of transient states Xt for t ∈ [T], 
where length T is fixed and sufficiently large such that all tra-
jectories terminate near an attractor state. By “value,” we mean 
that X, for example, is a random variable ranging over neural tra-
jectories and x stands for a value of that variable, i.e. a specific 
trajectory. Let A (with value a) denote the terminating attractor, 
S (with value s) denote a trajectory of conscious experience con-
sisting of transient states St for t ∈ [T], D (with value d) denote 
external input datum, V (with value v) denote a list of N subprocess 
states Vn for n ∈ [N] and fixed N that comprise computation affect-
ing working memory trajectory X, and M (with value m) denote 
the verbal report or output message of the individual. In addi-
tion, let 𝜙 denote the brain’s synaptic weights that parametrize 
its dynamics. These variables are connected by a computation 
graph of functions (Fig. 2), given by v = f V

𝜙 (d), x = f X
𝜙 (v), a = f A

𝜙 (x), 
s = f S

𝜙(x), and m = f M
𝜙 (a). The functions f A

𝜙  (returns final attractor 
state) and f S

𝜙 (outputs conscious experience that is fully deter-
mined by x) are deterministic, while f M

𝜙 , f V
𝜙 , and f X

𝜙  are generally 
stochastic, meaning that outputs may be dependent on hidden 
stochastic variables within the function that encodes historical 
states or neural processing noise. We assume that the correspon-
dence between neural trajectory and conscious trajectory is a 
function, which is plausible given type identity and functionalist 
theories of consciousness (Smart, 2022) that assume a function 
between instantaneous neural and conscious state. Not speak-
ing is encoded by a state of V corresponding to “no verbal report.” 
Subscripting with 𝜙 denotes that function behavior is determined 
by cognitive parameters 𝜙. The computation graph defines a joint 
probability p𝜙(d,x,s,a,m), from which conditional and marginal 
probability distributions on individual variables may be obtained. 
Entropy H𝜙 is also parameterized since it depends on p𝜙. Finally, 
denote the transient state by X̄, where p𝜙( ̄x) = 1

T
∑t∈[T] P𝜙(Xt = ̄x)

Figure 2. A model of intrapersonal ineffability. Information is channeled 
through the stages of input (d), subprocess state (v), working memory (x,
a), trajectory of conscious experiences (s), and verbal report (m). A 
trajectory x in the state space of working memory follows attractor 
dynamics, converging near an attractor a. Each step transforming one 
variable to another is executed by the dynamics of the individual’s brain, 
which is determined by parameters 𝜙. A trajectory of conscious 
experiences s is a function of the subject’s cognitive parameters 𝜙 and 
working memory trajectories x and encodes the experiences’ meanings.

is the probability that any transient state takes the
value ̄x.

Our dynamical systems model of working memory distin-
guishes between two kinds of working memory state, attractor 
states and transient states, where the latter includes all time-
varying states occupied by the system and the former corresponds 
to system output or the accessible contents of working mem-
ory (Khona and Fiete, 2022). Our model remains neutral about 
whether conscious states correspond exactly to transient states 
or attractor states but allows conscious state to be more gen-
erally a deterministic function of these states, thus conveying 
part of their information. Specifically, since s = f S

𝜙(x), conscious 
experience is not restricted to be identical to transient working 
memory states or attractor states, but is the output of a deter-
ministic time-varying function of the trajectory through working 
memory states, where the function depends on cognitive param-
eters 𝜙. While we will not focus on the implementation details 
of how conscious experiences might relate to neural processes, 
intuitively, st is some mathematical object (e.g. a vector of real 
numbers) representing one state in an abstract space of possi-
ble experiences (for background on what it means to formalize 
st as a mathematical object and current approaches, see Kleiner 
(2020); Kleiner and Ludwig (2023)). Subsequently, information 
theory gives us the ability to reason about the relative rich-
ness and ineffability of conscious experience based on the com-
putation graph, without needing implementation details of the
functions.

Information loss from attractor dynamics
The relation of trajectories x to a smaller subset a of attractor 
states is a defining characteristic of attractor dynamics, whether 
the subset consists of a discrete number of fixed points or a set of 
states that trace out a complex shape such as a curved manifold. 
In this section, we argue that the presence of attractor dynamics 
decreases the richness of working memory states and conscious 
experience. We will identify two related effects. First, at the level 
of comparison between systems, the presence of attractors con-
centrates the probability mass of transient states onto a smaller 
subspace, reducing the richness of transient states. Second, we 
show that at the level of comparison between states, since attrac-
tor states are less rich than transient states in general and the 
former constitute outputs of the system, the richness of attractor 
states limits the richness of downstream variables.
Since dynamics are characterized by the flow of transient states 
toward an attractor in 𝒜 followed by persistent membership in 𝒜
and attractors 𝒜 typically constitute a significantly smaller subset 
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Box 3. Implications of reducing transient state richness

Reducing the richness of transient states H𝜙( ̄X) also reduces 
a ceiling on the richness of full trajectories H𝜙(X), since 
H𝜙(X) = H𝜙(X1 …XT) ≤ ∑t∈[T] H𝜙(Xt) ≤ T(H𝜙(X̄) + C) by the addi-
tion rule of entropy, where constant C = maxt∈[T](H𝜙(Xt) −
H𝜙(X̄)) limits the maximum deviation of entropy between 
individual timesteps and the temporal average. This in 
turn reduces a ceiling on the richness of conscious expe-
rience as H𝜙(S) ≤ H𝜙(X). The latter can be shown as 
follows: the joint entropy H𝜙(S,X) = H𝜙(X) + H𝜙(S|X) = H𝜙(X)
since f S

𝜙 is deterministic, i.e. H𝜙(S|X) = 0. H𝜙(X) = H𝜙(S,X) =
H𝜙(S) + H𝜙(X|S), Shannon entropy is non-negative, and thus,
H𝜙(S) ≤ H𝜙(X).

of all possible transient states ̄𝒳 (Khona and Fiete, 2022), the pres-
ence of attractors decreases the richness of transient states H𝜙( ̄X). 
Since entropy is a measure of distributional spread, dynamics 
with larger nonattractor transient state sets ̄𝒳\𝒜, implying more 
time spent in nonattractor states, yield richer distributions over 
transient states P𝜙(X̄); conversely, faster convergence to attractors 
and more time spent at attractors yield lower H𝜙(X̄). (Note that 

̄𝒳 is the set of all possible transient states, distinct from X̄ which 
is the variable for a transient state.) In turn, reducing the rich-
ness of transient states limits the richness of full trajectories and 
conscious experience (Box 3).

The same reasoning applies under Kolmogorov’s formalism 
if the probability distribution is known, because expected Kol-
mogorov complexity 𝔼p𝜙( ̄x)K( ̄x|p𝜙) is equivalent to entropy H𝜙( ̄X) up 
to an additive constant if the distribution pΦ is given (Eq. (6), since 
the program merely needs to access pΦ, print it, and halt). Intu-
itively, this is because knowing the distribution gives the encoder 
a short-cut; the shortest lossless descriptor of x̄, given knowl-
edge of the distribution P𝜙( ̄X) and thus support ̄𝒳, has length 
− logp( ̄x) under Shannon’s noiseless coding theorem (Grünwald 
and Vitányi, 2004). Given knowledge of P𝜙(X̄), − logp( ̄x) bits are 
all that is additionally needed to determine the state using a 
descriptionally simple (but not necessarily computationally short) 
computer program.

Thus far, we have described how the presence of attractors can 
decrease the richness of transient states overall, i.e. as a matter 
of comparing between systems (e.g. two brains). We now turn to 
a second way in which attractors reduce richness, as a matter of 
comparison between states in a given system.

Global Workspace Theory postulates that the access of repre-
sentations from working memory by diverse processes across the 
brain depends on the representations being “amplified and main-
tained over a sufficient duration,” for instance, for a minimum of 
approximately 100 ms (Dehaene and Naccache, 2001). In the lan-
guage of the attractor framework, this amounts to the claim that 
the variable released to downstream processes such as verbal-
behavioral reporting and long-term memory is A, not X. Crucially, 
attractor states are strictly less rich than trajectory states H𝜙(A) <
H𝜙(X), as explained in Box 4. Thus, selective release of attractor 
working memory states to downstream processing functions such 
as f M

𝜙  implements an information bottleneck that limits the rich-
ness of downstream inputs. This constitutes an important source 
of ineffability, where our in-the-moment experiences S are richer 
than our later recollections, since richness of experience is upper 
bound by the richness of trajectories (i.e. H𝜙(X) ≥ H𝜙(S), Box 3),

Box 4. Richness of attractors strictly less than richness of 
trajectories

As the full trajectory determines the attractor it terminates 
in, f A

𝜙  is a deterministic function. It follows that H𝜙(A|X) = 0. 
We also know that H𝜙(X|A) > 0 since multiple possible tra-
jectories terminate in the same attractor state. Our result 
follows from this asymmetry. By the general relationship 
between joint and conditional entropies, we have H𝜙(X,A) =
H𝜙(X) + H𝜙(A|X). Since H𝜙(A|X) = 0, we have H𝜙(X,A) = H𝜙(X). 
Reapplying the relation between joint and conditional prob-
abilities, we also have H𝜙(X,A) = H𝜙(A) + H𝜙(X|A). From these 
observations together, we know that H𝜙(A) + H𝜙(X|A) = H𝜙(X). 
Since H𝜙(X|A) > 0, this yields H𝜙(A) < H𝜙(X).

so the higher the richness of trajectories, the higher the ceiling 
on information loss from conscious experience to the attractor 
state and downstream variables. This will be relevant to our dis-
cussion of phenomenal overflow (Block, 2007) later. In practice, 
one would expect the magnitude of information loss from trajec-
tory X to working memory output A to be significantly large, since 
trajectories are sequences of brain states specifying the activity 
of billions of neurons, whereas working memory appears to be 
limited to representing a handful of items (Sperling, 1960), which 
gives us a clue to the magnitude of the bottleneck.

Researchers do not agree on the definition of phenomenal con-
scious experience S, and to allow for this, our results do not 
depend on the exact definition of f S

𝜙(X), which does not need 
to be known to reason about bounds on richness and ineffabil-
ity. For example, we do not assume an equality between S and 
A (the contents of working memory or access consciousness), 
which would amount to equating phenomenal consciousness with 
access consciousness; however, this is a special case that the 
model supports. Note that without prior assumption (i.e. with 
uniform expectation) on the degree of information loss incurred 
by unknown f S

𝜙, the expected richness of S is more rich than A, 
because the mean of Uniform(0,H𝜙(X)) is H𝜙(X)/2, which is not 
as reductive as H𝜙(A) ≪ H𝜙(X). More statements on richness (and 
not its bound) can be made by considering special cases of f S

𝜙. 
One intuitive special case is S = X (conscious experience corre-
sponds to the trajectory through neural state space) where the 
ineffability or relative richness of S with respect to A and M is 
maximized out of all choices of f S

𝜙. Another special case is S =
[A,… ,A] (no material difference between phenomenal and access 
consciousness) in which case S has the same richness as A but 
is still at least as rich as M. Importantly, as will be discussed 
in the “Existence and report of phenomenal experience” section, 
the report of ineffable richness at the point of A is justifiable in
both cases.

Information loss at verbal report
The ineffability of an experience is perhaps most obvious when we 
attempt to put it into words, due to the highly compressed nature 
of language (Kirby et al., 2015). From the computation graph, we 
can say that ineffability or information loss from conscious expe-
rience to verbal report is at least as great as information loss from 
conscious experience to the working memory attractor (Box 5). 
Additionally, it would be reasonable to assume that information 
losses H𝜙(A|M) and H𝜙(S|M) are strictly positive (i.e. H𝜙(A|M) > 0 and 
H𝜙(S|M) > 0) if message M is a low-dimensional symbolic variable 
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Box 5. Ineffability of conscious experience to verbal 
report

From the computation graph, S − X − A − M forms a Markov 
chain even though S is computed from X (S is conditionally 
independent of A if given X), and thus, S − A − M is also a 
Markov chain (S is conditionally independent of M if given 
A). Thus,I𝜙(S;A) ≥ I𝜙(S;M) from the data processing inequal-
ity theorem, implying H𝜙(S) − H𝜙(S|A) ≥ H𝜙(S) − H𝜙(S|M) and 
H𝜙(S|M) ≥ H𝜙(S|A).

(such as a few words), whereas A and S are snapshots of work-
ing memory and conscious experience, since conditional entropy 
is strictly positive if every mapping is either one-to-one or one-
to-many and there is at least one case of the latter. While it might 
appear that language is rich, note that n characters with an alpha-
bet of 256 possible characters require not more than 8 n bits to 
represent, whereas the neural state is determined by the activ-
ity of up to approximately 100 billion neurons (Herculano-Houzel, 
2009).

Information loss from attractor A or conscious experience S to 
verbal message M means that the latter do not fully identify the 
former and instead divide the space of attractors and conscious 
experiences more coarsely. For instance, saying that one “saw a fat 
cat” leaves out significant details about the specific attractor that 
generated the message, which would be difficult to communicate 
fully (e.g. the cat’s color, size, pose, the surrounding environment, 
etc.). Positive information loss H𝜙(S|M) implies that it is generally 
impossible to recover the conscious experience from the verbal 
message with certainty. Note that as long as H𝜙(A|M) is strictly 
positive, this means that conscious experience is somewhat inef-
fable to verbal report even if we identify conscious experience with 
the working memory attractor state.

An additional source of ineffability is that attractors can have 
more complex and high-dimensional structures than simple fixed 
points, which is common in high-dimensional systems. Such a 
system would exhibit increased richness of attractor state H𝜙(A)
and increased ineffability, as the same richness of messages H𝜙(M)
and an increase in joint entropy H𝜙(A,M) imply an increase in 
information loss H𝜙(A|M), since H𝜙(A,M) = H𝜙(M) + H𝜙(A|M).

Hierarchical attractor dynamics
The brain is hierarchical in nature with many levels of spatial 
and temporal organization that can be studied, ranging from 
molecular and synaptic activities to local networks and large-scale 
networks (Changeux and Dehaene, 1989). Attractor dynamics 
appear to be ubiquitous across organizational levels and cortical 
regions of the brain, with processing in the neocortex hypothe-
sized to support many attractor networks each concerned with 
a different type of processing (executive function and working 
memory, general short-term memory, long-term memory, etc.) 
(Rolls, 2007; Rolls, 2010; Khona and Fiete, 2022). The presence 
of multiple weakly coupled neocortical attractor networks yields 
benefits including specialization and increased memory capac-
ity and in addition has ramifications for understanding conscious 
experience.

Anatomically, the inferior temporal cortex is an example of a 
sensory processing area that responds discriminatively to novel 
stimuli, whereas the prefrontal cortex is implicated in maintain-
ing attention-modulated projections of such representations in 

working memory (Rolls, 2007; Miller et al., 1993; Renart et al., 
1999). Neural activity in both regions maintains persistence over 
time and exhibits attractor dynamics, but the content of sensory 
memory is akin to the state of a worker subprocess, whereas the 
content of working memory corresponds to the state of execu-
tive control; working memory representations exhibit increased 
temporal stability, persisting for longer durations of up to several 
seconds, and provide top-down feedback to diverse regions of the 
brain, including the inferior temporal cortex (Rolls, 2010; Chelazzi, 
1999; Bushnell et al., 1981). The ability of the prefrontal attractor 
to stabilize in its high firing rate attractor state is attributable to 
positive feedback from strong internal recurrent connections that 
suppress incoming stimuli (Renart et al., 1999). The need to main-
tain information in working memory during periods where new 
stimuli may be perceived exemplifies why working memory and 
subprocess memory necessitate distinct attractor networks (Rolls, 
2010; Rolls, 2007). The limits imposed on the richness of working 
memory state by subprocess memory states may be illustrated in 
an information theoretic manner by considering that the latter is 
an input to the former (Box 6). 

Box 6. Richness of subprocess states constrains richness 
of conscious experience

Extracting the stochasticity in f X
𝜙  into an input variable 

𝜔, meaning assuming that computation of X is cast as 
X = ̂f X

𝜙 (V,𝜔) where ̂f X
𝜙  is deterministic, the richness of X is 

bound as H𝜙(X) ≤ H𝜙(V1,… ,VN,𝜔) ≤ ∑n∈[N] H𝜙(Vn) + H𝜙(𝜔) due 
to deterministic data processing and addition rule of entropy. 
That is, given a limit on the richness of noise H𝜙(𝜔), a ceiling 
on the richness of working memory trajectories H𝜙(X) scales 
with the richness of the subprocess states that constitute its 
inputs. In turn, this restricts ceilings on the richness of down-
stream variables such as conscious experience and working 
memory attractors (Box 3).

Interpersonal ineffability
Communication channels are not limited to personal sensory pro-
cesses and verbal or behavioral reporting processes but extend 
to channels between individuals. In this section, we will consider 
communication between two individuals using the model sum-
marized in Fig. 3 in which a speaker, Alice, wishes to communicate 
her experience to a listener, Bob. We use the same variables as 
as in section Intrapersonal ineffability, but denote Bob’s variables 
using “~” (e.g. s̃ denotes Bob’s conscious experience). Again, we 
assume a computational chain of states x → a → m → ̃x → ã that 
elicit an experience s̃ = f ̃𝜙( ̃x) in Bob. In section Intrapersonal inef-
fability, we have already considered sources of ineffability up to 
H𝜙(s|m) and K(s|m,p𝜙) in this chain. What remains is to identify 
additional sources of ineffability after the message is transmit-
ted. In this section, we use the Kolmogorov formalism, since we 
assume that the parameters 𝜙 of Alice’s brain are not available to 
Bob. 

A blank slate listener
Before considering the case in which Bob is a typical human 
listener, we begin with a discussion of ineffability when Bob is 
a blank slate (setting ̃𝜙 = ∅, ̃x = ∅, ̃s = ∅, ̃a = ∅, where ∅ denotes 
the null value). In this case, the chain of communication ends 
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Figure 3. A model of interpersonal ineffability. We model the communication pipeline between a speaker Alice and a listener Bob. A trajectory x in 
Alice’s state space of working memory follows attractor dynamics, converging near an attractor a. Alice then attempts to communicate the 
experiences with a message m. On Bob’s end, the message is decoded and influences his working memory trajectory ̃x, which in turn converges near 
an attractor ̃a. Each step transforming one variable to another is executed by the dynamics of the subject’s brain, denoted by 𝜙 for Alice and ̃𝜙 for Bob. 
Trajectories of conscious experiences s and ̃s are functions of the subjects’ cognitive parameters 𝜙 and ̃𝜙 and working memory trajectories x and ̃x, 
respectively, and encode the experiences’ meanings. We are interested in the ineffability K(s| ̃s,p ̃𝜙) of Alice’s conscious experiences s given the 
experiences ̃s elicited in Bob.

at m, and thus, a quantity of interest is the ineffability K(s|m)
(without assuming access to Alice’s cognitive parameters 𝜙, as 
we did in the “Information loss at verbal report” section). Intu-
itively, what this quantity refers to is the “intrinsic” ineffability of 
an experience given its message, without conditioning on extra 
information such as cognitive parameters 𝜙 or ̃𝜙. Taking an expec-
tation to express average ineffability of conscious experience s, we 
have 𝔼p𝜙(s|m)K(s|m) ≥ 𝔼p𝜙(s|m)K(s|m,p𝜙) trivially since conditioning 
on more information cannot increase the length of the short-
est program that outputs s, but it is important to note that one 
would additionally expect the reduction to be significant, i.e. 
𝔼p𝜙(s|m)K(s|m) ≫ 𝔼p𝜙(s|m)K(s|m,p𝜙). This is because under Shannon’s 
noiseless coding theorem, knowledge of Alice’s state distribution 
p𝜙 reduces the problem of describing s in the general space of high-
dimensional vectors to the problem of describing its index among 
the set of all possible conscious experiences associated with m for 
a brain parameterized by 𝜙.

The inequality 𝔼p𝜙(s|m)K(s|m) ≫ 𝔼p𝜙(s|m)K(s|m,p𝜙) relates to an 
observation at the core of the philosophical debate on ineffabil-
ity: our descriptions of our experiences never seem to come close 
to capturing their full richness. The gap is so significant that it 
has at times led some philosophers, scientists, and laypersons to 
the dualistic conclusion that conscious experiences are intrinsi-
cally indescribable, such that there is something more to their 
content than physically embodied information encoded in neu-
ral activity. Using our model, we argue that these intuitions do 
not necessarily imply a nonphysical basis for conscious experi-
ence but may be explained by physically grounded and significant 
information loss that is a natural consequence of computational 
processing between the cognitive states underlying our experi-
ences and the linguistic messages that we use to express them. 
While the representation of m is shared among individuals who 
speak the same language, the representation of a is unique to 
communicator Alice. Therefore, under the Kolmogorov formal-
ism, there is complexity or information content in a that requires 
adopting Alice’s representation space to reconstruct.

The significant magnitude of 𝔼p𝜙(s|m)K(s|m) captures the blank 
slate or tabula rasa case of the problem of ineffability: without 
assuming knowledge of the parameters of Alice’s brain, expe-
riences are highly ineffable using low-dimensional descriptions 
such as typical verbal messages. Nonetheless, K(s|m) ≤ K(s) < ∞; 
our experiences are describable “in principle,” even to a blank slate 
observer where no additional information is assumed. Using a 
numerical scale to quantify ineffability allows us to convey the 

dual sense in which our experiences are, to varying degrees, both 
communicable and ineffable.

A typical listener
Cognitive similarity and effability

In a realistic communication scenario, the cognitive parameters 
of listener Bob ̃𝜙 are given by a high-dimensional vector that pro-
vides information about Alice’s parameters 𝜙 within the generic 
space of high-dimensional vectors, due to the shared physical 
environment (including cultural experience) and shared evolu-
tionary background, and thus may be used to reduce the descrip-
tion length of p𝜙. Trivially, we have that the expected ineffability 
of Alice’s conscious experience can only improve by condition-
ing on Bob’s parameters 𝔼p𝜙(s|m)K(s|m) ≥ 𝔼p𝜙(s|m)K(s|m,p ̃𝜙). How-
ever, we also obtain that a ceiling on the disadvantage of using 
Bob’s parameters compared to Alice’s parameters scales with the 
difference between them (Box 7). 

Box 7. Cognitive dissimilarity and ineffability

From Grünwald and Vitányi (2004, Theorem 2.10) we obtain 
for given m,p𝜙,p ̃𝜙 that 0 ≤ 𝔼p𝜙(s|m)[K(s|m,p ̃𝜙)] − H𝜙(S|m) ≤
K(p𝜙(⋅|m)|p ̃𝜙,m) + c ≤ K(p𝜙|p ̃𝜙) + c, where c is a constant, and 
0 ≤ 𝔼p𝜙(s|m)[K(s|m,p𝜙)] − H𝜙(S|m) ≤ K(p𝜙(⋅|m)|p𝜙,m) + c = 𝜖 + c, 
where 𝜖 is the negligible descriptional complexity of 
p𝜙(⋅|m) given p𝜙. Note H𝜙(S|m) ≥ H𝜙(S|m,p ̃𝜙) where 
the underlying joint distribution includes the meta-
distribution over p ̃𝜙, and likewise H𝜙(S|m) ≥ H𝜙(S|m,p𝜙). 
Then, 𝔼p𝜙(s|m)[K(s|m,p ̃𝜙)] ≤ H𝜙(S|m) + K(p𝜙|p ̃𝜙) + c and 
𝔼p𝜙(s|m)[K(s|m,p𝜙)] ≤ H𝜙(S|m) + 𝜖 + c. The difference between 
upper bounds on ineffability is K(p𝜙|p ̃𝜙) − 𝜖.

The mismatch between Alice and Bob’s parameters, which is for-
malized by K(p𝜙|p ̃𝜙) or the minimum number of bits required to 
encode a program that produces Alice’s parameters from Bob’s, 
loosely corresponds to the difference between Bob and Alice’s cog-
nitive function (Box 8), which depends on the extent to which 
they differ in genetic biases and lived experiences. This result sup-
ports the common intuition that our experiences are more effable 
or communicable to people who are similar to ourselves. It also 
resonates with the empirical observation of greater interbrain syn-
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Box 8. Difference in functionality and difference in 
parameters

For a scalar valued function h with bound gradient mag-
nitude, we have h(x, ̃𝜃) = h(x,𝜃) + ( ̃𝜃 − 𝜃)⊺∇𝜃h(x,𝜃) +𝒪(‖ ̃𝜃 − 𝜃‖2) ≤
h(x,𝜃) + ‖ ̃𝜃 − 𝜃‖‖∇𝜃h(x,𝜃)‖ +𝒪(‖ ̃𝜃 − 𝜃‖2) by the Taylor expansion. 
Assuming that first-order gradients are bound by positive 
constant C, then we have |h(x, ̃𝜃) − h(x,𝜃)| ≤ C‖ ̃𝜃 − 𝜃‖ +𝒪(‖ ̃𝜃 −
𝜃‖2), i.e. an upper bound on the mismatch in functional out-
put given parameterization 𝜃 and ̃𝜃 scales with the Euclidian 
distance between them.

chronization in related individuals (Goldstein et al., 2018) and how 
the brain’s anatomical structure (i.e. 𝜙 and ̃𝜙) affects the propen-
sity to communicate at the interpersonal level (Dumas et al., 
2012).

Consider a prototypical example of inter-personal ineffability, 
in which Bob has been blind from birth and Alice is attempting 
to convey her experience of seeing the color red. In this case, 
Bob’s brain might be so different from Alice’s that the distance 
between their cognitive parameters K(p𝜙|p ̃𝜙) is sufficiently high 
that the benefit of conditioning on his own parameters is negligi-
ble. In other words, since 𝔼p𝜙(s|m)K(s|m,p ̃𝜙) ≤ K(p𝜙|p ̃𝜙) + c + H𝜙(S|m)
(Box 7), if K(p𝜙|p ̃𝜙) is large, then the ceiling on 𝔼p𝜙(s|m)K(s|m,p ̃𝜙), 
the ineffability of Alice’s conscious experience given the message 
from Bob’s perspective, is also large. Intuitively, when K(p𝜙|p ̃𝜙) is 
small, the information required to communicate the functions 
f M
𝜙 , f A

𝜙 , and f S
𝜙 in order to reconstruct s from m is offloaded to p ̃𝜙, 

which is given, thus reducing a ceiling on expected program length 
𝔼p𝜙(s|m)K(s|m,p ̃𝜙).

The cognitive dissimilarity factor K(p𝜙|p ̃𝜙) is also implicated in 
Frank Jackson’s famous thought experiment, color scientist Mary 
who has lived her whole life in an entirely black and white room 
and has learned exhaustive knowledge about the process of color 
perception, but nonetheless possesses a brain that is incapable of 
understanding the experience of color (i.e. she does not know what 
it is like to see red) (Jackson, 1986; Alter and Walter, 2006). Since 
her knowledge is exhaustive, she knows everything that anyone 
could possibly tell her about the experience of seeing something 
red. Jackson argues that when she finally sees something red, she 
nevertheless learns something new (“what it is like to see red”). It 
has been argued that since she already knew all the physical facts, 
what she learned must have been a nonphysical fact (Jackson, 
1986; Chalmers, 2010). Many philosophers have responded to this 
argument, developing different conceptions of how what Mary 
learns might be physical after all (Alter and Walter, 2006). Our 
model can be understood as offering support to the physicalist 
account. It highlights how the ineffability 𝔼p𝜙(s|m)K(s|m,p ̃𝜙) of Alice 
describing her experience of color to Mary (who is playing the role 
of Bob) may be explained in part by the difference in their cogni-
tive function. In other words, the ability to empathize with another 
person from a verbal report of their experience is aided by cogni-
tive similarity or ease of reconstructing their cognitive function 
based on knowledge of one’s own cognitive function, but simply 
memorizing a description of how the brain behaves in response to 
color does not imply that one’s brain is capable of responding in 
that manner upon being exposed to it or its reference (i.e. hearing 
the word “red”), and it is similarity in cognitive behavior that is 
implicated in K(p𝜙|p ̃𝜙).

The result in Box 7 states that high ineffability of Alice’s 
experience of color to Mary implies high cognitive dissimilarity 
between Alice and Mary. Cognitive dissimilarity is not equivalent 

to knowledge inadequacy; knowing how brain should respond 
does not imply being able to execute such a response. The view 
that Mary learns different cognitive behavior upon exposure to 
the color red is closest to the interpretation that she acquires a 
new ability (Lewis, 1990), as opposed to a new mode of presenta-
tion (Loar, 1990), a new relation of acquaintance (Conee, 1985), or a 
reminder of something that in principle she must have had access 
to all along (Dennett, 2006; Rabin, 2011).

Theory of mind

Evolution has optimized human beings to be skilled at infer-
ring the thoughts of others, an ability termed “Theory of Mind” 
(Premack and Woodruff, 1978; Graziano and Kastner, 2011; 
Graziano and Webb, 2015; Kelly et al., 2014). In our model, there 
is a link between theory of mind and ineffability. If cognitive 
functions f X

̃𝜙
 and f S

̃𝜙
 that produce Bob’s conscious experience s̃

are optimized for decoding m into Alice’s conscious experience
s, then ineffability is reduced compared to reconstructing Alice’s 
conscious experience from the raw message, K(s|m, �̃�) ≥ K(s|s̃, �̃�), 
because part of the computation of reconstructing s is executed 
during inference of s̃, meaning that the smallest program from s̃
and ̃𝜙 to s would make use of ̃s to reduce its residual work, short-
ening the descriptive length of the program. In the extreme case, 
if K(s| ̃s, ̃𝜙)

+
= 0, then by definition, Bob’s cognitive function is opti-

mal for inferring Alice’s conscious experience, since no material 
additional information is required to determine s.

In turn, if Alice’s parameters 𝜙 contain information about Bob’s 
cognitive function or parameters ̃𝜙, she is capable of producing 
her message m in a way that maximizes effability and mini-
mizes K(s|s̃, ̃𝜙), since her cognitive functionality, including verbal 
reporting function f M

𝜙 , depends on 𝜙.

Phenomenal and access consciousness
Having provided an information theoretic dynamical systems per-
spective on richness and ineffability, we now turn explicitly to 
the question of whether rich phenomenal experience exists and 
why we self-report that it does. We first highlight ambiguities 
in the meaning of access before contrasting two hypotheses for 
explaining the report of phenomenal experience.

Effability, accessibility, and reportability
Notions such as “accessible,” “reportable,” and perhaps “effable” 
are somewhat ambiguous. A benefit of our framework is that it 
allows us to distinguish between (at least) three distinct notions 
in the vicinity.

First, as we have presented it earlier, the notion of “effability” 
refers to the ability to accurately describe one variable by another, 
which implies that it can be formalized using mutual information 
(“Richness and ineffability” section).

Second, “access” is interpretable in two different ways. Direct 
access is the notion of a variable X being a direct input to a 
function or process g, meaning that g is defined on variable X, 
whereas informational access is the notion of g’s input variable 
A sharing mutual information with X, I(A;X) > 0, corresponding 
to X being effable with respect to A. A process that has no direct 
access to X may still have access to its information via inputs; if 
M = g(A), process g has access to information about X if I(A;X) > 0.
Thus, a variable may be effable with respect to the input and 
output variables of a process without being directly accessible to 
the process.

Third, while a reporting process is in general a process or 
transformation that outputs to another process, we stipulate that
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“reporting process” may be understood to refer specifically to 
those that output to processes outside the cortex, such as corti-
cal processes that encode speech or motor movements. We may 
then say that a variable is directly (or informationally) reportable 
if it is directly (or informationally) accessible by a reporting pro-
cess, where the report corresponds to the output of the reporting 
process.

Existence and report of phenomenal experience
According to the Global Workspace Theory, information from 
diverse brain regions corresponding to a variety of perceptual or 
cognitive processes is selected for inclusion in the contents of a 
centralized processing workspace associated with working mem-
ory that coordinates and communicates with multiple subsystems 
(Baars, 1993; Baars, 2005; Dehaene et al., 1998).

The features of this global workspace system make it suitable 
as a framework for an analysis of consciousness (i.e. phenome-
nal consciousness), even if we do not assume that only items in 
workspace are conscious. The features of the global workspace 
system also make it a suitable target for modeling in terms of 
attractor dynamics, since by their nature, states amplified and 
sustained in a central processing workspace are attractors. Thus, 
our model allows for the refinement of these concerning the 
relationship of consciousness to the global workspace.

Global workspace models of consciousness (Dehaene and 
Naccache, 2001) generally divide representations into three 
classes:

1 Those not computed by working memory processes (uncon-
scious).

2 Those mobilized in the workspace via amplification and 
made accessible to downstream processing (conscious).

3 Those computed by working memory processes but not 
sufficiently amplified or attended to be released by the 
workspace.

The latter includes nonattractor transient states in an attrac-
tor model of working memory and being rich and unreportable, 
which are clear candidates for the basis of phenomenal expe-
rience (Dehaene and Naccache, 2001). It is a point of debate 
between adherents of the global workspace framework, whether 
items from the third class are indeed conscious. Some say no 
(Naccache, 2018; Cohen et al., 2016), and others say yes (Prinz, 
2012). By allowing f S

𝜙 to be abstract, our model is compatible with 
both views. We account for the report of ineffable phenomenal 
conscious experience for either case later.

(i) Intermediate states of neural trajectory included in con-
scious experience S. If one assumes that attractor states 
are included in the content of consciousness and that 
the physical basis of transient states and attractor states 
in working memory is the same (i.e. they are differen-
tiated by duration of attentional amplification, not loca-
tion of neural circuitry), it would be reasonable to believe 
that transient states are also included in conscious aware-
ness. If this is the case, then transient states are rich 
states that are consciously experienced but not directly 
accessible or reportable by downstream processes, while 
being partially verbally effable because of shared informa-
tion with attractors which are directly reportable. In this 
paradigm, the fleeting nature of transient states impacts 
their direct reportability but not their inclusion in conscious
experience.

(ii) Metacognitive representation in working memory and access 
consciousness A. Regardless of whether transient states are 
included in the contents of phenomenal consciousness S, 
the attractor model for working memory suggests a second 
explanation for the self-report of phenomenal experience: 
an attractor state may encode information about its basin 
of attraction and thus information loss. For example, point 
attractor states may include dimensions whose values esti-
mate the size of its local basin, which is a measure of the 
information loss when going from transient states in trajec-
tories within that basin to the attractor state itself (Appendix 
“Metacognitive Representation of Ineffability”). This posits 
that rich experience exists, whether inside or outside the 
delimitation of consciousness, and its properties—such as 
richness—would be reportable, even if the transient states 
that support them are not. It is plausible that conscious 
awareness of abstract attributes of transient states such as 
richness would be advantageous, for instance, when rea-
soning about one’s uncertainty, including for the purpose 
of anticipating the listener’s uncertainty when engaging in 
theory of mind to minimize ineffability (“A typical listener” 
section). Note that the existence of metacognitive represen-
tation in A does not conflict with the first case (metacognitive 
representations may exist in A even if S = X).

Our model supports an interpretation for Sperling’s experi-
ments (Sperling, 1960), where subjects briefly exposed to a grid 
of characters were generally able to report character identities for 
“any” prompted row (containing ∼ 4 characters) but subsequently 
not other rows, in addition to being able to report that they expe-
rienced observing more characters. An account for this behavior 
is that upon receiving the prompt to report a specific row, work-
ing memory contents represented by attractor state a contained 
the identities of characters in the prompted row, a summary over 
the grid (e.g. the number of characters and their arrangement) 
and an estimate of the information lost by the summary, while 
information sufficient to discriminate all characters existed in the 
processing pipeline but in upstream sensory state v, from which x
and a were computed. Subsequently, as attractor state a is directly 
accessible to verbal reporting process f M

𝜙 , the characters in the 
prompted row, grid details at the summary level, and the presence 
of information loss were directly reportable, and full grid details 
(identities of all characters) were not. The latter holds irrespec-
tive of where the distinction between conscious and unconscious 
is drawn, i.e. whether x, which might have contained sufficient 
information from v to discriminate all characters, is considered 
conscious.

These arguments suggest that Block’s distinction between phe-
nomenal and access consciousness (Block, 1995) can be attributed 
to a difference in the representational stage of information pro-
cessing (Dehaene and Naccache, 2001) and that the existence of a 
rich phenomenological experience that exceeds our reporting abil-
ities (Sperling, 1960) is both justifiable and veridically reportable. 
Unpacking the implications of the model is an important task for 
future work.

Conclusion
This paper characterizes the rich and ineffable nature of conscious 
experience from an information theoretic perspective. It connects 
the ordinary notion of ineffability with mathematical formalisms 
of information loss, describing how the latter arises as a result of 
computation in cognitive processing, how it is implemented by an 
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attractor model for working memory, and how it may be increased 
by the compressed nature of language as well as differences in the 
cognitive processing functions of individuals.

Attractor dynamics may be considered an attentional process: 
out of many, one or a few states are selected. This connects our 
work not only to Global Workspace Theory but more broadly to 
research in machine learning on attention mechanisms. We gen-
erally observe that attention, e.g. as introduced in deep learning 
by Bahdanau et al. (2015), may be used to name any function that 
incurs significant information loss and is present in both artifi-
cial and biological cognitive systems, where it is—at present—
commonly modeled by the family of attention-based and trans-
former architectures (Bahdanau et al., 2015; Devlin et al., 2019; 
Khan et al., 2022; Chorowski et al., 2015) and dynamical systems 
(Khona and Fiete, 2022; Rolls, 2007) respectively.

In this work, we use a simple model to reason about emitter–
receptor communication, where the past is conditioned on implic-
itly via parameters 𝜙 and stochasticity in dynamics. An alternative 
would be to model more complex communication patterns explic-
itly. We have also not considered learning objectives for function 
parameters. Doing so would enable a discussion on the gener-
alization benefits of the inductive bias (Goyal and Bengio, 2022) 
giving rise to this information loss: intuitively, how simpler rep-
resentations support robustness (Mathis and Mozer, 1994) and 
the successful extrapolation of behavior beyond previously seen 
inputs. Information bottlenecks are a popular training regular-
izer in machine learning (Tishby et al., 2000; Alemi et al., 2017; 
Kawaguchi et al., 2023), but are understudied in the context of 
biologically plausible models, despite generalization ability being 
a key difference between humans and current artificial learning 
systems. Considering the benefits of information loss may allow 
us to understand ineffability more deeply, not just how it arises, 
but also why.
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Appendix 1
Illusionism and overflow
Richness and ineffability figure in several important live debates 
about consciousness in the philosophical literature. Here, we 
summarize two: the illusionism debate and the overflow debate.

Illusionists argue that consciousness is an illusion, while real-
ists deny this (Frankish, 2016). Illusionists generally argue that 
our expectations for consciousness are too high: that the job 

of describing a conscious experience is too demanding for any 
physical process to fulfill and that (rather than rejecting physi-
calism) we should conclude that there is no such thing as con-
sciousness (or at least, make do with a diminished conception 
of it) (Dennett, 1993; Graziano et al., 2020; Humphrey, 2020). 
Daniel Dennett famously lists ineffability as one of the hard-
to-fulfill conditions that should lead one to illusionism: the 
prospect that conscious contents somehow escape our attempts 
to fully describe them is, for Dennett, a sign that consciousness 
is chimerical (Dennett, 1993). Notably, illusionists acknowledge 
that something gives rise to the relevant illusions: there must 
be an explanation of why it seems plausible to us, on intro-
spection, that we are the subjects of (ineffable) conscious states. 
Qualia realists, in contrast, see conscious experience as the sub-
jective viewpoint from which all else is observed or known and 
therefore consider it to be an explanandum that cannot be dis-
carded (Tononi and Edelman, 1998; Chalmers, 2010; Descartes,
1986).

The overflow debate is between those who hold that conscious-
ness is indeed rich and ineffable and those who deny it (while 
still maintaining that consciousness exists). Richness is a rela-
tive term and one contender for a reference object that justifies 
the characterization of consciousness as rich is the accessible 
content of working memory. Empirically, there appears to be a 
clear bandwidth limitation on the latter (Sperling, 1960; Miller 
and Buschman, 2015; Cohen et al., 2016), which is what makes 
it difficult, for example, to remember all the names of the people 
you meet at a party or all the digits of a phone number. Propo-
nents of overflow say that consciousness is considerably richer 
than this sort of working memory and includes ineffable content 
unavailable for report (Block, 2007; Bronfman et al., 2019; Lamme, 
2007; Vandenbroucke et al., 2012), while the staunchest opponents 
of overflow will maintain that consciousness is no richer than 
the bandwidth-restricted content of working memory, generally 
because they take consciousness to just “be” working memory or 
a supporting system for it (Ward, 2018; Phillips, 2016; Naccache, 
2018; Cohen and Dennett, 2011).

We thus have two important debates where those on both 
sides may benefit from a formal model of ineffability: illu-
sionists and realists who deny overflow may benefit from a 
general model of why it seems to us that we are the sub-
jects of rich and ineffable experiences, while realists who 
accept overflow may benefit from a characterization of how it
emerges.

Appendix 2
Computation through neural dynamics
In the “An information theoretical dynamical systems perspec-
tive on conscious experience” section, we argue that we can 
account for the richness and ineffability of experience by model-
ing conscious states as neural trajectories in a high-dimensional 
dynamical system with attractors. In this section, we provide a 
brief overview of the essential concepts needed to understand the 
model.

First, we will introduce the notion of a neural activation space, 
in which temporally evolving states of neural activity follow tra-
jectories governed by recurrent dynamics in the brain. Next, we 
will explain how state attractors, which are emergent properties 
of dynamical systems, can allow neural networks to solve compu-
tational problems that require some form of persistent memory. 
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Figure A1. Visualization of neural state space. (A) The activity trace for multiple neurons, where activity can be quantified in several different ways (e.g. 
firing or not, firing rate over some time window, membrane voltage, etc.). Boxes denote joint activity patterns across all neurons at specific timepoints. 
(B) At any particular timepoint, the joint activity pattern across N different neurons can be expressed as a vector in an N-dimensional state space.

Along the way, we will highlight key examples from the com-
putational neuroscience literature where this dynamical systems 
framework was used to explain how populations of neurons solve 
perceptual and cognitive tasks.

Neural activation state space
At any given moment, every neuron in the brain has some level 
of activity, and this activity can be numerically quantified in sev-
eral different ways (e.g. firing or not, firing rate over some time 
window, membrane voltage, etc.), which we illustrate in Fig. 1a. 
Together, this instantaneous pattern of activity defines the brain’s 
current “state”, which may be compactly represented as a vector 
in an N-dimensional state space, where N is the number of neu-
rons in the brain (or in the subpopulation of interest). In such 
a representation, each index in this vector identifies a particu-
lar neuron, and the value of a particular index corresponds to 
that neuron’s current level of activity (Fig. 1b). We reason at the 
level of neuronal activity for clarity, but strictly, our framework 
makes no assumptions about the appropriate level of granularity: 
where these make direct contributions to cognitive information 
processing, other cells such as astrocytes or cell components such 
as dendrites may be state space parameters in their own right 
(Godfrey-Smith, 2016).

A benefit of describing neural activity in this manner is that 
it allows us to draw on the mathematical framework of dynam-
ical systems theory to reason about mental states. For example, 
we can now talk about what a pattern of neural activity “repre-
sents” by projecting the state onto lower-dimensional subspaces 
that encode some meaningful feature. To explain this with exam-
ple, it might be the case that when perceiving an object, certain 
dimensions of the elicited state represent its color, others repre-
sent its shape, yet others represent its function, etc. In addition, 
given a probabilistic transition model for states that account 
for noise in neural activity and other sources of uncertainty, 
we can measure quantities such as the likelihood and informa-
tion content of a state. We can also quantify the similarities 
between states according to some distance metric between their
vectors. 

Neural dynamics
While neural states can be used to represent an instantaneous 
pattern of activity, the brain is a complex dynamical system and 
must ultimately be understood in terms of how neural activity 
unfolds in time. The temporal evolution of neural activity—and 
any other dynamical system—is governed by two factors.

First, neurons in the brain have a large number of synapses 
that form recurrent loops. Recurrency means that even in the 
absence of any sensory input, brain states will evolve dynami-
cally; the activity of one neuron at a particular time will influ-
ence the future activity of surrounding neurons, which may in 
turn influence the original neuron’s activity at a later time in 
a causal loop. The dynamics governing these neural state tra-
jectories are defined by the joint synaptic connectivity profile 
between all neurons in the brain. Any given connectivity pro-
file results in a set of rules for how each state transitions to the 
next. This can be visually illustrated for the entire system using 
a “vector field” as shown in Fig. 2a: each vector indicates how 
a state at that location would evolve in the next instant in the 
absence of noise and where the size of the vector denotes the 
speed of the change. Intuitively, one can understand the dynam-
ics of the system by starting off at an initial point in neural state 
space and tracing a trajectory that follows the vector field at 
each point in time. A different connectivity profile would yield 
different transition dynamics (i.e. a different vector field), and 
therefore, the same initial neural state would follow a different
trajectory.

Another factor that governs neural dynamics is the input to 
the system, which may itself evolve over time. The dynamics 
of a subpopulation of neurons (e.g. a particular brain region) 
are modulated extrinsically by signals from surrounding neurons 
that synapse onto the population, including information from the 
stream of sensory signals entering the brain. Illustrated visually in 
Fig. 2b, this means that inputs warp the vector field that defines 
transitions from the current state to the next, ultimately result-
ing in potentially very different trajectories from those that would 
have occurred given other inputs. 

Much of the field of computational neuroscience is concerned 
with understanding neural population coding through the lens of 
dynamical systems, thanks to their rich theoretical underpinnings 
and the mechanistic models they provide (Favela, 2021). Histori-
cally, this approach has been particularly fruitful in two systems: 
sensory integration (Burak, 2014; Zhang, 1996) and motor con-
trol (Churchland et al., 2012; Michaels et al., 2016; Shenoy et al., 
2013). For example, Churchland et al. (2012) recorded from a pop-
ulation of neurons in the primate motor cortex and found that 
they exhibited rotational dynamics during a simple reaching task 
(Fig. 2c). While this was initially surprising because the movement 
itself was not rhythmic, the authors proposed a theory that mus-
cle activity is constructed from an oscillatory basis, which was 
later supported by additional experiments. The neural dynam-
ics, then, can be understood as pattern generators that generate 
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Figure A2. Neural dynamics and trajectories in activation space. (A) A dynamical system whose behavior is depicted using vector fields and example 
trajectories. (B) External inputs can modulate the behavior of a dynamical system (compare vector fields and trajectories with those in (A). (C) An 
example of neural dynamics empirically observed in the primate motor cortex. As the neural dynamics are high-dimensional, j-Principal Component 
Analysis (jPCA) was used to reduce their dimensionality for visualization. The figure was reproduced with permissions from Churchland et al. (2012).

sequences of muscle activity optimized for producing natural
movements.

Despite the success of this framework in sensory and motor 
domains, much less is understood about the dynamical underpin-
nings of higher-level cognition, although such dynamical systems 
are also implemented with neural substrates and would presum-
ably share similar mechanisms. A contribution of our work is the 
application of dynamical systems to high-level conscious cogni-
tion and analysis of the implications for explaining the richness 
and ineffability of experience.

State attractors
When neural dynamics are used to solve computational tasks, it 
is often the case that the solutions require some form of persis-
tent memory, meaning that at least some projections of the neural 
activity must be self-sustaining. A dynamical system can imple-
ment this behavior by forming regions in its state space where 
states are drawn toward steady states (Fig. 3a). These regions 
are called “basins of attraction” because any state trajectory that 
enters them would progress toward the steady state in the absence 
of noise or changes in external inputs and dynamics. By steady 
states, we mean regions within the basins that deterministic tra-
jectories eventually converge to. More generally, these sets of 
states are called “attractors” because neural activity trajectories 
that have reached the basin progress toward attractor states and 
remain there—approximately, in the presence of intrinsic noise 
in neural activity or changes in external input—until sufficient 
noise or external input activity nudges the state to escape the 
attractor basin. In general, dynamical systems can produce attrac-
tors that have a complex and high-dimensional structure within 
the basin (e.g. manifold, fractal structure) and can exhibit their 
own internal dynamics, as in the case of chaotic attractors (also 
called “strange”). Other common attractors contain fewer points, 
such as stable periodic orbits, or stable fixed points—single state 
points that do not change in time. In this section, we will focus on 
fixed point attractors for simplicity, but arguments throughout the 
paper apply to the general case of attractor subspaces. The impor-
tant aspect of attractors for our purposes is that they are distinct 
and have nonoverlapping basins of attraction.

Since trajectories that have converged to attractors have a ten-
dency to remain there in the absence of strong external inputs, 
attractors can endow a dynamical system with a form of self-
sustaining memory over short timescales that are useful for per-
forming many computations essential to real-world tasks. Attrac-
tor dynamics can also be used for efficient long-term memory, 
without the brain having to directly store the high-dimensional 

vectors of the attractors in state space. As we will explain in 
the “Attractors are mutually exclusive: contractive dynamics dis-
cretize the state” section, attractors are mutually exclusive and 
thus have a discrete structure; they can be identified with symbols 
(e.g. words) that label “which” attractor the system is in with-
out describing the attractor’s location in state space. The system 
could thus store a concise symbol in long-term memory rather 
than a high-dimensional vector. Afterward, the memory could be 
retrieved by using the symbol as an input “key” that drives the 
state to any location in the basin of the attractor, at which point 
the dynamics of the system will cause the trajectory to converge 
to the attractor. For example, to memorize an image of a face 
(represented by a high-dimensional vector) and associate it with 
a discrete entity like the name of a person, a learning process 
could update the parameters of the dynamical system, so that 
the image vector is an attractor state and the system enters its 
basin of attraction when the name (or rather a neural code for it) 
is provided as an input.

It is important to emphasize that the existence of these attrac-
tors and the particular properties they have (e.g. cardinality, loca-
tion, and shape) are purely functions of the internal dynamics of 
the system. Neural networks are therefore particularly well-suited 
for implementing diverse computations through dynamical sys-
tems since they are composed of simple units whose connectivity 
can be flexibly tuned to achieve many possible complex attractor 
configurations, with the capacity for universal function approxi-
mation in the limit of large networks (Schäfer and Zimmermann, 
2007).

A dynamical system can be modulated by external inputs, and 
therefore, the nature of its attractors can also be driven by contex-
tual signals. In the human brain, for example, this context could 
include both external sensory input and the content of short- and 
long-term memory. In particular, the previous content of work-
ing memory (which is a part of short-term memory) might have 
a strong influence, so that our thoughts form coherent sequences 
and we can alternate between mutually exclusive interpretations 
of the world that are compatible with the context (e.g. flipping 
between different interpretations of the Necker cube—an ambigu-
ous 2D line drawing of a cube that can be in one of two possible 
3D orientations).

As was summarized in review articles by Rolls (2010) and 
Khona and Fiete (2022), the framework of attractor dynamics has 
been used to mechanistically explain the neural computations 
underlying decision-making (Wang, 2002; Wong and Wang, 2006; 
Wang, 2008), long-term memory (Hopfield, 1982; Chaudhuri and 
Fiete, 2019; Ramsauer et al., 2021), working memory (Durstewitz 
et al., 2000; Curtis and D’Esposito, 2003; Deco and Rolls, 2003; 

https://en.wikipedia.org/wiki/Necker_cube
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Barak and Tsodyks, 2014; Seeholzer et al., 2019), and the perfor-
mance of simple cognitive tasks (Driscoll et al., 2022). Attractors 
have also been observed empirically across several experiments 
investigating decision-making (Kurt et al., 2008; Lin et al., 2014; 
Stevens, 2015) and working memory (Gnadt and Andersen, 1988; 
Constantinidis et al., 2001; Curtis and D’Esposito, 2003).

Attractors are mutually exclusive: contractive dynamics 
discretize the state

An important property of attractors is that they are mutually 
exclusive: each attractor a is associated with a basin of attrac-
tion B(a), which is the region in state space such that any state
x in B(a) will necessarily converge through the dynamics into a, 
in the absence of noise or external perturbations. This division 
into mutually exclusive basins of attraction thus creates a par-
tition of the state space: one can associate with any state x the 
attractor a corresponding to the basin of attraction B(a) in which
x falls.

As a consequence of this mutual exclusivity, any attractor a
has a dual discrete and continuous nature (Jaeger, 1999): the sym-
bol or composition of symbols i(a) that identify a among all the 
other possible attractors in the current dynamics is discrete, while 
a fixed point a is associated with a real-valued vector [also called 
embedding (Bengio et al., 2000; Roweis and Saul, 2000; Morin and 
Bengio, 2005) in the deep learning literature] corresponding to the 
state of the system at that fixed point. If the dynamics are not 
attractive over all dimensions, the same statement can be made 
for the subspace that is attractive, which means that this dis-
cretization effect need not cover every possible dimension and 
nondiscretized dimensions may represent values in a continuous 
space.

Note that introducing randomness in the dynamics makes it 
possible to sample one of the attractors that may be reachable 
from the current state when that noise is taken into considera-
tion. For example, if the state x is close to the boundary between 
basins of attraction of attractors A and B, a small amount of addi-
tive noise would suffice to stochastically sample one destination 
or the other, with probabilities that would vary depending on how 
far x is from the boundary and the specific dynamics in its area 
(for instance, basin depth or slope).

An example of discrete attractor dynamics in the brain can be 
found in the auditory cortex. Bathellier et al. (2012) studied fir-
ing rate patterns in local neural populations in mice and found 
abrupt shifts between small ( 1–3) numbers of distinct response 
modes, with response mode identity across multiple local popula-
tions providing a discrete code that allowed sound prompts to be 
identified with 86.2% accuracy by a linear classifier (compared to 
87.3% using nondiscretized activity). Abrupt transitions between 
neural steady states have also been observed in the rat hippocam-
pus and the zebrafish olfactory bulb (Niessing and Friedrich, 2010; 
Wills et al., 2005).

Emergent attractors in task-optimized networks

To demonstrate how attractors naturally emerge as solutions to 
cognitive tasks, we briefly summarize relevant results from Sus-
sillo and Barak (2013), where an artificial recurrent neural network 
(RNN) was trained to solve a simple memory task. An RNN is a net-
work of artificial neurons, which can be connected through recur-
rent feedback loops. Neurons can also form connections to special 
input and output units, which allow the network to interface with 
a task. The connection strength between each directed pair of neu-
rons is parameterized using a scalar weight that modulates the 

degree to which activity in the first neuron drives future activity in 
the second, and these weights are optimized in order to minimize 
error on the task. Like the brain, RNNs have recurrent connec-
tions between neurons that define a dynamical system optimized 
to perform some computation and are therefore useful models for 
studying emergent neural dynamics.

Sussillo and Barak (2013) train an RNN on the 3-bit flip-flop task 
(Fig. 3b), in which the network must learn to continuously output 
the sign (+1 or −1) of the last binary spike across three input chan-
nels (which we can call the “red,” “green,” and “blue” channels). 
For instance, following the input sequence [red=+1, green=-1, 
blue=+1], the correct output should be the vector {red=+1, green=-
1, blue=+1}. If the next input spike was red=-1, the new output 
would change to {red=-1, green=-1, blue=+1}. Importantly, while 
each input spike only has a short duration, the network must 
continuously output the value of each channel’s last spike, which 
imposes a memory demand.

When Sussillo and Barak (2013) inspected the learned dynam-
ics of the RNN, they found that it solved the task through the 
use of fixed point attractors. Since the number of possible out-
puts is 23 = 8, the model represented each of these using an 
attractor. Due to their stability, the model was then able to contin-
uously read out from whichever attractor the trajectory had most 
recently converged to. Whenever a new spike appeared in one of 
the input channels (with a value different from that channel’s 
previous spike), the state escaped the current basin of attraction 
and followed transient dynamics toward the attractor for the new 
output. This simple task demonstrated how attractor dynamics 
can naturally emerge in neural networks and implement non-
trivial computations, such as those involving transitions between 
discrete memory states. 

Stability and robustness of conscious states
In addition to attractor dynamics models of working memory 
(“Motivating attractor dynamics as a model for conscious expe-
rience” section), the qualitative nature of self-reported conscious 
state also suggests a connection between attractor dynamics 
and consciousness. As a model of conscious processing, dis-
crete attractor dynamics predict that our experience consists of 
a sequence of relatively stable states that transition swiftly from 
one to another. Such types of sequential dynamics have been 
hypothesized to be a key component of conscious thought and 
perception (James, 1892; Varela, 1999; Rabinovich et al., 2008; 
Tsuda, 2015). Empirically, one of the characteristics that dis-
tinguishes conscious vs. unconscious neural representations in 
psychophysics tasks is that they are significantly more stable in 
the “aware” condition (Schurger et al., 2015).

Qualitatively, subjects commonly report on the emergence 
of stable discrete “choices” within conscious perception. For 
instance, when looking at the Necker cube, subjects only perceive 
one single interpretation of its structure and orientation rather 
than a mixture of both possibilities. Occasionally, this interpreta-
tion will change to the alternative one, but the change will happen 
rapidly as an abrupt transition. Similarly, in the case of binocu-
lar rivalry, only a single image presented to one of the eyes will 
be consciously perceived rather than a mixture of the two, and 
which image is consciously perceived will abruptly change at ran-
dom times. Such cases are characterizable by attractor dynamics 
that converge to one attractor and remain stable until sufficient 
input change or noise results in a rapid transition to another
attractor.
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Figure A3. Attractor dynamics in neural networks. (A) Attractors in a 2D state space. When a trajectory enters an attractor’s basin, it begins to 
converge to the attractor and remains there until sufficient external input or intrinsic noise allows it to escape. (B) Sussillo and Barak (2013) train an 
artificial RNN to solve the 3-bit flip-flip memory task. In this task, the model must continuously output the sign of the most recent binary spike on 
three separate input channels. (C) Fixed point attractors emerge in the learned dynamics of a recurrent neural network (RNN) as a solution to the task. 
Each of the attractors corresponds to one of the 8 (23) possible bit configurations, providing a stable memory state from which the output can be 
continuously read out. The plot shows a trajectory in the RNN’s state space for changing inputs, where points along the trajectory are colored 
according to the correct output. The dimensionality of the state space was reduced using principal component analysis for visualization.

Input change or noise may also result in basin transitions that 
occur without complete convergence to attractors. This is famil-
iar in the cases of thought and speech. One common example 
is thought-disruptive external stimuli, in which external stimuli 
distract or interrupt one’s chain of thought. A less well-known 
but equally important example is the role of internal time-saving 
mechanisms. These are active in cases where one does not need 
to spell something out in full detail. For example, in speech pro-
duction, phonemes are often not fully articulated: this may be 
understood by noting that once one has arrived at an attrac-
tor basin, it is disambiguated which point one converges toward 
(Roessig et al., 2019). A similar mechanism may explain the util-
ity of verbal or symbolic thought, where the key may serve as 
synecdoche for the value.

Schurger et al. (2010) suggested that conscious states were 
associated with increased robustness to noise in psychophysics 
experiments. A signature of neural representations in the “con-
scious” condition was that they were highly reproducible; given 
the same stimulus presentation across different trials, patterns 
of neural activity were similar, as long as the subjects reported 
awareness of the stimulus. In contrast, patterns of activity dur-
ing the “nonconscious” condition in which subjects were unaware 
of the stimulus exhibited greater variability. Both robustness to 
noise and reproducibility of states, in turn, are core properties 
accommodated by attractor dynamics.

Appendix 3
Concrete Bounds for Neural Architectures
Adding more assumptions about the underlying architecture of 
the brain can establish concrete losses in richness (i.e. ineffa-
bility) as opposed to upper bounds, which was discussed in the 
“Information loss from attractor dynamics” section. In addition, 
learning parameters 𝜙 of a computational model for neural pro-
cessing from empirical Magnetic Resonance Imaging data (and 
verbal output) would allow H𝜙(X|A) (and H𝜙(A|M)) to be computed 
and thus establish, in numerical terms, concrete and anatomically 
relevant values for ineffability, under the assumption that S = X or 
S = [A,… ,A] (“Information loss from attractor dynamics” section).

Appendix 4
Related Work
Several existing works argue that attractor dynamics have the 
right functional characteristics to serve as a computational model 

for consciousness (Colagrosso and Mozer, 2004; Mozer, 2009; 
Mathis and Mozer, 1994; Mathis and Mozer, 2019; Grossberg, 1999; 
Rumelhart et al., 1986) but do not examine how information loss 
arising from such dynamics relate to the rich and ineffable aspects 
of conscious experience. Metzinger (2009) suggests that ineffabil-
ity relates to nonidentifiability of conscious experience, but does 
not formalize this or make the connection to information theory.

In the context of Predictive Processing and the Free Energy Prin-
ciple (Friston and Kiebel, 2009), the view offered in this paper 
broadly coheres with recent efforts at expressing consciousness-
related phenomena, in information theoretic terms, as stem-
ming from limitations in cognitive processing, such as limitations 
related to the ability to form accurate mental representation of 
sensory causes. Under the view of predictive processing and the 
free energy principle as applied to active inference (e.g. Friston 
et al. (2024)), cognitive systems able to access and communicate 
mental representations of the causes of their sensations do so by 
learning sparse prior beliefs. According to the view developed in 
Friston et al. (2024), sparse and therefore communicable represen-
tations have low entropy, which aligns with our notion of richness, 
and with the more general claim according to which effability 
comes at the cost of richness; the richer the mental state Z ( i.e. the 
higher the entropy of the distribution over the random variable Z), 
the higher the information loss (H(Z|Y)).

Appendix 5
Metacognitive Representation of Ineffability
In the “Existence and report of phenomenal experience” section, 
we discussed the attractor state encoding information about the 
basin of attraction as a mechanism supporting the report of ineffa-
bility. This information would correspond to a measure of entropy 
such as basin width across dimensions [the entropy of a uniformly 
distributed i.e. maximum entropy discrete variable scales with 
the size of the distribution’s support, and the entropy of a mul-
tivariate Gaussian scales with covariance (Ahmed and Gokhale, 
1989)]. There are multiple potential mechanisms that would allow 
the inclusion of such information in the attractor state and thus 
working memory. In the simple case, for a given attractor model, 
state could be extended with an extra dimension containing a 
width metric that is constant within each attractor basin. This has 
the property that true entropy within the basin of attraction does 
not change, as the value is constant within each basin. Alterna-
tively, the attractor model for working memory could be composed 
of multiple attractor modules executing in parallel (“Hierarchical 
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attractor dynamics” section), where one module increments its 
state value until attractor dynamics in other modules converge, 
thereby providing a measure of basin size that is included in the 
composite attractor state for working memory and access con-
sciousness. In general, such values would be determined by the 
parameters (weights) encoding neural state dynamics, which are 
typically learned from training data in computational and biolog-
ical contexts. Note that information on information loss would be 
encoded by the parameters, since the parameters determine the 
basins of attraction, and the mechanisms described can be viewed 
as ways of enabling this information to be extracted from param-
eters into neural activation state and conscious awareness, given 
initial state or context.

Information loss or reductiveness in the thought process con-
stitutes useful information for communication and task solving 
more generally, so one would expect it to be computed in cogni-
tive processes. Nevertheless, we are not claiming that this theory 
on its own is sufficient for explaining how such information enters 
into consciousness, rather it offers a plausible account that may 
be further studied in the context of metacognition more gener-
ally (Yeung and Summerfield, 2012; Fleming, 2024). Empirically 
determining the presence of such mechanisms would require 
instantiating an attractor model, either learned from neuroimag-
ing or artificially optimized for a task, and analyzing correlations 
between attractor state values and basin size.
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