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Abstract. The present study aimed to identify altered genes 
and pathways associated with four histotypes of ovarian cancer, 
according to the systematic tracking of dysregulated modules 
of reweighted protein‑protein interaction (PPI) networks. 
Firstly, the PPI network and gene expression data were initially 
integrated to infer and reweight normal ovarian and four types 
of ovarian cancer (endometrioid, serous, mucinous and clear 
cell carcinoma) PPI networks based on Spearman's correla-
tion coefficient. Secondly, modules in the PPI network were 
mined using a clique‑merging algorithm and the differential 
modules were identified through maximum weight bipartite 
matching. Finally, the gene compositions in the altered 
modules were analyzed, and pathway functional enrichment 
analyses for disrupted module genes were performed. In five 
conditional‑specific networks, universal alterations in gene 
correlations were revealed, which leads to the differential corre-
lation density among disrupted module pairs. The analyses 
revealed 28, 133, 139 and 33 altered modules in endometrioid, 
serous, mucinous and clear cell carcinoma, respectively. Gene 
composition analyses of the disrupted modules revealed five 
common genes (mitogen‑activated protein kinase 1, phos-
phoinositide 3‑kinase‑encoding catalytic 110‑KDα, AKT 
serine/threonine kinase 1, cyclin D1 and tumor protein P53) 
across the four subtypes of ovarian cancer. In addition, pathway 
enrichment analysis confirmed one common pathway (path-
ways in cancer), in the four histotypes. This systematic module 
approach successfully identified altered genes and pathways 
in the four types of ovarian cancer. The extensive differences 
of gene correlations result in dysfunctional modules, and the 

coordinated disruption of these modules contributes to the 
development and progression of ovarian cancer.

Introduction

Among women, ovarian cancer has a high mortality rate and is 
the fifth leading cause of cancer‑associated mortality, behind 
cancer of the lung and bronchus, and colorectal, breast and 
pancreatic cancer (1). The average age of ovarian cancer onset 
occurs later in reproductive life (2). The disease can advance 
rapidly with transcoelomic spreading from the ovary to other 
organs and peritoneal surfaces, and with ascites accumula-
tion (3). Of cases of primary ovarian cancer, ~90% are epithelial 
carcinoma from the ovarian surface epithelium (4,5). Ovarian 
epithelial cancer predominantly contains four histotypes of 
epithelial tumor, including endometrioid, serous, mucinous 
and clear cell carcinoma. The serous type is the predominant 
form in women (3). It is well known that early‑stage ovarian 
cancer (stage I/II) is difficult to diagnose, as it is frequently 
asymptomatic. Therefore, the majority of patients suffering 
from ovarian cancer are in advanced stages (III and IV) at 
the time of the initial diagnosis (6,7). To date, the treatment of 
ovarian cancer is primarily via platinum‑based chemotherapy, 
debulking surgery and radiotherapy, however, the five‑year 
survival rate has only improved only marginally in the last 
40 years, remaining <40% (8). Thus, it is critical that effective 
and sensitive diagnostic biomarkers are examined, which can 
be applied in the early stage of ovarian cancer and improve 
survival rates of patients.

Ovarian carcinogenesis is caused by accumulated genetic 
or genomic alterations  (9). DNA‑microarray technology 
enables examination of the expression of thousands of genes 
simultaneously in tumor samples. Data‑analysis software, a 
high‑throughput technology, has made it possible to distin-
guish gene expression profiling between normal and cancer 
samples, and thus identify differentially expressed genes 
during cancer development and progression  (10). Gene 
expression profiling can provide information for the mining 
of novel biomarkers. Based on oligonulceotide arrays, 275 
genes have been predicted with increased/decreased expres-
sion in ovarian cancer (11). Several characteristic biomarkers 
involved in ovarian cancer have been determined, including 
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E‑cadherin (12), carbohydrate antigen‑125 (13), cytochrome 
P450 1B1 (14), cyclooxygenase 1 (15), AKT serine/threonine 
kinase 2 (16), BRCA (17) and the human epidermal growth 
factor receptor family (16,18). The dual detection of hepato-
cyte nuclear factor‑1β and napsin A have been reported to be 
sensitive markers for diagnosing ovarian clear cell carcinoma, 
which may also be useful for distinguishing ovarian clear cell 
carcinoma from endometrioid, serous carcinoma and meta-
static Krukenberg tumors (19). However, the compensatory 
mechanisms in four histotypes of ovarian cancer remain to be 
fully elucidated, and the underlying diagnostic and therapeutic 
targets require further investigation.

It is known that protein complexes are key molecular 
entities and they integrate multiple gene products to perform 
cellular functions (20). Based on advances in high‑throughput 
analysis technologies, substantial protein‑protein interaction 
(PPI) data has been excavated, therefore, it is possible to inves-
tigate protein functions systematically (21). However, due to 
the technological limitations and dynamic nature of protein 
interaction maps, the protein interaction data produced by 
high‑throughput experiments often possess high false positive 
and false negative rates, which lead to difficulties in predicting 
protein complexes accurately (22). Therefore, a systematic 
method is required to track gene and module behavior across 
diseases conditions in a controlled manner (23).

The present study aimed to further elucidate the mecha-
nisms of four histotypes of ovarian cancer, therefore, the 
disrupted modules from reweighted PPI networks were tracked 
to systematically identify dysfunctional genes and pathways 
in samples of the four histotypes of ovarian cancer. Initially, 
based on Spearman's correlation coefficient (SCC) of gene 
interactions, normal and disease‑specific PPI networks were 
inferred. Subsequently, the clique‑merging algorithm was used 
to examine modules in the re‑weighted PPI networks, and the 
modules obtained in cancer were compared with those in the 
normal condition to determine altered modules. Finally, the 
associated functional pathways of the different histotypes 
were identified, based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database.

Materials and methods

Affymetrix chip data. The EMBL‑EBI (http://www.ebi.ac.uk/) 
database provides freely available data from life science 
experiments, performs basic investigations in computational 
biology and offers a training program to extensive users. The 
E‑GEOD‑6008 dataset, which included 99 individual ovarian 
tumor samples (37 endometrioid, 41 serous, 13 mucinous and 
eight clear cell carcinomas) and four normal ovarian samples, 
was downloaded from EMBL‑EBI (24). The RNA expression 
in each sample was analyzed using an Affymetrix GeneChip 
Human Genome HG‑U133A array.

Data preprocessing. The Affy package (v1.48.0) in R (biocon-
ductor.org/packages/release/bioc/html/affy.html) was used for 
the analysis of oligonucleotide arrays to delete undesirable 
values  (25). The data preprocessing was performed using 
the robust multichip average method in the affy package, 
comprising background correction, normalization, perfect 
match/mismatch matching and expression value aggregate 

calculation (25). Subsequently, the raw data in the CEL files 
were converted to probe‑level data, and the probe‑level data 
were transformed to gene symbols. The FeatureFilter function 
was applied to discard probes that did not correspond to any 
gene symbol. A final total of 12,493 genes were obtained.

PPI network construction. As is already known, proteins 
rarely exert their functions individually, however, they are 
important in a variety of biological process in the form of 
large protein functional groups (26). Therefore, in the present 
study, the PPIs of the 12,493 genes were analyzed using the 
online Search Tool for the Retrieval of Interacting Genes 
(STRING) tool (string‑db.org). Cytoscape software (v3.3.0; 
www.cytoscape.org), a biological graph visualization tool (27), 
was used to construct the PPI networks. All 1,048,576 interac-
tions datasets were downloaded from the STRING database 
to construct the PPI networks. Following the elimination 
of self‑loops, a complicated PPI network was constructed, 
which comprised 9,273 nodes and 58,617 interactions with a 
combine‑score ≥0.75.

PPI network re‑weighting. By obtaining intersection elements 
of the 12,493 genes in E‑GEOD‑6008 and the 9,273 nodes 
in the PPI network, a sub‑network of 7,264 nodes and 45,286 
interactions was obtained. The weights of interactions reflect 
their reliabilities, and low absolute scores of interactions may 
indicate false positives (28). In the present study, the SCC, 
which describes the association between two variables, was 
used to evaluate the strength of the association between two 
paired proteins in the PPI networks. The SCC value ranged 
from ‑1 to +1. The sign of the SCC indicates the direction of 
association between X (the independent variable) and Y (the 
dependent variable). If Y increases when X increases, the SCC 
is positive. If Y decreases when X increases, the SCC is nega-
tive. A coefficient of ‑1 indicates that there is a perfect inverse 
association between X and Y. A coefficient of +1 demonstrates 
that there is a perfect positive association between X and Y. 
An SCC of 0 indicates that there is no tendency for Y to either 
increase or decrease when X increases. The SCC increases in 
magnitude as X and Y become closer to being perfect mono-
tone functions of each other. When X and Y are perfectly 
monotonically associated, the SCC is 1.

Spearman's rank formula was used to calculate the coef-
ficient of two paired proteins X and Y in the PPI network. The 
formula was as follows:

where ‘R’ is the coefficient, ‘d’ is the difference between the 
ranks of corresponding values X and Y, ‘sum(d2)̓  is the total of 
the ‘d2’ column, and ‘n’ is the number of observations. In the 
present study, the SCC of a gene‑gene interaction was defined 
as the weight value of the interaction.

Module identification. Similar to the method described 
by Liu et al  (28), the module‑identification algorithm was 
performed in three steps based on clique‑merging. Firstly, all 
of the maximal cliques from the weighted PPI networks of the 
normal sample and four histotypes were selected out, respec-
tively. The maximal cliques were enumerated utilizing a fast 
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depth‑first method with a pruning‑based algorithm, described 
by Tomita et al (29). Subsequently, a score was assigned to 
each clique, and the clique score (C) was referred to as its 
weighted density:

where w (u,v) represents the interaction weight between u and 
v, based on the fast depth‑first method.

In the third step, the cliques were arrayed in descending 
order based on their weighted density and the highly over-
lapped cliques were removed in order to reduce the size of the 
result. The highly overlapped cliques were merged to construct 
larger, dense sub‑graphs. The term ‘inter‑connectivity’ was 
utilized to confirm whether the two overlapped cliques be 
merged together or not. The inter‑connectivity score (C1,C2) 
between the non‑overlapping proteins of C1 and C2 was 
computed according to the following formula:

The obtained clique scores were ranked in descending order 
and denoted as {C1,C2,...,Ck}. For every maximal clique Ci, 
if there existed another maximal clique Cj, and Cj possessed 
a lower score than Ci and |Ci∩Cj|/|Cj|≥to (a predefined 
overlap‑threshold), the weighted inter‑connecting score was 
calculated for the distinct nodes between the two cliques. 
Provided that Cj existed, the interconnectivity score (Ci Cj) was 
used as a standard to determine whether to remove Cj or merge 
Cj with Ci. If the inter‑score (Ci, Cj) was higher than or equal 
to the predefined merge‑threshold tm, Cj and Ci were merged to 
obtain a module; if not, Cj was removed. In the present study, 
the overlap‑threshold was 0.5 and the merge‑threshold was 
0.25.

Differential module identification. Random statistical analysis 
was performed for the obtained modules in the four subtypes 
of ovarian cancer. A p‑value cutoff of 0.01 can reveal numerous 
false positive results and requires another factor. False 
discovery rate (FDR), one of the most widely used multiple 
testing criterions for controlling errors of false discoveries, was 
utilized to adjust the P‑value obtained via random statistical 
analysis. The FDR was first defined by Benjamini et al (30) 
as the expected proportion of the number of falsely rejected 
hypotheses among the total number of rejected hypotheses. In 
the present study, modules with an adjusted P<0.01 based on 
the FDR measure were considered to be disrupted modules.

Pathway enrichment analysis of genes in disrupted modules. 
The Database for Annotation, Visualization and Integrated 
Discovery (DAVID; david.ncifcrf.gov) is a comprehensive 
functional annotation software program, and is used for 
integrative and systematic analysis of large gene groups (31). 
In the present study, KEGG (www.genome.jp/kegg) pathway 
enrichment analysis was performed using DAVID with the 
threshold of FDR‑adjusted P<0.001 for genes from the altered 
modules of endometrioid, serous, mucinous and clear cell 

carcinomas samples, respectively. For the enriched pathways, 
the appearance frequency of every gene was counted. The 
higher a frequency of a gene, the higher its level of involve-
ment in pathways and the higher its importance.

Results

Disruptions in the PPI networks of four types of ovarian 
cancer. A total of 12,493 genes were obtained from normal 
ovarian sample and four ovarian cancer (endometrioid, 
serous, mucinous and clear cell carcinomas) samples using 
a data preprocessing procedure. The normal ovarian and 
four ovarian cancer PPI networks reflected equal numbers 
of nodes  (7,264) and interactions  (45,286). Subsequently, 
re‑weighted PPI networks of the normal ovarian sample and 
the four stages of disease were examined using the SCC 
algorithm. In the normal ovarian and four ovarian cancer 
networks, the numbers of interactions and average scores 
(weights) were approximately equal; the 45,286 interactions 
had average scores of 0.083 (normal), 0.090 (endometrioid 
carcinoma), 0.085 (serous carcinoma), 0.087 (mucinous carci-
noma) and 0.070 (clear cell carcinoma). The correlationwise 
frequency distributions were different across the normal 
ovarian and four ovarian cancer networks (Fig. 1). When the 
expression correlations varied between ‑1.0 and ‑0.8, ‑0.6 and 
‑0.4, and 0.6 and 1.0, the number of interactions in the normal 
ovarian network was higher, compared with those in the four 
types of ovarian cancer. When the expression correlations 
varied between ‑0.4 and 0.6, the number of interactions in the 
normal network was almost lower, compared with those in the 
four types of ovarian cancer. In addition, the scores of the total 
26,651 interactions in the four ovarian cancer networks were 
lower, compared with that in the normal network, whereas 
the total numbers (18,635) of interactions were higher in the 
disease conditions, compared with that in the normal condi-
tion.

Disruptions in the four ovarian cancer modules. The disrupted 
or altered modules from the normal and four ovarian cancer 
PPI sub‑networks were identified based on the clique‑merging 
algorithm. With the node threshold >5, a total of 951 modules 
were obtained under the five conditions. Comparative analysis 
for normal and disease modules was then performed to 
further elucidate the disruptions from a module perspective. 
Notably, as shown in Table I, the total number of modules 
(951) and average module size (31.83) were the same across 
the five conditions, which results from the same interactions. 
Furthermore, the average weighted density of mucinous carci-
noma was marginally higher, compared with that of the other 
three cancer subtypes. The associations between the numbers 
of modules and weighted correlation density of the modules 
are shown in  Fig.  2. No significant difference was found 
between the distribution of modules in the normal and disease 
conditions at the level of the overall correlation distribution 
based on the Kolmogorov‑Smirnov test (P>0.05).

Identification of differential modules. In the present study, a 
total of 28, 133, 139 and 33 differential modules (FDR‑adjusted 
P<0.01) were identified in the endometrioid, serous, mucinous 
and clear cell carcinoma, respectively. Extracting genes from 
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the differential modules in the four types of ovarian cancer 
resulted in 533, 491, 591 and 408 genes, respectively.

Pathway enrichment analysis of genes in differential modules. 
DAVID‑based KEGG functional pathway analysis was 
performed for the genes involved in the differential modules. 
Based on the FDR‑adjusted P<0.001, a total of 12, 16, 18 and 
nine significantly enriched pathways were identified in endome-
trioid, serous, mucinous, and clear cell carcinoma, respectively. 
As shown in Fig. 3, pathways in cancer was a common pathway 

across the four subtypes of ovarian cancer, which may be vital 
in the development of ovarian cancer. The cell cycle, DNA 
replication and ribosome pathways were also associated with 
the subtypes of ovarian cancer, with the exception of endome-
trioid cancer. In addition, unlike the endometrioid, serous and 
mucinous carcinoma, clear cell ovarian cancer was associated 
with several metabolic pathways, including drug metabolism 
and retinol metabolism. Overall, the cancer‑associated pathways 
were important in the development of ovarian cancer.

By identifying the intersection of the common genes 
across the four ovarian cancer subtypes and the most frequent 
genes in the disrupted pathways, five key genes were obtained: 
Mitogen‑activated protein kinase 1 (MAPK1), phosphoinositide 
3‑kinase‑encoding catalytic α (PIK3CA), AKT serine/threo-
nine kinase 1 (AKT1), cyclin D1 (CCND1) and tumor protein 
P53 (TP53), which may perform an essential function in the 
pathogenesis of the four subtypes of ovarian cancer (Table II).

Discussion

The aim of the present study was to identify dysregulated 
genes and pathways in four histotypes of ovarian cancer 
via systematically tracking the dysregulated modules of 
reweighted PPI networks. The reweighted PPI networks of 
the normal and four ovarian cancer histotypes were obtained 
based on the SCC, and the modules in the PPI networks were 
identified. By comparing the modules of the normal and four 
ovarian cancer histotypes, 28, 133, 139 and 33 disrupted 
modules were obtained for endometrioid, serous, mucinous 
and clear cell carcinoma, respectively. A total of five common 
genes (MAPK1, PIK3CA, AKT1, CCND1 and TP53) and one 
common pathway (pathways in cancer) across the four histo-
types were examined based on gene composition and pathway 
enrichment analyses.

The pathways in cancer pathway covers several types of 
pathway involved in cancer. Chen et al (32) documented that 
PI3K/AKT/hypoxia‑inducible factor‑1α/CCND1 pathway is 
vital in follicle‑stimulating hormone‑driven ovarian cancer 
cell proliferation. Genistein suppresses the epithelial‑mesen-
chymal transition and migration efficacies of ovarian cancer 
cells via the estrogen receptor pathway and downregulation 
of the transforming growth factor‑β signaling pathway (33). 
The extracellular‑signal‑regulated kinase (ERK) and c‑Jun 
N‑terminal kinase (JNK) signaling pathways can be regulated 
by interleukin‑33, and promote ovarian cancer growth and 
metastasis (34). In addition, activation of the mammalian target 

Table I. Properties of the normal ovarian, and endometrioid, serous, mucinous and clear cell carcinoma modules.

	 Correlation
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Module set 	 Number of modules	 Mean module size	 Maximum	 Average	 Minimum

Normal	 951	 31.83	 0.543	 0.067	‑ 0.021
Endometrioid	 951	 31.83	 0.442	 0.058	‑ 0.055
Serous	 951	 31.83	 0.693	 0.058	‑ 0.158
Nucinous	 951	 31.83	 0.551	 0.072	‑ 0.088
Clear cell	 951	 31.83	 0.396	 0.049	‑ 0.167

Figure 1. Correlation distribution of interactions in normal ovarian tissue 
and four types (endometrioid, serous, mucinous and clear cell) of ovarian 
cancer‑specific networks based on Spearman's correlation coefficient.

Figure 2. Correlation in distribution of modules in normal and cancerous 
(endometrioid, serous, mucinous and clear cell carcinoma) ovarian tissues 
based on module correlation density.
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of rapamycin (mTOR) signaling pathway has been demon-
strated to promote epithelial ovarian cancer metastasis (35).

MAPKs, a family of serine/threonine protein kinases, 
including p38 MAPK, ERK1/2, and stress‑activated protein 
kinases (JNK). MAPKs are mediators of comprehensive 
cellular programs, including cell proliferation, cell differen-
tiation and cell apoptosis, in response to distinct stimuli (36). 
Studies have found that MAPKs are transiently triggered 
during mitosis and MAPK activation is involved in the spindle 
assembly checkpoint (37). Consistently, the protein levels of 
MAPK1 are increased following demecolcine treatment (38). 
The proto‑oncoprotein, Mos, a serine/threonine kinase, has 
been recognized as a potent activator of MAPK1 during oocyte 
maturation (39,40). The overexpression of microRNA‑378a‑3p 
or silencing of MAPK1 can reduce the expression level of 
MAPK1 and enhance adipogenesis (41).

The PIK3CA protein modulates various signals to restrain 
apoptosis and facilitate cell survival and proliferation in 
several types of cell (42,43). It has been demonstrated that 
oncogenic mutations and amplification of PIK3CA can 
activate the PI3 K/Akt signaling pathway to initiate human 
papillomavirus‑induced tumorigenesis and other types of 
cancer  (44‑46). Akt is a serine/threonine protein kinase 
comprising Akt1, Akt2 and Akt3. Akt1 encodes the principal 
Akt isoform associated with apoptosis regulation  (47). In 
oropharyngeal cancer, the high protein level of Akt can be 
an unfavorable prognostic biomarker for relapse‑free survival 
rates in patients  (48). The importance of the PI3K/AKT 
signaling pathway in ovarian cancer has been well docu-
mented. In general, this pathway has significant roles in gene 
transcription, protein synthesis and membrane trafficking, 
however, the abnormal triggering of this pathway leads to 

Figure 3. Significant pathways of genes involved in the differential modules in the four types of ovarian cancer (endometrioid, serous, mucinous and clear cell 
carcinoma) based on P<0.001. Dark green color indicates a present pathway; light green color indicates an absent pathway.
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cancer initiation, progression and invasion (49,50). PIK3CA 
and AKT1 amplification are regarded as prognostic factors for 
ovarian cancer, and the PI3K/AKT/mTOR axis may become a 
target for drugs.

Another oncogene, CCND1 is a dominating driver of 
several types of human tumor, including squamous cell 
and breast cancer, myeloma and Bcell lymphoma (51,52). 
A previous study indicated that CCND1 was overexpressed 
in >50% of human breast cancer cases  (51). In mice, 
mammary‑targeted gene overexpression resulted in mammary 
tumorigenesis (53). It has been demonstrated that jumonji 
and AT‑rich interaction domain containing 2 can signifi-
cantly inhibit leukemia cell proliferation by downregulating 
the expression of CCND1. In addition, the overexpression of 
CCND1 is closely associated with low‑grade ovarian cancer, 
which is in line with the suggestion that CCND1 is a down-
stream target for the active MAPK constitutively expressed 
in ovarian tumors (54,55).

TP53 is a critical transcriptional regulator, which is involved 
in cell cycle and cell apoptosis upon activation by oncogenes 
and DNA damage (56). The activated TP53 protein is combined 
with the regulatory region of target genes to initiate the cell 
cycle (57). TP53 mutations are frequently screened genetic 
alterations in ovarian cancer (58). Reles et al (59) reported that 
the TP53 alteration closely correlates with poor response to 
chemotherapy, early recurrence and shortened survival rates 
in patients with ovarian cancer. The high prevalence of TP53 
mutations in tubal epithelial carcinoma shows that the TP53 
mutations occur in early carcinogenesis. Thus, TP53 mutations 
are considered to be poor prognostic factors (60). However, 

TP53 has been confirmed as an effective blood‑based 
biomarker for the detection of ovarian cancer (61).

In conclusion, the present study successfully identified 
disrupted modules, including the pathways in cancer module, 
and hub genes (MAPK1, PIK3CA, AKT1, CCND1 and TP53) 
in four types of ovarian cancer based on the integrated PPI 
network. It was inferred that these pathways and genes may be 
potential biological processes and markers for understanding 
the mechanism underlying ovarian cancer.
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