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ABSTRACT This study reports the complete genome sequences of four strains of
Streptococcus canis isolated from dogs in South Korea. Their genomes ranged from
2.157 to 2.265 Mbp, with a G�C content of 39.6% to 39.7%. The sequence types,
antimicrobial resistance genes, and S. canis M-like protein alleles were characterized.

Streptococcus canis, first reported in 1986 (1), forms large, gray/white, smooth
colonies and displays beta-hemolysis and the carbohydrate G antigen. In healthy

dogs, S. canis is a member of the resident microflora of the oropharynx, skin, genito-
urinary tract, and anus and can cause self-limiting dermatitis (2). In severe cases, it
causes diseases, such as arthritis, streptococcal toxic shock syndrome, necrotizing
fasciitis, septicemia, and pneumonia (3, 4). Previously, the draft genome sequences of
seven S. canis isolates from diseased companion animals were documented in Japan
(5). Here, we report the complete genome sequences of four stored S. canis isolates
(identified using mass spectrometry) provided by NosVet in Gyeonggi Province, South
Korea (described in Table 1).

The four S. canis strains were inoculated onto 5% sheep blood agar plates and
incubated in 5% CO2 at 35°C for 24 h. Single colonies were inoculated in genome
extraction cultures. Genomic DNA was extracted using the blood and cell culture DNA
midikit (Qiagen). For Illumina sequencing, genomic libraries were prepared using the
Nextera DNA Flex library prep kit, and sequencing was performed on the Illumina
MiSeq platform with a 2 � 150-bp paired-end protocol. We processed the raw reads
using fastp v. 0.20.0 (6), with default settings. For Nanopore sequencing, a DNA library
was constructed using the rapid sequencing kit (SQK-RAD004). A MinION flow cell
(FLO-MIN106; R9.4) was used for sequencing using the MinION software v. 19.12.5 in the
standard 48-h sequencing script. Fast5 reads were base called using this MinION
software, and the resulting fastq reads were used for assembly by Unicycler. Numbers
of reads are shown in Table 1.

The hybrid assembly for three strains (HL_77_1, HL_77_2, and HL_98_2; with two
resulting in a single chromosome and a plasmid) was performed using Unicycler v. 0.4.8 (7),
and SeqMan Ngen v. 15 was used for the remaining strain (HL_100). Both Unicycler v. 0.4.8
and SeqMan Ngen v. 15 were run in their default mode. Assembly by Unicycler involved the
following process: three types of assemblies (Illumina-only assembly, long read plus contig
assembly, and long read-only assembly), including bridges, were generated; the quality
scores were assigned to each bridge; and the most supportive bridge was selected. After
this assembly, Unicycler carried out multiple rounds of polishing with Racon to improve the
sequence accuracy. The chromosome and plasmid sequences were annotated using the
Prokaryotic Genome Annotation Pipeline (8). Assembly metrics (genome sizes, numbers of
contigs, mean coverages, and N50 values) and annotated features (numbers of coding DNA
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sequences/tRNAs/rRNAs/clustered regularly interspaced short palindromic repeats, G�C
contents, and coding ratios) are shown in Table 1.

We determined the sequence types (STs) (allelic profile: gki, gtr, murI, mutS, recP, xpt,
and yqiZ) and antimicrobial resistance (AMR) genotypes by analyzing our contig
sequences on the Web-based applications MLST v. 2.0 (https://cge.cbs.dtu.dk/services/
MLST/) and ResFinder v. 3.2 (https://cge.cbs.dtu.dk/services/ResFinder/), which are
managed by the Center for Genomic Epidemiology (9, 10). Strain HL_77_1 belongs to
ST1, strain HL_77_2 to ST2, strain HL_98_2 to ST15, and strain HL_100 to ST13.
Furthermore, we found the AMR genes tet(O), tet(M), tet(S), and tet(M) in strains
HL_77_1, HL_77_2, HL_98_2, and HL_100, respectively. The nucleotide sequences
encoding S. canis M-like protein (SCM) were extracted from the genomic data, and
types of the SCM allele were deduced based on their amino acid sequence variations.
Phylogenetic analysis was performed as previously described (11–13). We observed two
groups in the phylogenetic tree, namely, one containing HL_77_2 and HL_100, which
constituted SCM alleles 2 and 4, and the other group, which consisted of SCM alleles
10 (HL_98_2) and 15 (HL_77_1) (Fig. 1).

Data availability. The complete genome sequences of these four strains have
been deposited in DDBJ/EMBL/GenBank under accession numbers CP053792,
CP053793, CP053790, CP053791, CP053789, and CP046521 and SRA accession numbers
DRR218414, DRR218415, DRR218416, DRR218417, DRR218418, DRR218419, DRR218420,
and DRR218421.
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FIG 1 Phylogenetic tree of deduced S. canis M-like protein (SCM) in strains HL_77_1, HL_77_2, HL_98_2, and HL_100 by the neighbor-joining
method. The SCM in S. canis strains SRUC001 (GenBank accession number MH996657.1), SRUC006 (MH996659.1), SRUC036 (MH996667.1), and
SRUC072 (MH996676.1) were applied as internal controls.
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