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yristoylated alanine-rich C kinase substrate
(MARCKS) is an actin-binding, membrane-associated
protein expressed during 

 

Xenopus

 

 embryogenesis.
We analyzed its function in cytoskeletal regulation during
gastrulation. Here, we show that blockade of its function
impaired morphogenetic movements, including convergent
extension. MARCKS was required for control of cell mor-

M

 

phology, motility, adhesion, protrusive activity, and cortical
actin formation in embryonic cells. We also demonstrate
that the noncanonical Wnt pathway promotes the formation
of lamellipodia- and filopodia-like protrusions and that
MARCKS is necessary for this activity. These findings show
that MARCKS regulates the cortical actin formation that is
requisite for dynamic morphogenetic movements.

 

Introduction

 

During 

 

Xenopus

 

 gastrulation, mesoderm migrates to the
inside of the embryo and moves along the blastocoel roof to
establish the three germ layer structure. This process involves
several morphogenetic cell movements including mesendoderm
extension and convergent extension. During mesendoderm
extension, cells migrate along the blastocoel roof in contact
with fibronectin (FN) fibrils (Winklbauer, 1990; Davidson
et al., 2002). In convergent extension, cells are polarized and
elongated mediolaterally, then the cells are intercalated. This
movement forms the dorsal mesodermal structure and extends
the anteroposterior body axis (Shih and Keller, 1992;
Wallingford et al., 2002). The noncanonical Wnt pathway
has been implicated in the regulation of convergent extension
(Kuhl, 2002; Tada et al., 2002). One of the intracellular
signaling components, 

 

Xenopus

 

 Dishevelled (Xdsh), plays a
pivotal role in this process. When the function of Xdsh is
inhibited, the polarity of the mesodermal cells is not estab-
lished normally (Wallingford et al., 2000).

Because these cell movements are accompanied by dynamic
changes in cell polarity, morphology, and motility, it is very
likely that cytoskeletal dynamics are carefully regulated.
Thus, we sought to analyze the regulatory mechanism of
cytoskeletal dynamics during gastrulation. We decided to

focus on myristoylated alanine-rich C kinase substrate
(MARCKS). Mammalian MARCKS has been shown to
interact with actin (Arbuzova et al., 2002). It has been reported
that 

 

Xenopus MARCKS

 

 is expressed maternally and through-
out embryogenesis (Ali et al., 1997; Shi et al., 1997), but its
role in development was not well understood.

Here, we report that the loss of MARCKS function severely
impaired gastrulation movements. MARCKS regulates the
cortical actin formation, cell adhesion, protrusive activity,
and cell polarity control during gastrulation. We further
show that MARCKS is necessary for the protrusive activity
regulated by the noncanonical Wnt pathway. These findings
show that MARCKS regulates the cortical actin formation
that is requisite for dynamic morphogenetic movements.

 

Results and discussion

 

To investigate the function of MARCKS in 

 

Xenopus

 

 devel-
opment, we conducted loss of function experiments using
antisense Morpholino oligonucleotides (Mo). First, we
examined the specificity of 

 

MARCKS

 

 Mo (Fig. S1, available
at http://www.jcb.org/cgi/content/full/jcb.200310027/DC1).
The Mo specifically and effectively inhibited epitope-tagged
MARCKS protein synthesis, leading us to expect that it
could inhibit the endogenous MARCKS protein synthesis.
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Using 

 

MARCKS

 

 Mo, we analyzed MARCKS function in
development. When it was injected into the dorsal mar-
ginal zone (DMZ) of four-cell embryos, the embryos
showed a gastrulation-defective phenotype (Fig. 1 A). The
involution of the mesoderm was impaired and the blasto-
pore remained open. A similar phenotype was observed
when 

 

MARCKS

 

 mRNA was injected. The phenotype of

 

MARCKS

 

 Mo was partially rescued by coinjection of

 

MARCKS

 

 mRNA (Fig. 1 B). The rescue was imperfect
probably because 

 

MARCKS

 

 overexpression also inhibited
gastrulation movements. As discussed below, however, cell
biological effects of 

 

MARCKS

 

 Mo were efficiently rescued
by 

 

MARCKS

 

 mRNA. Over- and under-expression of

 

MARCKS

 

 may have opposite effects at a cellular level, but
both of these effects may negatively influence gastrulation
movements. MARCKS is essential for gastrulation and its
level must be tightly regulated.

It has been reported that 

 

MARCKS-like protein

 

 (

 

XMLP

 

) is
also expressed in 

 

Xenopus

 

 embryo (Zhao et al., 2001). Al-
though XMLP is similar to MARCKS (23% amino acid
identity), 

 

XMLP

 

-Mo injected embryos showed malforma-
tions of the anterior axis and eye defect, but the gastrulation
defect was not reported (Zhao et al., 2001). They seem to
play distinct roles in 

 

Xenopus

 

 development.
To determine whether this gastrulation defect was caused

by a defect in mesodermal differentiation, we examined the
expression of the dorsal mesodermal markers. At the gastrula
stage, 

 

MARCKS

 

 Mo-injected embryos expressed 

 

chordin

 

 at
the same level as control embryos (Fig. 1 C). In tadpoles, the
notochord and somites were formed in the 

 

MARCKS

 

 Mo-
injected embryos, but the extension of these tissues was se-
verely inhibited (Fig. 1 D). We also tested the expression of
the mesodermal markers in DMZ explants by RT-PCR (Fig.
1 E). The expression of these markers was not inhibited by

 

MARCKS

 

 Mo. These results indicated that the phenotype
was caused, not by a defect in mesoderm differentiation, but
by a defect in morphogenetic movements.

Next, we tested whether the loss of MARCKS function af-
fects the animal cap elongation, which mimics convergent ex-
tension movements during gastrulation (Fig. 1 F). 

 

MARCKS

 

Mo blocked the elongation by activin, and it was rescued by
coinjecting 

 

MARCKS

 

 mRNA without the UTR, suggesting
that MARCKS is required for convergent extension.

During mesodermal convergent extension, the cells be-
come polarized, align mediolaterally, and are then interca-
lated. To test how MARCKS is involved in this process,
the convergent extension in DMZ explants was observed
microscopically. 

 

MARCKS

 

 Mo, Rhodamine dextran, and
mRNA encoding membrane-binding Venus (mb-Venus)
were coinjected into one of the two dorsal blastomeres
(Fig. 2 A). As a control, mb-Venus mRNA alone was in-
jected into the other dorsal blastomere. At the gastrula
stage, the DMZ explants were isolated and cultured on a
cover glass coated with FN. These explants adhered to the
FN, and convergent extension movements occurred subse-
quently in the mesoderm (Kinoshita et al., 2003). In the
absence of 

 

MARCKS

 

 Mo, red and nonred cells were polar-
ized and intercalated. In the 

 

MARCKS

 

 Mo-injected ex-
plants, the nonred cells, which were assumed to lack the
Mo, were polarized and showed convergent extension. In
contrast, the red cells (Mo-injected cells) were not polar-
ized and did not participate in the intercalation. Thus,
MARCKS is essential for the cell polarization and move-
ment during convergent extension.

In addition to convergent extension, an important mecha-
nism regulating gastrulation movements is mesendoderm ex-
tension (Davidson et al., 2002). To test whether MARCKS
is required for this process, DMZ explants were cultured on
FN-coated dishes according to the method developed by
Davidson et al. (2002). Mesendodermal cells migrated on
the FN substrate as an intact mantle (Fig. 2 B). When Venus
mRNA and the control Mo were coinjected, the Venus-
expressing cells dispersed broadly, and some cells migrated
to the front. In contrast, 

 

MARCKS

 

 Mo-injected cells rarely
migrated on the FN substrate. We examined 15 explants
and confirmed that none of the 

 

MARCKS

 

 Mo-injected cells
reached the leading edge of the migrating mesendoderm.

Figure 1. MARCKS is essential for gastrulation movements. 
(A) Both 500 pg of MARCKS mRNA and 5 pmol of MARCKS Mo 
impaired gastrulation movements, when either was injected into the 
dorsal marginal region. (B) Statistical data of the gastrulation-defective 
phenotype caused by MARCKS mRNA and Mo. (C) Expression of 
chordin at the gastrula stage, detected by in situ hybridization. 
(D) Somites (left) and notochord (right) were immunostained with 
12/101 and MZ15 antibodies, respectively. (E) 5 pmol of MARCKS 
Mo was injected into the two dorsal blastomeres at the four-cell 
stage; the DMZ explants were isolated, and the expression of 
mesodermal markers was detected by RT-PCR. gsc, goosecoid. 
(F) 2 pmol of MARCKS Mo inhibited the activin mRNA-induced 
elongation of animal caps. This inhibition was rescued by coinjection 
of 200 pg of MARCKS mRNA.
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This indicated that MARCKS was required for mesendo-
derm extension as well as convergent extension.

We examined whether 

 

MARCKS

 

 Mo affects the adhe-
sion to FN of cells dissociated from the DMZ explants.

 

MARCKS

 

 Mo and Venus mRNA (green) or Rhodamine
dextran (red) was injected dorsally (Fig. 2 C). DMZ explants
were isolated and dissociated in Ca

 

2

 

�

 

-Mg

 

2

 

�

 

–free medium.
Dissociated cells were cultured on FN-coated dishes, and
cells that adhered to the dish were counted (Fig. 2 C). When

 

MARCKS

 

 Mo was coinjected with Venus, the adherence of
Venus-expressing cells was extremely reduced. In contrast,
when 

 

MARCKS

 

 Mo was coinjected with Rhodamine dex-
tran, these red cells rarely adhered to the dish. A few cells
containing 

 

MARCKS

 

 Mo were found on the dish, but these
cells were rounded up and did not spread out on the dish.
This indicates that MARCKS is essential for cell adhesion
and spreading on FN. The effect of 

 

MARCKS

 

 Mo on the
cell adhesion was rescued by coinjection with 

 

MARCKS

 

mRNA (unpublished data).
Next, we tested whether 

 

MARCKS

 

 Mo affected the pro-
trusive activity in mesodermal cells. Mesodermal cells had
many filopodia-like protrusions when the DMZ explants
adhered to a FN-coated dish (Fig. 2 D). 

 

MARCKS

 

 Mo se-
verely reduced the number and the length of these protru-
sions. The effect of 

 

MARCKS

 

 Mo on the protrusive activity
was rescued by coinjection with 

 

MARCKS

 

 mRNA. Thus,
MARCKS is required for the protrusive activity, which may
directly correlate with the control of cell adhesion and motil-

ity. The inhibition of cell adhesion and migration on the FN
fibrils that cover the blastocoel roof may contribute to the
gastrulation defect caused by 

 

MARCKS

 

 Mo.
The actin-binding domain of mammalian MARCKS

binds to actin filaments and cross-links them in vitro
(Hartwig et al., 1992). The corresponding domain of 

 

Xeno-
pus

 

 MARCKS is 100% identical (Shi et al., 1997), suggest-
ing that it may also interact with F-actin. At first, we exam-
ined the colocalization of MARCKS with F-actin. Cells
expressing MARCKS-Venus were dissociated from DMZ
explants and cultured on an FN-coated dish. The cells were
then fixed and F-actin was stained with phalloidin. As shown
in Fig. 3 A, MARCKS and cortical actin were colocalized.

We then constructed two mutants, GA and SD (Fig. 3 B).
GA is an unmyristoylated mutant in which the second gly-
cine residue is replaced with alanine. SD is a pseudophos-
phorylation mutant whose potential phosphorylation sites
were replaced with aspartic acid, which is expected not to
bind to actin filaments (Hartwig et al., 1992). To detect
F-actin, we used the F-actin–binding domain of moesin fused
to red fluorescent protein (RFP; Campbell et al., 2002), des-
ignated RMA (RFP-moesin actin–binding domain). It has
been shown biochemically that this domain binds to F-actin
(Turunen et al., 1994; Pestonjamasp et al., 1995). In 

 

Dro-
sophila

 

 embryos, the corresponding domain of moesin fused
with GFP was successfully used to analyze actin dynamics
(Dutta et al., 2002). We confirmed that our construct (Ve-
nus-moesin actin-binding domain) colocalized with stress fi-

Figure 2. MARCKS is essential for 
controlling cell polarity, motility, and 
adhesion. (A) 5 pmol of MARCKS Mo, 
Rhodamine dextran, and the mRNA for 
100 pg of mb-Venus were coinjected 
into one of the two dorsal blastomeres 
at the four-cell stage. mb-Venus mRNA 
alone was injected into the other dorsal 
blastomere. DMZ explants were cultured 
on a cover glass coated with FN, and 
convergent extension movements were 
observed. (B) Control or 5 pmol of 
MARCKS Mo was coinjected with 100 
pg of Venus mRNA into two blastomeres 
of four-cell embryos. DMZ explants 
were cultured on an FN-coated dish 
until sibling embryos reached the late 
neurula stage. Arrows indicate the 
direction of mesendoderm migration. 
Arrowheads indicate the leading edge. 
(C) MARCKS Mo inhibited the adhesion 
on FN. MARCKS Mo, control Mo, Venus 
mRNAs (green), and Rhodamine dextran 
(red) were coinjected dorsally as indicated. 
Cells were dissociated from the DMZ 
explants. Cells from the control- and 
MARCKS-Mo–injected explants were 
mixed, plated on FN-coated dishes, 
incubated for 6 h, and fixed in formalde-
hyde. Cells that did not adhere to the 
dish were removed by washing five 
times with PBS. (D) 3 pmol of MARCKS 

Mo inhibited the protrusive activity of cells in DMZ explants. MARCKS Mo or control Mo was coinjected dorsally with mb-Venus mRNA. 
DMZ explants were cultured on an FN-coated dish until sibling embryos reached the early neurula stage. The effect of MARCKS Mo was 
rescued by 200 pg of MARCKS mRNA. Bar, 50 �m. The graph shows statistical data obtained by analyzing 15 cells for each sample. The error 
bars represent statistical significance (p � 0.05).
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bers and cortical actin stained with phalloidin in CHO cells
(Fig. 3 C).

In 

 

Xenopus

 

 embryonic cells, the RMA was localized to the
cell cortices, and cytochalasin B treatment, which disrupts
actin filaments, dispersed the RMA to the cytoplasm (Fig. 3
B). This indicates that the RMA should be useful for moni-
toring F-actin dynamics. When these MARCKS-Venus
genes were expressed, the wild-type and GA forms were as-
sociated with the plasma membrane and colocalized with
RMA, but SD was in the cytoplasm. When the cells were
treated with cytochalasin B, GA dispersed to the cytosol

with RMA, whereas wild-type remained on the membrane.
This result suggested that the association of MARCKS with
the membrane was regulated by two mechanisms, myristoy-
lation and binding to the cortical actin. We also found that
GA and SD mutants did not inhibit gastrulation movement
when they were overexpressed (Fig. 3 B). These mutants also
did not rescue the embryo phenotype caused by 

 

MARCKS

 

Mo. These results suggest that both myristoylation and actin
biding are required for its function.

To test whether MARCKS regulates cortical actin forma-
tion, 

 

MARCKS

 

 Mo was injected into one blastomere near
the animal pole of two-cell embryos. Animal caps were iso-
lated at the late blastula stage, fixed, and stained with phal-
loidin. Membrane-binding RFP was coinjected with Mo for
tracing the injected cells. As shown in Fig. 3 D, 

 

MARCKS

 

Mo significantly reduced the amount of cortical actin
stained by phalloidin. The amount of actin protein was not
affected, however, judging from Western blotting and im-
munocytochemistry using an antipan actin antibody (Fig. 3,
E and F). This result suggests that MARCKS plays an im-
portant role in cortical actin formation.

The noncanonical Wnt pathway has been implicated in
convergent extension. It has been demonstrated that Xdsh,
an essential cytoplasmic component in this pathway, regu-
lates cell polarity and protrusive activity in DMZ cells
(Wallingford et al., 2000). The Wnt pathway activates
RhoA and Rac (Habas et al., 2001, 2003), which have been
shown to regulate the protrusive activity (Tahinci and
Symes, 2003). Thus, the pathway may directly regulate actin
cytoskeletal dynamics. To investigate the relationship be-
tween the Wnt pathway and cortical actin, we examined the
localization of Xdsh. Cells were dissociated from the DMZ
explants expressing 

 

Xdsh-Venus

 

, cultured on an FN-coated
dish, and stained with phalloidin. As shown in Fig. 4 A,
Xdsh was colocalized with cortical actin, even in the lamelli-
podial and filopodial protrusions.

When RMA was expressed during convergent extension,
it was located at the tips of elongated mesodermal cells (Fig.
4 B). This indicates that F-actin is enriched in this region.
We showed previously that Xdsh-Venus was also accumu-
lated in the same region (Kinoshita et al., 2003). Mamma-
lian Dishevelled interacts with actin filament through the
NH

 

2

 

-terminal DIX domain (Capelluto et al., 2002). To test
whether the tip localization of Xdsh was due to the interac-
tion between the DIX domain and F-actin, we tested the lo-
calization of Xdsh lacking the DIX-domain (Xdsh

 

�

 

DIX).
As shown in Fig. 4 B, the Xdsh

 

�

 

DIX was located at the tip,
indicating that this localization is not due to interaction be-
tween F-actin and the DIX domain. This result is consis-
tent with the finding that Dishevelled

 

�

 

DIX can mediate
the noncanonical Wnt signaling in 

 

Xenopus

 

 and zebrafish
(Heisenberg et al., 2000; Tada and Smith, 2000). The ac-
tin depolymerizing reagent, Latrunculin A, dispersed both
RMA and Xdsh

 

�

 

DIX to the cytosol. Essentially, the same
result was also obtained using cytochalasin B (unpublished
data). These results strongly suggest that Xdsh interacts with
F-actin either directly or indirectly and mediates the Wnt
signaling to the actin cytoskeleton.

To examine whether the Wnt pathway regulates the pro-
trusive activity, we coexpressed 

 

Xwnt11

 

 and 

 

Xfz7 (Xenopus

Figure 3. MARCKS regulates cortical actin formation. (A) Cells 
expressing 200 pg of MARCKS-Venus mRNA were dissociated from 
DMZ explants and plated on a FN-coated cover glass. Arrows indicate 
protrusions where both MARCKS and F-actin were enriched. 
(B) Wild-type, GA, and SD mutants were expressed in the DMZ 
explants and observed. RMA, RFP fused with the actin-binding 
domain of moesin. The explants were treated with 200 �M of 
cytochalasin B for 30 min. Bar, 50 �m. The graph shows percent-
ages of the gastrulation-defective phenotype. (C) The actin-binding 
domain of Xenopus moesin was fused with Venus (Venus-actin BD) 
and expressed in CHO cells. (D) Mo was injected into one blastomere 
of two-cell embryo with mb-RFP mRNA as a tracer. Animal cap 
explants were fixed and stained with phalloidin. Bar, 50 �m. 
(E) Western blot with an antiactin antibody (left) and Coomassie 
Blue (CBB) staining (right). Mo was injected into both of the blastomeres 
of two-cell embryos. Lysates were prepared from the animal caps. 
(F) MARCKS Mo and mb-RFP were coinjected and animal cap cells 
were immunostained with antiactin antibody.
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frizzled-7)

 

 in animal cap explants with the membrane-bind-
ing RFP. As shown in Fig. 4 C, the coexpression of Xwnt11
and Xfz7 dramatically promoted lamellipodia- and filopo-
dia-like protrusions and it was inhibited by Xdd1, a domi-
nant negative Xdsh mutant (Sokol, 1996; Wallingford et al.,
2000). When 

 

MARCKS

 

 Mo was coinjected, this activity was
severely inhibited (Fig. 4 C). It was rescued by coinjection
with 

 

MARCKS

 

 mRNA. In addition, dorsal mesodermal cells
expressing dominant-negative Xwnt-11 (Tada and Smith,

2000) significantly reduced the number of protrusions (Fig.
4 D), which is consistent with the observation by Walling-
ford et al. (2000) that cells expressing Xdd1 maintain signif-
icantly fewer stable protrusions. These results strongly sug-
gest that the Wnt signaling pathway regulates cortical actin
dynamics and that MARCKS is required for this process.

Here, we have shown that MARCKS plays an essential
role in regulating cortical actin dynamics in 

 

Xenopus

 

 devel-
opment. 

 

MARCKS

 

 Mo inhibited cell movements, cell
shape change, cell adhesion, and interaction with FN prob-
ably through the defect it caused in the cortical actin dy-
namics. MARCKS is required not only for gastrulation but
also for the neural tube formation. When 

 

MARCKS

 

 Mo
was injected into the dorso-anterior blastomeres of eight-
cell embryos to target the neuroectoderm, neural tube clo-
sure was severely impaired (Fig. S2, available at http://
www.jcb.org/cgi/content/full/jcb.200310027/DC1). It has
been shown that 

 

MARCKS

 

-deficient mouse shows neural
tube closure defect (Stumpo et al., 1995), suggesting the
conserved function between frogs and mice. MARCKS
may be required for highly organized actin dynamics to ef-
fect dynamic tissue reorganization.

The regulation of the cortical actin cytoskeleton by
MARCKS may be important for a proper cellular response
to signals such as Wnt and the FN/integrin pathways. It is
also possible that these signaling pathways regulate the ac-
tivity of MARCKS. It has been shown that MARCKS is a
PKC substrate. PKC has been involved in the noncanoni-
cal Wnt pathway (Sheldahl et al., 1999) and the integrin
pathway (Vuori and Ruoslahti, 1993). It would be interest-
ing to determine how the activity of MARCKS is regulated
during development.

 

Materials and methods

 

Plasmids, RNA synthesis, and Morpholino oligos

 

Procedures for the plasmid construction, RNA synthesis and sequences of
Morpholino oligos were described in the online supplemental material.
The RFP plasmid is a gift from R. Tsien (University of California, San Di-
ego, CA).

 

In situ hybridization and RT-PCR analysis

 

In situ hybridization in 

 

Xenopus

 

 was performed as described by Harland
(1991). For RT-PCR analyses, RNA from the explants was prepared with
TRIzol (Life Technologies). cDNA was synthesized with reverse tran-
scriptase (TRT-101; Toyobo). Sequences of the primers were described in
the online supplemental material.

 

Whole-mount immunostaining and Western blotting

 

The procedure for whole-mount immunostaining was performed as de-
scribed in Kurata et al. (2001). The antibodies were MZ15 for notochord (a
gift from F. Watt, Imperial Cancer Research Fund, London, UK) and 12/
101 for somites (Development Studies Hybridoma Bank). Western blotting
was performed using a mouse monoclonal antipan-actin antibody was
purchased from NeoMarkers (MS-1295-P0).

 

Dissecting explants and cytological observations

 

For the animal cap explants, 

 

MARCKS

 

 mRNA or Mo was coinjected with
0.5 pg activin mRNA into the animal pole of two-cell embryos. The animal
cap was dissected from stage-9 embryos. For DMZ explants, mRNA or a
Mo was injected into the two dorsal blastomeres of four-cell embryos. Ex-
plants were isolated at stage 10

 

�

 

. These explants were cultured in 1

 

�

 

Steinberg’s solution until sibling embryos reached stage 17. To dissociate
cells from the explants, the explants were incubated in the Ca

 

2

 

�

 

-Mg

 

2

 

�

 

–free
medium for 2 h. For the cytological observation, explants and dissociated
cells were cultured in 1� Steinberg’s solution on an FN-coated dish

Figure 4. MARCKS is required for the cortical actin dynamics 
regulated by the noncanonical Wnt signaling pathway. (A) 250 pg 
of Xdsh-Venus mRNA was expressed in DMZ explants. Cells were 
dissociated and plated on an FN-coated dish. Xdsh-Venus was 
colocalized with the cortical actin. (B) 100 pg of Xdsh�DIX-Venus 
mRNA was expressed in DMZ explants. The explants were cultured 
on an FN-coated dish. F-actin was probed with RMA. Xdsh�DIX 
and RMA were colocalized (arrows). (Right) Treatment with 30 �M 
Latrunculin A for 30 min. (C) Xwnt11 and Xfz7 mRNAs (200 pg 
each) were coexpressed in animal cap explants with mb-RFP. The 
coexpression of Xwnt11 and Xfz7 promoted the protrusive activity. 
5 pmol of MARCKS Mo and Xdd1 inhibited it. The effect of 
MARCKS Mo was rescued by coinjection of 200 pg of MARCKS 
mRNA. Bar, 50 �m. (D) mb-RFP was injected with or without 
mRNA encoding dominant-negative Xwnt-11 (2 ng). Bar, 50 �m.
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(4000–030; Iwakil), or on a cover glass coated with FN (�1 �g/cm2,
F1141; Sigma-Aldrich). To stain F-actin, cells were fixed in 4% PFA and
stained with PBS 0.5% Triton X-100 containing a 40-fold dilution of BO-
DIPY 581/589 phalloidin (B-3416; Molecular Probes) or Alexa Fluor 488
phalloidin (A-12379; Molecular Probes). For confocal microscopy, images
were captured using 510 software (Carl Zeiss MicroImaging, Inc.). All im-
ages were prepared for publication using Adobe Photoshop software.

Online supplemental material
Fig. S1 shows that MARCKS Mo specifically inhibits MARCKS protein syn-
thesis. Fig. S2 shows that MARCKS Mo inhibits neural tube closure. Sup-
plemental material is available online at http://www.jcb.org/cgi/content/
full/jcb.200310027/DC1.
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