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ABSTRACT

Owing to the great variety of distinct peptide en-
codings, working on a biomedical classification task
at hand is challenging. Researchers have to deter-
mine encodings capable to represent underlying pat-
terns as numerical input for the subsequent machine
learning. A general guideline is lacking in the lit-
erature, thus, we present here the first large-scale
comprehensive study to investigate the performance
of a wide range of encodings on multiple datasets
from different biomedical domains. For the sake of
completeness, we added additional sequence- and
structure-based encodings. In particular, we col-
lected 50 biomedical datasets and defined a fixed
parameter space for 48 encoding groups, leading
to a total of 397 700 encoded datasets. Our results
demonstrate that none of the encodings are supe-
rior for all biomedical domains. Nevertheless, some
encodings often outperform others, thus reducing
the initial encoding selection substantially. Our work
offers researchers to objectively compare novel en-
codings to the state of the art. Our findings pave the
way for a more sophisticated encoding optimization,
for example, as part of automated machine learning
pipelines. The work presented here is implemented
as a large-scale, end-to-end workflow designed for
easy reproducibility and extensibility. All standard-
ized datasets and results are available for download
to comply with FAIR standards.

INTRODUCTION

With the increasing popularity of machine learning meth-
ods, scientists began to use them for a wide range of biomed-
ical applications. A particular application is the prediction
of amino acid (AA) sequence properties, for example, a pep-
tide’s antimicrobial efficiency (1), cell-penetrating (2) and

cell-entry (3) properties, or the classification of T-cell epi-
topes (4). However, the mode of action of a peptide se-
quence depends on a variety of biochemical factors, which
cannot be reflected by the order of the AAs alone (1). More-
over, many machine learning models require a numerical in-
put with a fixed dimension (5). To this end, many descrip-
tors, i.e. sequence-based encodings (SeBEs) have been de-
veloped, aiming to compute adequate numerical represen-
tations of the primary structure. In short, SeBEs are algo-
rithms mapping the AAs to numerical values, but also incor-
porate interactions of non-adjacent residues, for instance,
by autocorrelation techniques (6,7). SeBEs have been suc-
cessfully employed in numerous studies, for example, for
the applications mentioned above, but also to predict an-
tiviral (8) or anticancer peptides (9). In addition, tools such
as iFeature (6) or BioSeq-Analysis2.0 (10), which allow easy
access to SeBEs, have paved the way for a wide range of
biomedical applications.

However, the function of a peptide is not only defined by
its primary structure, but biological meaning will be also
encoded in higher dimensions, i.e. the peptide’s secondary
or tertiary structure. Consequently, structure-based encod-
ings (StBEs) augment SeBEs to maximize the information
gain. StBEs can be divided into two further groups: encod-
ings derived from the secondary structure and those derived
from the tertiary structure. The former includes encodings
describing, for example, the �-helix composition (6), based
on an ab initio secondary structure prediction (11). For the
latter, Bose et al. (2011) utilized the Delaunay triangulation
to encode protein structures as numerical feature vectors
(12). The aim of the study was to predict protein structure
properties and the results showed, that this StBE is capa-
ble to preserve tertiary structure information for machine
learning purposes (12). Furthermore, Löchel et al. (2018)
demonstrated, that using the electrostatic hull of V3-loop of
the gp120 protein, substantially improved the prediction of
co-receptor tropism of the human immunodeficiency virus
1 (13). A comprehensive introduction to encodings, specifi-
cally dealing with the prediction of antimicrobial peptides,
can be found in our recent review (7).
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Nevertheless, several major challenges remain. First of
all, there is no guideline or clear recommendation which en-
codings work well for specific biomedical applications, fac-
ing researchers with the effort of matching the right encod-
ing for the task. Second, even if one or more encodings have
been determined, researchers are very likely challenged with
parameterized ones, further increasing the hyperparameter
search space and thus, actually aggravating the encoding
exploration. Third, many studies confirmed that combin-
ing different encodings to ensemble classifiers, effects the
prediction performance positively (14,15). Specifically, Dy-
bowski et al. (2011) employed stacked generalization on the
predictions of SeBE- and StBE-based classifiers and thus,
improved the resistance prediction to Bevirimat, an an-
tiretroviral drug class (16). Consequently, applying ensem-
ble learning techniques enlarges the hyperparameter search
space further and a structured exploration becomes more
and more difficult.

For this reason, we present here, to the best of our knowl-
edge, the first large-scale comprehensive study on state of
the art peptide encodings on a wide range of datasets from a
wide range of biomedical domains. Our study closes the gap
between the availability of a great variety of encodings and
the important question whether one of them is best suited
for a specific domain application or task. This study builds
upon our recent review on peptide encodings (7), which
allows us to add additional, literature-known sequence-
and structure-based encodings. The goal of the study is to
provide researchers, faced with a biomedical classification
task at hand, general guidelines, which encodings are likely
to be superior on a certain biomedical classification task.
Thus, we investigated the two major encoding types, namely
SeBEs and StEBs, in total leading to 48 encoding groups.
Moreover, we collected 50 datasets from multiple domains,
including antimicrobial, -viral and -cancer as well as cell-
penetrating peptides as already mentioned above, but also
from further fields, such as HIV drug resistance prediction.
By further taking the parameterization of some of the en-
coding groups into account, we generated altogether hun-
dreds of thousands of encoded datasets.

To meet this unique challenge we have developed the
PEPTIDE REACToR, a platform bundling manifold anal-
yses to examine characteristics of the encoded datasets (see
Figure 1). The workflow is designed for high paralleliza-
tion, enabling an efficient evaluation, even in the case of
additional encodings and datasets in the future. Surpris-
ingly, our results point out, that no particular encoding
can be recommended in general. However, there are en-
codings that show increased performance across multiple
datasets, hence, biomedical domains. Contrary, our method
reveals many inferior encoding groups, questioning the ne-
cessity of computing them at all. Thus, our findings pave
the way for automated machine learning approaches, in that
the hyperparameter space is drastically reduced and rele-
vant techniques become computationally feasible. Accord-
ing to the FAIR data principles (findability, accessibility, in-
teroperability and reusability) (17), the results can be inter-
actively accessed at https://peptidereactor.mathematik.uni-
marburg.de/ and all datasets can be downloaded at a central
location. The source code as well as the datasets are avail-
able at https://github.com/spaenigs/peptidereactor.

Figure 1. The general principle of the PEPTIDE REACToR. The empha-
sis is put on a high-throughput processing of an arbitrary amount of in-
put datasets (arrows), followed by the preprocessing, encoding, and post-
processing, generating the final output (top). The preprocessing includes
sanitizing of the input sequences, the filtering and the tertiary structure
approximation (squares). Afterwards, the sequences as well as the accom-
panied structures are used for the encoding (circles). The postprocessing
involves the machine learning and the actual benchmarking including the
visual preparation of the analyses (triangles).

MATERIALS AND METHODS

We collected 50 datasets from a wide range of biomedi-
cal applications. Furthermore, building upon our recent en-
coding review (7), we aggregated in total 48 encodings and
developed a high-throughput approach facilitating a par-
allelized encoding and the subsequent comparison of the
encoded datasets. Every task is part of a large-scale, end-
to-end workflow and will be executed automatically. An
overview of the workflow can be found in Figure 1. We
used Python v3.7.4 (https://www.python.org/) and R v3.5.2
(https://www.r-project.org/) throughout the analysis. The
pipeline itself as well as the algorithms in particular have
been implemented as a modular Snakemake v5.19.0 (18)
pipeline. Moreover, we used Scikit-learn v0.23.1 for the ma-
chine learning algorithms and validation metrics (19).

The following sections describe the applied methodol-
ogy by keeping the actual order of the workflow. Thus,
the dataset collection will be presented at first. The subse-
quent section introduces the tertiary structure approxima-
tion, since it is crucial before the actual encodings and their
properties are presented. Some of the encodings are param-
eterized, thus, leading to thousands of encoded datasets.
Therefore, the next section sheds light on the algorithmic
details of the encoded datasets filtering. Finally, the actual
benchmark methodology will be presented and the method
section concludes with the result visualization description.
Refer to Figure 1 for a visual summary.

Datasets collection

We collected 50 different datasets comprising peptides and
small proteins from various biomedical domains. These
include immunomodulatory and cell-penetrating peptides,
but also peptides specifically targeting cancer, fungi, mi-
crobes, tuberculosis and viruses. Moreover, we added
datasets from HIV research specifically covering resistance
prediction against different drug classes and protease cleav-
age site prediction. A further application refers to the detec-
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tion of neuropeptides as well as a- and b-cell epitopes. More
attributes, for example, origin, size, etc. can be found in the
Supplementary Table S1. Detailed dataset descriptions are
specified in Supplementary Table S3.

The datasets were composed for manifold reasons. They
reflect a broad field of action, including infectious diseases,
for example, HIV, antimicrobial resistance of multi-drug re-
sistant bacteria, and others, to elevate the significance of
the results. If possible, we used several datasets per domain
to also reflect the sequence diversity. In order to cope with
the high-dimensionality of the present study, we limited the
benchmark to two-class problems.

Moreover, the datasets have been applied largely as they
are, in order to stay as close as possible to the original us-
age. That is, the class ratio of the datasets at hand ranges
from well balanced (e.g. ace vaxinpad) to very imbalanced
ones (hiv v3) (see Figure 2). This affects also the size of the
datasets, which ranges from small ones (e.g. amp gonzales)
to relatively large datasets (e.g. amp iamp2l). Refer to Sup-
plementary Tables S1 and S3 for more details. Too large
datasets have been excluded from the study or, if present,
the validation dataset were used instead.

All in all, the datasets are composed of 53 041 sequences
ranging from 3 to 255 amino acids. The mean sequence
length is 55.04 (±67.58) with a median length of 26 amino
acids. Refer to Supplementary Table S2 for a comprehensive
descriptive evaluation on the datasets used in this study. In
particular, let Di be the i-th dataset from a biomedical ap-
plication, i.e. composed of a set of n amino acid sequences
s of length k, denoted as

Di = {s1, s2, . . . , sn−1, sn} (1)

and

si = {a1, a2, . . . , ak−1, ak} (2)

with ai being one of the 20 natural amino acids.

Tertiary structure approximation

Two categories of encodings have been investigated:
sequence- and structure-based encodings (SeBEs and
StBEs, respectively). While the former are derived from the
primary structure, i.e. the amino acid sequence, the compu-
tation of the latter bears on the secondary, if not the tertiary
structure of a peptide or protein, respectively. Even though
algorithms exist for the prediction of secondary structure
properties, for example, SPINE X (20), or the prediction of
the tertiary structure, for instance, RaptorX (21), they are
often computationally expensive, above all, if one aims to
predict hundreds of structures simultaneously.

However, for a large-scale approach, this is not practical,
thus, we developed in addition an algorithm, which approx-
imates the tertiary structure for later usage by StBEs. While
PSI-BLAST (22) is capable of finding more distant relative
sequences, it often suffers from a long run time for long se-
quences. Thus, we applied BLAST (23) v2.9.0 instead. In or-
der to set up a database, we downloaded all available struc-
tures (as of May 2020) from the Protein Data Bank (24)
(PDB, http://www.rcsb.org/), extracted all sequences into a
FASTA file using Biopython v1.7.4 (25,26) and used it as in-
put for the makeblastdb command. By doing so, we ensure,

that the database contains only sequences with a known
structure.

For a sequence si, the structure approximation works as
follows: first, an initial BLAST run tries to find the query
sequence within a PDB entry. For the best match, i.e. the
match with the lowest e-value, the respective PDB file will
be fetched. The algorithm clips the matching part from the
structure and returns the i-th tertiary structure approxima-
tion for a query sequence si. Any si, for which no structure
has been found, is omitted in the later encoding step.

Encodings

Spänig and Heider (2019) conducted an extensive literature
search and collected a wide range of SeBEs and StBEs (7).
We employed the Python package iFeature, which already
provides many encodings (6). Moreover, we also added the
frequency matrix chaos game representation (FCGR), an
adoption of the original CGR, recently developed by our
group (27). However, as part of this study, we contribute the
implementation of 10 additional encodings to the scientific
community, i.e. encodings, which have been used success-
fully in the literature, but where an actual implementation
is lacking. For a comprehensive list of all encodings, refer
to Supplementary Table S4. Supplementary Note S1 pro-
vides the algorithmic details on the additional encodings,
for the remainders, refer to (6) or (7). In addition, we em-
ployed MUSCLE v3.8.1551 (28) in case an encoding, for
instance, the binary encoding, requires a multiple sequence
alignment beforehand. In particular, an encoding is a func-
tion f, mapping an amino acid sequence si to an numerical
vector ŝi :

f : si → ŝi , ŝi ∈ QN (3)

Filtering

Since some of the encodings are parameterized, thus, lead-
ing in total to thousands of encoded datasets, an important
part of the pipeline is the filtering of the d encoded datasets
{D̂1, . . . , D̂d}, hence to reduce the extent of d before the ac-
tual benchmark. For the purpose of a benchmark, we cov-
ered the input parameter space for all encodings as extensive
as possible, thus we generated in total d encoded datasets:

d =
48∑
i

|−−→x1(i ) × · · · × −−→
xn(i )| (4)

Whereby × denotes the Cartesian product and n refers to
the n-th parameter set for the i-th encoding group. Specif-
ically, the amino acid index-based encodings are highly re-
lated owing to an intrinsic correlation of certain amino acid
indices. Moreover, parameterized encodings take the win-
dow length �w of size k for autocorrelation-based encod-
ings, or correlation types �c of size l, tuple sizes �t of size
m, and gap length parameters �g of size n for the pseudo
K-tuple reduced amino acids composition (PseKRAAC)
encoding leading to | �w| + |�c × �t × �g| encoded datasets for
these encodings groups alone. Refer to Supplementary Ta-
ble S4 for the comprehensive list on parameterized encod-
ings and which parameter space have been covered in par-

http://www.rcsb.org/


4 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

Figure 2. Encoding groups performance, sorted by class imbalance and encoding type. Color coding corresponds to the maximum F1-score of the boot-
strapped medians for a group. The x-axis is organized by sequence- and structure-based encodings. The y-axis is sorted by class imbalance (cut-off 0.35).
Groups are separated by white bars. An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

ticular. Supplementary Note S4 provides a detailed descrip-
tion of the filter algorithm for the amino acid index as well
as PseKRAAC encodings.

Benchmark

The essential part of this project is the high-throughput
evaluation of all encodings across multiple biomedical
datasets. To this end, several advanced processing as well
as analysis steps are conducted, which are introduced more
detailed hereinafter.

Model training. In order to standardize the analysis, we
used the Random Forest classifier (RFC) (29) with default

parameter settings as the default machine learning model.
RFCs already perform good without hyper-parameter op-
timization, which is contrary to, for example, Support Vec-
tor Machines, which achieve far greater performance with
optimized hyper-parameters compared to the defaults (30).
That is, RFCs are more stable, allowing us to neglect the
influence of hyper-parameter optimization on the encoding
performance. Moreover, we chose this classifier since it ex-
hibits a variety of advantages compared to other prediction
models. It internally picks the most predictive features out
of a set of multiple decision trees, that is, it has a built-in
feature selection method. Moreover, the final prediction is
based on the trees built from the selected features; hence, it
is also an ensemble algorithm. In addition, the feature im-
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portance can be calculated and the RFC is also capable of
reducing overfitting (29).

Cross-validation. In order to generalize the model per-
formance, we applied a repeated, stratified k-fold cross-
validation (CV). In particular, for each validation round, an
encoded dataset D̂i is splitted into k = 5 folds and each CV
is repeated 10 times. For each fold, the intermediate results,
i.e. the vectors of the predicted classes �t, the probabilities �p
and the actual classes �y are stored in the matrices Rp and
Rt, whereby p ∈ {�t, �p} and t ∈ {�y}. Rp, analogous to Rt, is
denoted as shown in Equation 5, with p f oldk,predn being the
n-th predicted probability or class of the k-th fold. In addi-
tion, the number of rows in both matrices corresponds to
the repetitions as well as folds of the CV, hence 50 in the
present case.

Rp =

⎡
⎢⎣

p f old1,pred1 . . . p f old1,predn

...
. . .

...
p f oldk,pred1 . . . p f oldk,predn

⎤
⎥⎦ (5)

Note, that the overall CV is conducted two times: one time
for each D̂i without any restrictions and a second time for
two groups of encodings, for example, for SeBEs and StBEs.
As mentioned above, it might be the case, that a tertiary
structure approximation failed. Consequently, a dataset D̂i ,
based on a StBE, might lack certain sequences, but the two-
group CV needs to ensure equal records in both D̂i ∈ SeBEs
and D̂k ∈ StBEs. Thus, in the case of a two-group CV, we
compute the intersection of the record labels and remove
the additional rows from D̂i prior to the actual CV.

Performance metrics. In order to evaluate the perfor-
mance of the encodings with a single measure, we calculated
the following metrics: F1-score, Matthews Correlation Co-
efficient (MCC), Precision, Recall (Sensitivity) and Speci-
ficity. Each of these measures has particular properties, al-
lowing them to highlight the advantages or disadvantages
of specific encodings concerning the task. Refer to Supple-
mentary Note S2 for the respective formulas. All metrics are
computed on the k-th split of the k-th row from Rp and Rt.

Similarity. The similarity of classifiers, that is, the similar-
ity of the predictions of unknown test examples from the
respective classifiers, trained with the encoded datasets D̂i

and D̂j , could stress specific strengths and weaknesses of
an encoding. To this end, we implemented two similarity
measurements, namely the Phi coefficient (31) (see Supple-
mentary Note S2) and the disagreement measure D (31,32),
with the respective output of the i-th classifier oi

k and of the
j-th classifier oj

k, denoted as:

Di, j = 1
n

n∑
k=1

∣∣oi
k − o j

k
∣∣ (6)

Analogous to the performance metrics, we computed the
particular similarity for the k-th CV split on the k-th row of
the i-th and the j-th classifier outputs Ri

p and R j
p, respec-

tively. Finally, the overall similarity is the average across all

splits. The two-group CV is the basis for the similarity mea-
sures since the output of the classifiers i and j, need to be
traceable to the same sequences.

Critical difference. There are several statistical tests for
evaluating machine learning models trained on multiple
datasets. Depending on the classification task at hand,
Santafé et al. (2015) provided an overview of the recom-
mended procedure (33). In the present case, we considered
the models trained on many encoded datasets as the sta-
tistical comparison of several classifiers trained on several
datasets. In particular, we assume, that using the RFC mod-
els trained on k encoded datasets instead of k algorithms
fulfills the criteria for the Friedman statistic � 2

F, meaning
the models are related, i.e. paired, and each fold is indepen-
dent of each other:

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ (7)

with the the Iman and Davenport correction:

FF = (N − 1)χ2
F

N(k − 1) − χ2
F

(8)

in order to verify, whether one of the models outperforms
another. That is, to reject the null hypothesis, which states,
that there is no difference between the classifiers. In partic-
ular, the Friedman test compares the ranks rj

i of the j-th
model validated on the i-th fold. The average rank is de-
noted as Rj = 1

N

∑
i r j

i calculated on N folds and k trained
classifiers using k − 1 degrees of freedom. Moreover, FF is
F-distributed with k − 1 and (k − 1) (N − 1) degrees of
freedom (34).

The alternative hypothesis states, that there is a statis-
tically significant difference across the models. In the case
of acceptance, the post-hoc analysis using the Nemenyi test
unveils the significantly different models. Hence, the critical
difference CD, denoted as

CD = qα

√
k(k + 1)

(6N)
(9)

is computed using the critical value q�, which is based on the
Studentized range statistic with k(N − 1) degrees of freedom
and a significance level of � = 0.05. Two classifiers perform
significantly different, if |Rj − Rĵ | ≥ CD (34).

The statistical tests are implemented as part of the R-
package scmamp v0.2.55 (35).

Encoding correlation. As already pointed out in a previous
section, many encoded datasets are either intrinsically cor-
related, for instance, the AAI-based encodings or derived
from the same encoding group, but with slightly different
parameters, for example, the window size. Ultimately, we
are dealing with high-dimensional, potentially very similar
datasets of varying dimensions. In order to measure the de-
gree of correlation, we utilized the adjusted RV-coefficient,
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which has been developed for these particular case (36):

RVad j (X, Y) =
∑p

i=1

∑q
j=1 r 2

ad j (xi , yj )√∑p
i, j=1 r 2

ad j (xi , xj )
∑q

i, j=1 r 2
ad j (yi , yj )

(10)

with r2
adj(x, y) being the adjusted Pearson correlation coef-

ficient (see Supplementary Note S4, Equation S10) between
two feature vectors, denoted as:

r 2
ad j (x, y) = 1 − n − 1

n − 2
(1 − r 2(x, y)) (11)

Moreover, X and Y refer to the encoded datasets D̂i with
p and D̂j with q features as well as n encoded sequences,
respectively. The i-th feature vector from X is denoted as
xi and the j-th feature vector from Y is denoted as yj. In-
dahl et al. (2015) implemented the adjusted RV-coefficient
as part of the MatrixCorrelation R-package, which we uti-
lized in version 0.9.4 (37). Since an all versus all calculation
is computationally expensive, we determined the RVadj only
for the top 50 encodings, based on the F1-score.

Encodings across multiple domains

For the comparison of encodings across multiple datasets,
i.e. biomedical domains, we merged the encodings into
groups (see Supplementary Table S4) and considered the
best-performing encoding (average F1-score of the CV re-
sults) as the group representative. Based on these, we ranked
the encoding groups across all datasets in order to un-
cover domain-specific patterns. Moreover, we clustered the
datasets and encoding groups by means of the hierarchi-
cal clustering using the UPGMA (Unweighted Pair Group
Method with Arithmetic mean) method with the euclidean
distance (38). We used the implementation provided by the
SciPy package (39).

Moreover, for each dataset D̂i , encoded via the amino
acid composition encoding, we applied t-SNE with default
settings on the sequences of the positive class as well as
for both classes. Thus, each s+

i and si is embedded in the
same two-dimensional space, allowing insights specifically
regarding the sequence similarity within various biomedical
domains and the diversity of the datasets on the sequence
level.

Data visualizations

The results are visually depicted and summarized by means
of Altair v4.1.0 statistical visualization library (40). In par-
ticular, we plotted the results for analyzing two kinds of cat-
egories (single datasets and summary graphics for all en-
coded datasets). We followed the 10 simple rules on how
to colorize biological data visualizations and applied them
in our workflow (41). Note, that in general the choice of
the top encodings is made due to the corresponding F1-
score. Refer to the Supplementary Note S3 for more de-
tails. Finally, the visualizations are aggregated into an inter-
active report, which can be found at https://peptidereactor.
mathematik.uni-marburg.de/.

RESULTS

Workflow

The PEPTIDE REACToR features high-throughput capa-
bilities and a modular design, allowing the processing of
an arbitrary amount of encodings and datasets. Novel en-
codings and additional datasets can be investigated, mak-
ing it sustainable and future-ready. The benchmark is set
up as a high-throughput, large-scale Snakemake (18) work-
flow. In particular, it is implemented with three important
goals in mind: first, efficient use of the available comput-
ing power, second, a high parallelization and third, make it
findable (F), accessible (A), interchangeable (I) and reusable
(R), according to the FAIR data principles (17). However,
as the different preprocessing, encoding, as well as bench-
mark tasks are very diverse and the implementation as one
large workflow is cumbersome, the workflow has been de-
signed in a way, that multiple meta nodes, responsible for a
specific task or algorithm, are aggregated to a meta work-
flow. Each meta node is a Snakemake pipeline itself, ex-
posing a defined application programming interface (API),
thus, making them interchangeable and reusable. For an
easy setup and high reusability, the meta workflow is exe-
cuted within a Docker v19.03.2 (https://www.docker.com/)
environment using Conda v4.8.3 (https://docs.conda.io/en/
latest/) for package management.

Performance

In general, the performance of the SeBE groups are supe-
rior to the StBE groups (see Figure 2). As an exception, the
qsar encoding works better on some of the hiv datasets. We
also observed an increased performance on datasets with
relatively balanced class sizes, i.e. the more imbalanced a
dataset, the poorer the performance. The hiv v3 dataset is
an exception. Albeit its striking imbalance, i.e. 200 versus
over 1000 sequences for positive and negative class, respec-
tively, the performance of all encodings is good. In addi-
tion, we were not able to observe specific encoding groups
that are more powerful on certain biomedical classification
tasks (see Supplementary Figure S1). The performance does
not seem to follow a specific pattern. For instance, all encod-
ing groups showed average performance on the cpp mlcppue
dataset, although the classification of the remaining cpp
datasets was clearly better.

Ranks. Three groups stood out: the cksaap, the dis-
tance frequency and the qsar-based encodings (see Figure
3). Encodings within these groups were more often among
the top 3, compared to encodings from the remaining ones.
In contrast, the majority of the encoding groups, in partic-
ular StBE groups, were rarely among the best.

Clustering. An automated clustering confirmed our find-
ings mentioned above. One can observe two major clus-
ters for the encoding groups and datasets, respectively (see
Figure 4). The encoding ones include mainly the SeBE
and StBE groups. The former can be further distinguished
in three sub-clusters, ranging from (i) the qsar to the
ctdd, (ii) the ctdt to the fldpc , as well as (iii) the egaac
to the moran encoding groups, although no real pattern

https://peptidereactor.mathematik.uni-marburg.de/
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Figure 3. Ranked encoding groups performance, sorted by class imbalance and encoding type. Color coding corresponds to the ranks of encodings across
datasets. The x-axis is organized by sequence- and structure-based encodings and the y-axis is sorted by class imbalance (cut-off 0.35). Groups are separated
by gray bars. An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

emerges within these. An exception are encodings based
on the dipeptide composition, namely the dde, dpc and the
fldpc encoding, as these are all within the second clus-
ter. However, the gdpc encoding can be found in the first
cluster.

Regarding the dataset clusters, the larger of the two
can be divided again into three parts, namely (i) from the
hiv bevirimat to the hiv ddi, (ii) the cpp cellppdmod to the
atb antitbp, and finally (iii) from the cpp kelmcpp to the
hiv sqv datasets. Albeit the latter includes predominantly hiv
related datasets, in general no actual patterns can be ob-
served within the groups. In addition, a two-dimensional
embedding of the sequences of the positive class explains
some of the dataset clusters (see Supplementary Figure S2).
One example is the grouping of the hiv nfv, hiv rtv and

hiv idv datasets. The sequences of these datasets form simi-
lar, compact clusters.

Median performance. A closer examination of the encod-
ings reveals groups where the range spanned between the
worst and the best encoding is noticeable, meaning the best
encodings show similar performance compared to the top
encodings across all groups and vice versa (see Supplemen-
tary Figure S4). In addition, the StBEs show in general
worse performance compared to the SeBEs. This can be ver-
ified by considering the metrics in detail (see Supplemen-
tary Figures S5 and S6). StBEs are mainly located more
to the right, i.e. showing a smaller value of the respective
metric. However, by comparing adjacent encodings in Sup-
plementary Figures S5 and S6, we found no significant dif-

https://peptidereactor.mathematik.uni-marburg.de/
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Figure 4. Encoding groups performance, clustered by biomedical domain and encoding group. Color coding corresponds to the max F1-score of a group.
The x-axis is arranged by clustering datasets, i.e. the biomedical application. The y-axis is organized by clustering sequence- and structure-based encodings.
An interactive version of this plot can be found at https://peptidereactor.mathematik.uni-marburg.de/.

ferences (42). Furthermore, some of the outliers explain
the gap between the best and the worst encodings, men-
tioned above. Overall, encodings from the same group are
frequently among the best encodings, i.e. if two encodings
are derived from the same group, but with different parame-
ters, the performance is similar. By considering the receiver-
operation characteristic (ROC)- and the Precision-Recall
(PR)-curve areas of the overall top 6 encodings as well as
the top 3 SeBEs and the top 3 StBEs, the observations men-
tioned above can be further endorsed (see Supplementary
Figure S7).

Similarity

The similarity of the classifier outputs based on the Phi cor-
relation indicates that encodings within groups and simi-
lar performing ones reveal a higher correlation (see Sup-
plementary Figure S8). This can be verified by specifically
considering SeBEs versus StBEs, which show in general a

lower similarity. Furthermore, the diversity of the predic-
tions, i.e. the disagreement measure of the classifier out-
puts, underpins these observations, since similar encodings
as well as similar outputs leading to a lower diversity, hence
greater similarity (see Supplementary Figure S8).

Class separation. With this respect, considering not only
the diversity but also the probabilities predicted by a partic-
ular encoding combination, one can observe that the clus-
tering quality, i.e. the classification capability of two encod-
ings, measured by the Davis-Bouldin score (DBS), is often
dependent on the diversity. In particular, by combining a
well-performing SeBE and StBE, which show higher diver-
sity compared to the best group-independent encodings, an
increased DBS, hence better class separation, can be ob-
served for the former (see Supplementary Figure S9).

However, this is not always the case (see Supplementary
Figure S10). Albeit the encoding diversity and the DBS of

https://peptidereactor.mathematik.uni-marburg.de/
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the clusters are related, the DBS seems to increase only until
a particular diversity, meaning, that a too diverse classifier
output negatively affects the class separation furthermore.

Critical difference. The observations made by the similar-
ity measurements are further statistically revised by the crit-
ical difference of the respective classifier outputs. The criti-
cal difference unveils a great variety of encodings, which are
not significantly different (see Supplementary Figure S11).
Like above, this can be specifically observed for encodings
from one group, which is in accordance with the previous
experiments. However, the psekraac and the ngram groups
are an exception (see Supplementary Figure S11). In addi-
tion, encodings, which surpass the critical threshold by sev-
eral orders of magnitude, are less present (see Supplemen-
tary Figure S11).

Dataset correlation. Finally, the measured correlations,
solely based on the encoded datasets, verify our observa-
tions made throughout the analyses (see Figure 5). The re-
sults illustrate foremost that encodings, originating from the
same group, are clustered in separate branches. In addition,
considering specifically StBEs, also here a clustering in an
own sub-branch can be observed. This is in agreement with
our findings from above, i.e. similar encodings are jointly
clustered and thus, their predictions are also often related
significantly.

Encoding recommendation

Based on our results elaborated above, we are not able to de-
termine encodings, which can be specifically recommended
for a particular application. However, following our find-
ings a general guideline can be provided:

1. Some of the encoding groups are often among the top
3. Refer to Figure 3 for an overview and to which this
applies in particular. Encodings from these groups are
in general superior and should be preferably applied.

2. SeBEs are faster to compute and show in general a
higher performance; thus, they should be preferred over
the StBEs (see Figure 2 and Supplementary S13). How-
ever, combining SeBEs and StBEs to an ensemble classi-
fier could outperform single SeBEs (see (7) and Supple-
mentary Figure S9).

3. The dataset size should be also considered (see Supple-
mentary Figure S12), i.e. we recommend for larger ones
to carefully deliberate the choice of encodings. Contrary,
for smaller datasets all encodings can be computed with-
out hesitation.

4. A few encodings show better performance on imbal-
anced datasets. Refer to the Figure 3 for an overview and
to which encodings/datasets combination this applies to.

5. Consider the size parameter for autocorrelation-based
encodings (cksaagp, cksaap, socnumber, qsorder, nm-
broto, moran , ksctriad, geary , eaac, apaac , paac,
egaac , and psekraac). Shorter sequences require a
smaller, for example, window size and vice versa.

6. Select solely one particular encoding from a parameter-
ized encoding group. Encodings from the same group of-
ten show a similar performance (see Supplementary Fig-

ures S5, S8, and S11). This is due to highly correlated
encoded datasets (see Supplementary Figure S5).

7. Use ensemble methods and aggregate different encod-
ings to a meta learner in order to improve the perfor-
mance.

8. For encodings that are seemingly relevant for a specific
task, but fail in practice, extend the encoding choice it-
eratively, i.e. be less stringent with respect to the points
mentioned above, in order to find encodings with im-
proved performance.

DISCUSSION

We presented here, to the best of our knowledge, the
first large-scale comprehensive study on peptide encod-
ings. In particular, we aggregated numerous sequence- and
structure-based encodings (SeBEs and StBEs, respectively)
as well as datasets from a wide range of biomedical do-
mains. Albeit proteins and peptides may exhibit multi-
functionality (43), we limited our case study to two-class
classification tasks. Hence, we can exclude that an insuffi-
cient size of the respective classes affects the prediction neg-
atively, ultimately decreasing the complexity of this work
and allowing for more robust conclusions.

The choice of the Random Forest classifier (RFC) as the
default machine learning model also reduces the complex-
ity. A hyper-parameter optimization (HPO) is less impor-
tant as it would be for other models (30). In addition, the
built-in feature selection discards irrelevant features, thus
RFCs standardize the pre-condition for all encodings. This
also reflects applied machine learning, where feature selec-
tion is a standard measure and encodings would be ulti-
mately assessed based on their representative feature sub-
set. Nevertheless, HPO (including the choice of the classi-
fier) has the possibility to impact the encoding performance
slightly. In order to cope with the computational feasibility
we omitted an in-depth HPO. However, further research is
necessary to address the impact of HPO on the encoding
performance.

All in all, our study closes the gap between a broad range
of peptide encodings and the challenge which to use on a
specific biomedical dataset. We observed that no particu-
lar encoding group shows superior performance within a
biomedical domain, i.e. no general pattern emerged from
the respective encoding performance. However, insights are
hereinafter discussed in more detail.

Performance

The encoding performance depends on two main charac-
teristics. First, the class imbalance and second, the type,
i.e. SeBE or StBE. While the former is not surprising, as it
needs more sophisticated measures for coping, the second
is potentially due to the initial tertiary structure approxi-
mation. Thus, in many cases, the structure is probably un-
related with the in vivo one. In contrast, for the database,
we used only sequences with a known structure deposited
at the PDB. This could be the reason, why the general per-
formance of StBEs is lower compared to SeBEs, but the
predictions are still satisfying. We suspect that disordered
regions also affect the prediction negatively, since no con-
formational information can be derived from it.
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Figure 5. Top 50 datasets correlation. Correlation of top 50 encoded datasets based on the adjusted RV-coefficient. Color coding corresponds to the
encoding group. The graphic shows the example of the hiv ddi dataset. The online version of this plot can be found at https://peptidereactor.mathematik.
uni-marburg.de/.

A further reason for a convincing prediction is the se-
quence similarity within and across the positive and the
negative class. Regarding the former, the qsar encodings ex-
traordinary performance for some of the hiv datasets (see
Figure 3) could be due to overfitting, owing to very simi-
lar sequences (see Supplementary Figure S2). With this re-
spect, the hiv v3 dataset verifies this hypothesis further, as
it contains very similar sequences and almost all encodings
demonstrate very high performance on this dataset. In ad-
dition, the sequence embedding, shown in Supplementary
Figure S2, provides a further, visual explanation. Finally, a
low inter class similarity affects the class separation posi-
tively, which can also be observed by considering solely the

performance of the amino composition encoding (see Sup-
plementary Figure S3).

Albeit no real pattern emerges on the performance within
biomedical domains one can still observe slightly similar re-
sults on these datasets (see Supplementary Figure S1), pre-
sumably owing to redundant sequences. We collected the
datasets as they are and many studies build upon each other,
which explains overlapping sequences in some cases.

As mentioned above, the class imbalance as well as the en-
coding type contribute mainly to the encoding performance.
This explains also the result of the clustering, i.e. two ma-
jor clusters for datasets and encoding groups. An exception
refers to the ksctriad encoding, which clusters adjacent to

https://peptidereactor.mathematik.uni-marburg.de/
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StBEs, likely due to missing values (NA, see Figure 4) since
for too short sequences this encoding type cannot be cal-
culated. In addition, despite similar performance, it is not
possible to draw conclusions on a similar function of the
encodings. Far more datasets of the same biomedical appli-
cation would have been necessary.

The similar performance of within-group encodings can
be explained by adjacent parameter configurations, for ex-
ample, a slightly larger gap length or window size (see Sup-
plementary Figure S5), probably leading to only a marginal
information change. Moreover, this observation supports
our conducted psekraac filtering, since it is likely that many
of these encodings would perform similar, which in turn
question the necessity of computing all of them.

Similarity

The parameter configuration space for encodings emerg-
ing from the same group could also explain the similarity
of the classifier outputs. That is, adjacent parameters pro-
vide no further or new insights for the machine learning
model. This is in accordance with Kuncheva et al. (2003),
who stated that diversity is a crucial condition for effective
ensemble learning by mutually compensating weaknesses of
single models (31). Certainly, this would not be possible if
the classifier output is too similar. This is also the reason to
consider SeBEs and StBEs, which show continuously low
similarity (see Supplementary Figure S8) but also satisfying
performance (see Figure 4). However, we observed, that the
diversity cannot be arbitrarily high, since a greater diversity
does not necessarily imply an improved class separation (see
supplementary Figure S9).

The general trend, i.e. encodings from the same group
show similar performance and lead to similar predictions
can be verified by the statistical assessment, ultimately re-
vealing a great variety of non-significant differences (see
Supplementary Figure S11). The dataset correlation sup-
ports these observation impressively (see Supplementary
Figure S5). The exceptions are the pskraac and the ngram
encoding group, which is due to different sub-types, intrin-
sically generating different, within-group encodings.

Time versus performance

The total computing time depends on the dataset size,
i.e. the more sequences, the longer the required computation
(see Supplementary Figure S12). A more detailed look at
the total amount of sequences per dataset indicates that the
computation time depends on the dataset size (see Supple-
mentary Figure S12). However, the mean sequence length
does not necessarily lead to an increased calculation time
(see Supplementary Figure S12).

Moreover, some of the encodings impact the duration
crucially, above all the StBEs (see Supplementary Figure
S13). One can observe, that the majority of the SeBEs re-
quire less computation time and demonstrate at the same
time a higher performance. We added the elapsed time re-
quired for the tertiary structure approximation to the total
computation time of StBEs; thus, the calculation of the lat-
ter is in general prolonged. In addition, the tertiary struc-
ture approximation and the associated electrostatic hull en-
coding as well as the cgr and fldpc encoding, and finally

the psekraac filtering are main contributors to the total run
time (see Supplementary Figure S13).

Encoding recommendation

The recommendations serve as a general guideline, i.e. re-
searchers have to decide case-wise, which encodings to use
in particular. Some of the encodings seem to be redundant
and usage is not reasonable at the first glance. However, us-
ing ensemble methods could compensate for weaknesses of
single encodings, thus, even those encodings are applicable.
This is also a matter of the dataset size and available re-
sources. Moreover, although some encodings seem to work
on imbalanced datasets, more research is necessary to draw
meaningful conclusions.

CONCLUSION

Our study marks the first comprehensive benchmark on
various peptide encodings and we demonstrated, that in
general, the performance of all encodings is similar and
more or less independent from the biomedical task at hand.
This allows us to reduce the vast number of encodings dra-
matically, paving the way for more sophisticated optimiza-
tion methods in the future. A potential application refers
to automated ensemble classifier configuration or to ex-
tend established automated machine learning methods like
auto-sklearn (44). With this respect, a challenge remains
the continuous search space, which could be tackled with
pre-computed diversity measures to transform categorical
hyperparameters (encodings) into numerical ones. Addi-
tional research is also necessary to verify whether and how
StBEs can exhaust their full potential as part of ensemble
classifiers. However, datasets with many sequences aligning
to disordered regions can decrease the usability of StBEs
clearly.

Our reproducible, parallelized pipeline conducts differ-
ent analyses in order to get an expressive picture of the en-
coding performance across multiple biomedical domains.
The results are aggregated across multiple biomedical do-
mains and revamped as part of a great variety of interac-
tive visualizations. All standardized datasets are available
for download to comply with FAIR standards. The PEP-
TIDE REACToR allows researchers not only comparison
at one glance, but also provides the state of the art for future
encoding benchmarks, bundled in a single platform. With
this respect, an extension is conceivable in order to allow
researchers to upload their own (private) datasets.
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