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Abstract: Quantum image encryption offers major advantages over its classical counterpart in terms
of key space, computational complexity, and so on. A novel double quantum image encryption
approach based on quantum Arnold transform (QAT) and qubit random rotation is proposed in
this paper, in which QAT is used to scramble pixel positions and the gray information is changed
by utilizing random qubit rotation. Actually, the independent random qubit rotation operates once,
respectively, in spatial and frequency domains with the help of quantum Fourier transform (QFT).
The encryption process accomplishes pixel confusion and diffusion, and finally the noise-like cipher
image is obtained. Numerical simulation and theoretical analysis verify that the method is valid and
it shows superior performance in security and computational complexity.

Keywords: information security; Arnold transform; quantum image encryption; quantum Fourier
transform; quantum image representation

1. Introduction

Quantum computation has shown great potential for improving information processing speed
and enhancing communication security [1–3]. The quantum image encryption technology exploits
quantum mechanics principles, such as parallel and entanglement, to further protect the security of
information transmission and decrease computational resource [4–7].

Due to the promising prospect of quantum image encryption, various kinds of algorithms are
gradually proposed [8–13]. Among the existing algorithms, most of them are designed in spatial
domain. For example, Zhou proposed a quantum image encryption algorithm using three geometric
transformations, including image translation, image mirror transformation, and image sub-block
swapping, which changes pixel position to some extent [14]. However, this method relies solely on
geometric transformation, which leads to the increase of correlation of adjacent pixels and therefore
the encryption performance is seriously affected. Except using geometric transformation to scramble
pixel positions, Song proposed a novel quantum image encryption method by introducing additional
color transformations, which realized pixel values diffusion and obtained better encryption results [15].
Moreover, Zhou introduced hyper-chaotic system to encrypt quantum image through XOR operation
implemented with control-NOT gate [16]. Li proposed a simple color image encryption method by
using 24 qubits to represent color information and employing controlled rotation gates to transform
the basic state into balanced superposition state, which makes the encrypted image like a uniform
white noise [17].

The quantum version of classical frequency transform tools, such as quantum Fourier transform
(QFT) [18], quantum wavelet transform (QWT) [19], quantum discrete cosine transform (QDCT) [20],
and promote the development of quantum image processing algorithm in frequency domain [21,22].
These quantum transforms mentioned above have lower computational complexity than their classical
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counterpart. Utilizing these quantum transform tools, some efficient quantum image encryption
methods are investigated. Yang proposed novel quantum image encryption algorithms based on
double random phase encoding framework [23], where the QFT substitutes the Fourier transform
and the encryption performance of which surpasses its classical counterparts in terms of statistical
analyses, robustness, and computational complexity. After that, Yang extended the quantum double
random phase encoding scheme to encrypt color image [24], which introduces color image encryption
into quantum scenarios in frequency domain. Recently, Li proposed a quantum encryption and
compression scheme based on QDCT and a five-dimensional hyper-chaotic system [25].

Whether the quantum image encryption algorithms devised in spatial domain or frequency domain,
image scrambling operation plays an important role. Jiang investigated quantum Arnold transform and
Fibonacci transform method, where the quantum circuits are given and computational complexity is
analyzed [26,27]. The chaos theory is also widely used in image encryption schemes [28–32]. Diaconu
proposed a chaos based image encryption scheme by employing the circular inter-intra permutation
strategy [33]. Stoyanov presented a Chebyshev polynomial based image encryption scheme, which
shows the advantage in terms of key space [34]. Parvees utilized logistic map and key image to
efficiently encrypt large size image [35]. Soon afterwards, Zhou suggested the generalized Arnold
transform with feature of chaotic mapping [36,37]. In addition, a generalized quantum affine transform
is proposed to scramble images, which can encode pixel positions effectively [38]. Quantum Hilbert
scrambling method is also introduced and achieves good permutation effect [39]. These scrambling
methods adopt position space scrambling strategies, which do not change color space. To overcome
this defect, Zhou proposed a bit-plane scrambling method that is based on Gray-code [40], which
simultaneously changes the pixel positions and pixel values, and it even can be used directly to encrypt
images. By combining the bit-plane scrambling method and the Hilbert scrambling method, Naseri
proposed a quantum gray-scale image encoding scheme, where a randomly generated binary key is
used to select encoding scheme [41].

The existing quantum image encryption algorithms mainly focus on single gray or color image,
while the research on double quantum image encryption or multiple quantum image encryption is still
scarce. In view of this, a double quantum image encryption algorithm that is based on quantum Arnold
transform (QAT) and qubit random rotation is proposed. Firstly, the two images to be encrypted are
represented through a flexible quantum image representation model called flexible representation
for quantum images (FRQI). Next, the two quantum states are scrambled using QAT with different
parameters, and one of the scrambled quantum images is encoded into amplitude part and another is
encoded into phase part. Then the independent random qubit rotation operates once, respectively, in
spatial and frequency domains with the help of quantum Fourier transform (QFT) to accomplish pixel
confusion and diffusion. The noise-like cipher image can be finally obtained by performing inverse QFT.
The original images can be exactly recovered without cross-talk. The quantum parallel computation
speeds up the process of double image encryption and decryption. Numerical simulation results
and theoretical analyses demonstrate that the proposed algorithm is effective and the computational
complexity is decreased.

2. Preliminary Knowledge

2.1. FRQI Representation Model

The first step of quantum image processing is to design a suitable representation model, which can
be run on quantum computers for compiling digital image. Nowadays, several efficient representation
models are proposed [3]. The FRQI representation model [42] is widely used, as it is similar with pixel
representation in classical computer and accord with human perception of vision.
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The FRQI representation model stores gray and geometric information using a normalized
quantum state. For a gray image M of size 2n × 2n, the representation can be expressed, as follows,

|M(θ)〉 = 1
2n

22n−1

∑
i=0
|ci〉 ⊗ |i〉, i = 0, 1, 2, · · · , 22n − 1 (1)

|ci〉 = cos θi|0〉+ sin θi|1〉, θi ∈ [0, π/2] (2)

where θ =
(
θ1, θ2, · · · , θ22n−1

)
is the vector used to encode phase information of gray values and

|i〉 = |y〉|x〉 = |yn−1yn−2 · · · y0〉|xn−1xn−2 · · · x0〉 is used to encode corresponding pixel positions of θ.
The symbol ⊗ denotes tensor product. There are only 2n + 1 qubits required when encoding image
and the computational complexity of preparation process is O

(
24n).

2.2. Quantum Arnold Transform (QAT)

The Arnold transform, used as method for image pixel scrambling, is built on the research of
ergodic theory and it was extended to quantum image processing in 2014 by Jiang et al. [26]. QAT
aims to transform the image into a confused form through changing the coordinates of pixels.

Suppose that the image of size 2n× 2n to be scrambled is denoted as I(x, y), where (x, y) represent
pixel positions. A two-dimensional Arnold transform is described, as follows,(

x′

y′

)
=

(
1 1
1 2

)(
x
y

)
(mod 2n), x, y = 0, 1, · · · , 2n (3)

i.e., {
x′ = (x + y)mod 2n

y′ = (x + 2y)mod 2n (4)

The output (x′, y′) is the scrambled position information and the inverse transform can be deduced
as follows, (

x
y

)
=

(
1 1
1 2

)−1(
x′

y′

)
(mod 2n) =

(
2 −1
−1 1

)(
x′

y′

)
(mod 2n) (5)

The scrambling period of Arnold transform is associated with the size of image, and some
determined values for particular cases are given in Table 1. Although the period of Arnold transform
cannot be accurately computed, it can be seen that the period grows with the increase of image size.
The quantum circuits shown in Figure 1 are used to accomplish the QAT scrambling. The detailed
information of quantum adder module and adder-mod2n module is presented in [27].

Table 1. The scrambling period of Arnold transform.

Image Size Period

16× 16 12
32× 32 24
64× 64 48

128× 128 96
256× 256 192
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Figure 1. The scrambling circuits for (a) x  and (b) y . 
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3. Proposed Double Quantum Image Encryption Scheme

In this section, the proposed double quantum image encryption scheme based on QAT and qubit
random rotation is illustrated in detail. Let the two images to be encrypted be respectively denoted
as I1 and I2. According to the FRQI representation model, the original images can be represented
as follows,

|I1(θ)〉 = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗ |yx〉

|I2(ω)〉 = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗ |yx〉

(6)

where the gray values are represented as
∣∣αyx

〉
= cos θyx|0〉 + sin θyx|1〉,

∣∣βyx
〉

= cos ωyx|0〉 +
sin ωyx|1〉, and

{
θyx, ωyx

}
∈ [0, π/2]. The whole double quantum image encryption algorithm consists

the following five steps.
Step 1. Scramble the two original images |I1〉 and |I2〉 in spatial domain using QAT to get

∣∣I′1〉
and |I′2〉. The parameters of QAT corresponding to |I1〉 and |I2〉 are respectively denoted as p1 and p2,
which represent the iteration times of scrambling.

∣∣I′1〉 = QATp1
(|I1〉) = 1

2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗QATp1

(|yx〉)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗ (|y′x′〉)

(7)

|I′2〉 = QATp2(|I2〉) = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗QATp2

(|yx〉)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗ (|y′x′〉)

(8)

where QAT(|yx〉) = |(x + 2y)mod 2n〉|(x + y)mod 2n〉. There are a total of p1 times scrambling
operations for quantum image |I1〉 and p2 times for |I2〉.

Step 2. Encode the scrambled image |I′2〉 into a phase function and the scrambled image
∣∣I′1〉

is regarded as amplitude. Then, a new complex image |I′〉 involving all the information of the two
original images can be expressed, as follows,

|I′〉 =
∣∣I′1〉 exp(iπ|I′2〉)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉

exp
(
iπ
∣∣βyx

〉)
⊗ |y′x′〉 (9)
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Step 3. Perform qubit random rotation on quantum image |I′〉 to transform its each gray value
angle into a new angle. The rotation matrix Ryx

(
φyx
)

defined as follows is used to change angles in
spatial domain,

Ryx
(
φyx
)
=

[
cos φyx − sin φyx

sin φyx cos φyx

]
(10)

where φyx is uniformly distributed in the interval [0, 2π]. The controlled rotation matrix CRYX(φYX)

defined as follows is used to change angles in position (Y, X),

CRYX(φYX) = I⊗
2n−1

∑
y=0

2n−1

∑
x=0
yx 6=YX

|yx〉〈yx|+ RYX(φYX)⊗ |YX〉〈YX| (11)

The controlled rotation matrix CRYX(φYX) is a unitary matrix because of CRYXCR†
YX = I⊗2n+1.

The CR†
YX represents the Hermitian conjugate of CRYX and the symbol I denotes unit matrix.

In order to complete the rotation of all positions, the products of 22n controlled rotation matrices
are applied on quantum image |I′〉 and obtain |E1〉.

CR(|I′〉) =
2n−1
∏

Y=0

2n−1
∏

X=0
CRYX(|I′〉)

=
1
2n

2n−1

∑
y=0

2n−1

∑
x=0

Ryx
(∣∣αyx

〉
exp

(
iπ
∣∣βyx

〉))
⊗ |y′x′〉

=
1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣ fyx
〉
⊗ |y′x′〉

= |E1〉

(12)

Step 4. Transform the obtained |E1〉 into frequency domain using QFT. The QFT is the identical
transform of discrete Fourier transform, which is defined as follows,

QFT(|i〉) = 1√
N

N−1

∑
j=0

e2πijk/N |j〉 (13)

Similar to the rotation in spatial domain, qubit random rotation is employed in the frequency
domain. Another rotation matrix Tyx

(
ψyx
)

defined as follows is used,

Tyx
(
ψyx
)
=

[
cos ψyx − sin ψyx

sin ψyx cos ψyx

]
(14)

where ψyx is also uniformly distributed in the interval [0, 2π]. The controlled rotation matrix CTYX
(
ψyx
)

is defined, as follows,

CTYX(ψYX) = I⊗
2n−1

∑
y=0

2n−1

∑
x=0
yx 6=YX

|yx〉〈yx|+ TYX(ψYX)⊗ |YX〉〈YX| (15)

The controlled rotation matrix CTYX(ψYX) is also a unit matrix and CTYXCT†
YX = I⊗2n+1.

The rotation of frequency domain can be accomplished using the product of 22n controlled rotation
matrices operate on quantum image |E1〉 and obtain |E2〉.
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CT(QFT(|E1〉)) =
2n−1

∏
Y=0

2n−1

∏
X=0

CTYX(QFT(|E1〉))

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

(
QFT

(∣∣αyx
〉

exp
(
iπ
∣∣βyx

〉)))
⊗ |y′x′〉

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

Tyx
(
QFT

(∣∣ fyx
〉))
⊗ |y′x′〉

= |E2〉

(16)

Step 5. Execute the inverse quantum Fourier transform (iQFT) and the final encrypted quantum
image |E〉 is obtained.

|E〉 = iQFT(|E2〉)

= 1
2n iQFT

(
2n−1

∑
y=0

2n−1

∑
x=0

Tyx
(
QFT

(
Ryx
(∣∣αyx

〉
exp

(
iπ
∣∣βyx

〉))))
⊗ |y′x′〉

)
(17)

The decryption scheme is just the inverse of the aforementioned encryption scheme as the
quantum transformations used are unitary and invertible. The keys including parameters of QAT
p1 and p2, two rotation matrices R(φ) and T(ψ) are needed to correctly decrypt the cipher image.
Corresponding to the encryption procedure, the decryption process can be expressed, as follows.

Step 1. Perform QFT on the encrypted quantum image |E〉 and obtain |E2〉,

QFT(|E〉) = QFT(iQFT(|E2〉)) = |E2〉 (18)

Step 2. Execute quantum rotation on |E2〉 using the key T(ψ).

CT−1(|E2〉) =
2n−1

∏
Y=0

2n−1

∏
X=0

CT†
YX(|E2〉)

=
2n−1

∏
Y=0

2n−1

∏
X=0

CT†
YX

(
1

2n

2n−1

∑
y=0

2n−1

∑
x=0

Tyx
(
QFT

(∣∣ fyx
〉))
⊗ |y′x′〉

)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

T−1
yx Tyx

(
QFT

(∣∣ fyx
〉))
⊗ |y′x′〉

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

QFT
(∣∣ fyx

〉)
⊗ |y′x′〉

= QFT(|E1〉)

(19)

Step 3. Apply iQFT on the result that was obtained in previous step and |E1〉 is attained. Then,
the qubit rotation is operated on |E1〉 with the key Ryx

(
φyx
)
. This step can be expressed as follows,

iQFT(QFT(|E1〉)) = |E1〉 (20)

CR−1(|E1〉) =
2n−1

∏
Y=0

2n−1

∏
X=0

CR†
YX(|E1〉)

=
2n−1

∏
Y=0

2n−1

∏
X=0

CR†
YX

(
1

2n

2n−1

∑
y=0

2n−1

∑
x=0

Ryx
(∣∣ fyx

〉)
⊗ |y′x′〉

)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

R−1
yx Ryx

(∣∣ fyx
〉)
⊗ |y′x′〉

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣ fyx
〉
⊗ |y′x′〉

= |I′〉

(21)
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Step 4. Extract two quantum images
∣∣I′1〉 and |I′2〉 from |I′〉,{ ∣∣I′1〉 = abs(|I′〉)
|I′2〉 = angle(|I′〉)/π

(22)

where abs(·) and angle(·) denote the extraction of amplitude and phase, respectively.
Step 5. Execute inverse QAT (iQAT) on quantum images

∣∣I′1〉 and |I′2〉 with keys p1 and p2, thus
the original images |I1〉 and |I2〉 are decrypted.

|I1〉 = iQATp1

(∣∣I′1〉)
= iQATp1

(
1

2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗ (|y′x′〉)

)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗ iQATp1

(|y′x′〉)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣αyx
〉
⊗ |yx〉

(23)

|I2〉 = iQATp2(|I
′
2〉)

= iQATp2

(
1

2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗ (|y′x′〉)

)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗ iQATp2

(|y′x′〉)

= 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

∣∣βyx
〉
⊗ |yx〉

(24)

where iQATp1
denotes operate p1 times iQAT on pixel position |y′x′〉 and iQATp2

operates in a similar
way. The iQAT can be expressed, as follows,

iQAT(|y′x′〉) = iQAT(|y′〉|x′〉)
= |(−x′ + y′)mod2n〉|(2x′ − y′)mod2n〉
= |y〉|x〉 = |yx〉

(25)

4. Numerical Simulation and Discussion

Due to the lack of quantum hardware to implement the proposed double image encryption
algorithm, numerical simulations are made on a classical computer with the MATLAB software
(R2017a, MathWorks, Natick, MA, USA). The quantum states and quantum transformations can be
simulated using complex vectors and unitary matrices. Therefore, the MATLAB is good at dealing
with linear algebra is selected as the simulation tool. The size of all the original images is 256× 256 and
the period of QAT is 192. The image is scrambled when the parameter of QAT is not exactly equal to
the multiple of period. The randomly selected iteration times of QAT can be severed as keys and they
are set to p1 = 42 and p2 = 73 in the experiment. The rotation matrices R(φ) and T(ψ) are randomly
generated. Three pairs of original images and corresponding cipher images are shown in Figure 2,
from which can be seen that the encrypted images are noise-like and security analyses are given in the
following subsections.
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4.1. Histogram Analysis

The gray histogram is generally used to view the pixel distribution by count the frequency of
pixels in all gray level. The histograms corresponding to Figure 2 are plotted in Figure 3, from which
can be seen that the histogram of each original image is different from each other, but the histograms
of all the cipher images are similar. In addition, the histograms of the cipher images are smoother.
Therefore, there is no clue for eavesdroppers performing statistical attack or differential attack on the
encrypted images and any useful information cannot be obtained.
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4.2. Correlation Analysis

The adjacent pixels in natural images are highly correlated while such correlation should be break
for an ideal image encryption scheme. To verify the confusion and diffusion effect of the proposed
double quantum image encryption algorithm, the correlation coefficients (CC) in horizontal, vertical,
and diagonal directions are computed. Moreover, the correlation distributions are plotted.

The CC value of adjacent pixels is defined, as follows,

CC =

N
∑

l=1
(ul − u)(vl − v)√

N
∑

l=1
(ul − u)2 N

∑
l=1

(vl − v)2

(26)

where u and v represent two adjacent pixel values. The u and v denote mean value, i.e., u =
N
∑

l=1
ul/N

and v =
N
∑

l=1
vl/N .

Take the images shown in Figure 2 as example to test the correlation of adjacent pixels, and the CC
values in three directions are listed in Table 2. It can be seen that the CC values in the cipher image are
close to 0 in three directions, which means that the correlation is greatly decreased in cipher images.
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Table 2. Correlation coefficients of original images and cipher images.

Correlation Coefficient Horizontal Vertical Diagonal

Figure 2(a1) 0.5720 0.6781 0.5722
Figure 2(b1) 0.9557 0.9231 0.8861
Figure 2(c1) −0.0368 −0.0111 0.0135

Figure 2(a2) 0.8702 0.6628 0.6315
Figure 2(b2) 0.9045 0.9315 0.8633
Figure 2(c2) −0.0351 0.0396 −0.0260

Figure 2(a3) 0.9939 0.9859 0.9791
Figure 2(b3) 0.9548 0.9565 0.9079
Figure 2(c3) 0.0004 −0.0121 0.0128

In addition, in order to visualize the correlation distribution of original images and the cipher
image, 16,000 pairs of adjacent pixels are randomly selected from each direction. Take the images in
third group as example, the distributions in horizontal, vertical, and diagonal directions are respectively
shown in Figure 4a–i. The first row shows the horizontal distributions and second row shows the
vertical distribution, and the diagonal direction is shown in the last row. From the distribution, figures
of adjacent pixels can be seen that the proposed algorithm breaks the high correlation in original
images and therefore the eavesdroppers cannot obtain information from the statistical analysis.
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4.3. Information Entropy

The information entropy can reflect the spatial feature of gray distribution, which is defined using
the probability of gray value. As the gray level of experimental images is 0–255, suppose that the
probability of gray value i is P(i), then the information entropy IE can be calculated as

IE = −
255

∑
i=0

P(i) log2 P(i) (27)

The value of IE grows with the degree of confusion and the ideal value for encrypted image
should be 8. Table 3 lists the IE values of original images and cipher images, from which can be
seen that information entropy is increased. The results of information entropy coincided with the
correlation analysis.

Table 3. The information entropy of original and cipher images.

Images IE

Figure 2(a1) 7.1273
Figure 2(b1) 7.5693
Figure 2(c1) 7.7459
Figure 2(a2) 7.1208
Figure 2(b2) 6.7040
Figure 2(c2) 7.7289
Figure 2(a3) 7.4457
Figure 2(b3) 7.5046
Figure 2(c3) 7.7578

4.4. Noise Robustness

The images are usually interfered with noises during processing or transmission, which decrease
the quality of decrypted images. In order to value the robustness of anti-noise of the proposed
algorithm, Gussian noises with different intensity are added to the encrypted images. Take the second
group of image as example, let E denote the encrypted image and E′ represents the noisy encrypted
image, then the noise adding process can be expressed as

E′ = E + kG (28)

where G denotes (0, 1) Gussian noise and k is noise intensity. The decrypted images with different
noise intensity are shown in Figure 5a–f. Although the noise intensity increases to 120, the original
information can still be recognized.

In addition, the mean square error (MSE) is introduced to quantitative compare the difference of
between the decrypted image and the original image. The MSE is defined as

MSE =

2n
∑

i=1

2n
∑

j=1
(D(i, j)− I(i, j))2

2n × 2n (29)

where D(i, j) and I(i, j) denote the decrypted image and the original image, respectively. The MSE
curves under different intensities of noise are plotted in Figure 6. In combination with the decrypted
images that are shown in Figure 5, it can be seen that the proposed algorithm performs good in resisting
noise attacks. It also can be concluded that the QAT scrambling process improves the performance of
anti-noise in some degree.
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4.5. Key Sensitivity Analysis

For a good image cryptosystem, the cipher key should be sensitive to secure it against brute-force
attack. In the proposed algorithm, the keys include two independent random rotation matrices and
two parameters of QAT. Take the first group of image as an example, the decrypted images with
correct keys are shown in Figure 7a. Figure 7b shows the decrypted images with incorrect random
rotation matrix R(φ), from which can be seen that the recovered images are blurry. Figure 7c shows
the decrypted images with incorrect random rotation matrix T(ψ), from which can be seen that the
recovered images are noise-like and any useful information cannot be obtained. The decrypted images
with incorrect parameters of QAT are shown in Figure 7d,e, where the deviations of parameters are
3 and 8 respectively. Obviously, the original image can be successfully recovered when all the keys
are correct.
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In addition, the key space of the proposed algorithm is analyzed. To resist brute-force attack,
the key space should larger than 2100 under current computation ability. As the keys used are
independent, the total key space is the product of a single key space. The key space for QAT is about
215. The key space for random rotation matrix depends on the size of image, which is larger than
2256×256. Therefore, the key space is large enough to ensure the security of the proposed algorithm.
In addition, the key space of the proposed algorithm is compared with several state of art image
encryption algorithms [26,27,32–34]. The comparison results that are shown in Table 4 indicate that
the proposed algorithm has a larger key space.

Table 4. The key space comparison results.

Encryption Algorithms Key Space

Proposed algorithm 2256×256+15

Reference [28] 2298

Reference [29] 2299

Reference [34] 2375

Reference [35] 10248

Reference [36] 1058

4.6. Computational Complexity Analysis

The computational complexity of the proposed algorithm and classical counterpart is analyzed in
this subsection. The complexity of quantum algorithm depends on the basic logical element such as
Control-NOT gate and NOT gate. The complexity of quantum adder is about 28n [25]. The adder-mod
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module includes five adder modules and therefore the complexity of QAT is about 140n. As the
proposed algorithm uses twice QAT and the computational complexity in QAT scrambling is estimated
to 280n. In addition, the quantum circuits of QFT including n(n− 1)/2 basic gates and random
rotation operation has a O(n) complexity. Therefore, the complexity of the proposed algorithm
is O

(
n2). The computational complexity of each step and overall complexity is shown in Table 5.

By contrast, if this algorithm runs on a classical computer, all the operations are performed on every
pixel, then the complexity of Arnold transform and angle rotation is 22n. Besides, the computational
complexity of Fourier transform is O

(
n22n). Therefore, the complexity of the classical algorithm

is O
(
n22n), which is more complex than the quantum one. In a conclusion, the proposed double

quantum image encryption algorithm performs better than its classical counterpart in the aspect of
computational complexity.

Table 5. The computational complexity of each step and overall complexity.

Step 1 Step 2 Step 3 Step 4 Step 5 Overall Complexity

O(n) O(n) O(n) O
(
n2) O

(
n2) O

(
n2)

5. Conclusions

In this paper, a double quantum gray image encryption algorithm that is based on QAT and
quantum random rotation is proposed. The main contribution of this paper lies in encrypting double
quantum gray images by combining quantum permutation and qubits angle random rotation, which
further improves the encryption efficiency. The original two images can be completely retrieved
without distortion and cross-talk through using correct keys. The key space of the proposed method is
larger than the compared methods, which ensures the security to resist brute-force attack. Experimental
results and theoretical analysis show that the proposed algorithm is robustness to resist statistical
attack and noise attack. Moreover, the proposed algorithm is superior compared with its counterpart
in terms of computational complexity.

There are also some disadvantages in the proposed scheme, such as the histogram of the ciphertext
image, is not uniformly distributed. In addition, the color image usually presents abundant information,
so color image encryption should be paid more attention. We will focus on solving disadvantages and
putting forward double color image encryption schemes in our future research.
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