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Simple Summary: Porcine reproductive and respiratory syndrome virus (PRRSV)-specific sub- or
non-neutralizing antibodies promote the adhesion and internalization of the virion into host cells.
This phenomenon is known as antibody-dependent enhancement (ADE) of PRRSV infection. It has
long been accepted that Fc gamma receptors (FcγRs) are responsible for mediating ADE of virus
infection. However, few researchers pay attention to the role of the virus receptors in the ADE of virus
infection. In this study, we showed that activating FcγRs (FcγRI and FcγRIII) were responsible for
mediating PRRSV-ADE infection. Simultaneously, we showed that the viral receptors (sialoadhesin
and CD163) were involved in FcγR-mediated PRRSV-ADE infection. The extracellular domains 1-6 of
sialoadhesin and the scavenger receptor cysteine-rich 5 domain of CD163 might play central roles in
PRRSV-ADE infection. In conclusion, our studies indicated that activating FcγRs and virus receptors
were required for PRRSV-ADE infection. Our findings should allow a more precise understanding of
the structural basis for the mechanism of PRRSV-ADE infection, which would provide references for
screening targets of novel PRRS vaccines or antiviral drugs against the PRRSV.

Abstract: Antibody-dependent enhancement (ADE) is an event in preexisting sub-, or non-neutralizing
antibodies increasing the viral replication in its target cells. ADE is one crucial factor that in-
tensifies porcine reproductive and respiratory syndrome virus (PRRSV) infection and results in
PRRSV-persistent infection. Nevertheless, the exact mechanisms of PRRSV-ADE infection are poorly
understood. In the current research, the results of the ADE assay showed that porcine immunoglobu-
lin G (IgG) specific for the PRRSV significantly enhanced PRRSV proliferation in porcine alveolar
macrophages (PAMs), suggesting that the ADE activity of PRRSV infection existed in pig anti-PRRSV
IgG. The results of the RNA interference assay showed that knockdown of the Fc gamma receptor
I (FcγRI) or FcγRIII gene significantly suppressed the ADE activity of PRRSV infection in PAMs,
suggesting that FcγRI and FcγRIII were responsible for mediating PRRSV-ADE infection. In addition,
the results of the antibody blocking assay showed that specific blocking of the Sn1, 2, 3, 4, 5, or
6 extracellular domain of the sialoadhesin (Sn) protein or selective blockade of the scavenger receptor
cysteine-rich (SRCR) 5 domain of the CD163 molecule significantly repressed the ADE activity of
PRRSV infection in PAMs, suggesting that Sn and CD163 were involved in FcγR-mediated PRRSV-
ADE infection. The Sn1–6 domains of porcine Sn protein and the SRCR 5 domain of porcine CD163
molecule might play central roles in the ADE of PRRSV infection. In summary, our studies indicated
that activating FcγRs (FcγRI and FcγRIII) and viral receptors (Sn and CD163) were required for
ADE of PRRSV infection. Our findings provided a new insight into PRRSV infection that could
be enhanced by FcγRs and PRRSV receptors-mediated PRRSV-antibody immune complexes (ICs),
which would deepen our understanding of the mechanisms of PRRSV-persistent infection via the
ADE pathway.
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1. Introduction

Since first described three decades ago in the United States, porcine reproductive and
respiratory syndrome (PRRS) has been arguably one of the most economically significant
highly contagious diseases heavily impairing pigs around the globe [1]. The etiologic
agent is the RNA enveloped PRRS virus (PRRSV) in the Arteriviridae family. PRRSV
isolates are genetically grouped into two distinct species, the European PRRSV and North
American PRRSV [2,3]. Both subtypes of PRRSV are now extensively distributed and
cause abortions, late-term stillbirths, mummies, high mortality rates, poor growth, and
respiratory problems in pigs, incurring substantial economic losses in worldwide swine
production [4]. PRRSV has restricted host and cell tropism for the monocyte/macrophage
lineage. The porcine alveolar macrophages (PAMs) act as the principal cell targets for
PRRSV replication. Moreover, the Marc-145 cells support PRRSV growth in vitro [5]. Even
though PRRSV infection induces rapid humoral immune responses to produce a mass of
specific antibodies, these early antibody responses correspond to sub- or non-neutralizing
antibodies. The inadequate humoral immune responses cannot eliminate the virus from
the hosts. On the contrary, PRRSV depends on these sub- or non-neutralizing antibodies
for its invasion into host cells such as macrophages, monocytes, and dendritic cells (DCs).
This phenomenon is called antibody-dependent enhancement (ADE) [6,7]. ADE not only
promotes PRRSV entry into the host cells but also down-modulates the host antiviral
immunity and causes the poor effectiveness of vaccination, thereby leading to PRRSV-
persistent infection in swine herds [8–10]. Furthermore, ADE is also considered the main
obstacle to developing an efficacious PRRS vaccine [11]. Dissection of the ADE event will
contribute to understanding the pathogenesis of PRRSV and the rational design of novel
PRRS vaccines.

Receptors for the constant Fc domain (FcγRs) of the immunoglobulin G (IgG) are
broadly expressed on the surface of most effector leukocytes throughout the hematopoietic
systems, such as monocytes/macrophages, natural killer cells, DCs, B cells, and other
immune cells [12]. Based on their ability to recognize and bind the two primary confor-
mational states of the Fc portion of the IgG molecule, FcγRs have two basic types, type I
and type II. There are four kinds of FcγRs in type I receptors of humans and mammal
animals: FcγRI, FcγRII, FcγRIII, and FcγRIV [13]. FcγRI displays a relatively high affinity
for the IgG Fc domain and is able to interact effectively with monomeric IgG. FcγRII and
FcγRIII are low-affinity protein molecules and are only occupied by the IgG-containing
immune complexes (ICs). FcγRIV is an intermediate affinity receptor that can bind to
IgG2a and IgG2b [14,15]. All Fc receptors can mediate ADE of several virus infection,
including zika virus, dengue virus, Ebola virus, influenza virus, severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2), Ross River virus, West Nile virus, enterovirus, and
human immunodeficiency virus type 1 (HIV-1) [16–18]. So far, porcine type I FcγRs (FcγRI,
FcγRII, and FcγRIII) have been successively cloned and characterized. Of three classes
of FcγRs, porcine FcγRI and FcγRIII are the activating receptors belonging to a typical
transmembrane (TM) glycoprotein with an ectocytic peptide followed by a hydrophobic
domain and an endocellular region lack of known signaling transduction motifs [19,20].
However, their roles in the ADE of virus infection have not yet been well investigated.

Sialoadhesin (Sn), the first identified Siglec member in the Ig superfamily, has the typi-
cal features of a type I TM glycoprotein composed of an extracellular portion of seventeen
Ig-like domains, a TM fragment, and an intracellular segment [21,22]. Sn can participate in
endocytosis, antigen presentation, cell–cell interactions, activation of adaptive immunity,
inhibition of innate immune responses, and immune escape of HIV-1 [23,24]. Sn also serves
as a cellular receptor to capture and internalize important pathogenic microbes into their
host cells, such as PRRSV, HIV-1, Nipah virus, Hendra hemorrhagic fever virus, and so
on [25–27]. CD163 molecule is a member of the scavenger receptor cysteine-rich (SRCR)
protein superfamily and is exclusively expressed on the cytomembrane of macrophages.
CD163 molecule also belongs to type I TM glycoprotein, consisting of a sizeable ectocytic
region, a TM fragment, and a cytosolic tail [28]. Its extracellular area is composed of nine
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tandem repeat SRCR domains numbered 1–9. The SRCR domain is an ancient extracorpus-
cular domain containing about one hundred amino acid residues [29]. CD163 molecule is
capable of regulating the immune, anti-inflammatory, or inflammatory responses, and in-
ternal homeostatic balance, by recognizing and binding the host molecules and pathogens,
including polyribonucleotides, proteins, polysaccharides, lipids, and so on [30]. For in-
stance, binding the hemoglobin/haptoglobin complexes or bacteria to the CD163 mediates
the interleukin-10 synthesis, which induces the CD163 and heme enzyme production [31].
In addition, CD163 is a critical molecule in PRRSV entry into PAMs [32].

Although porcine FcγRs, Sn, and CD163 molecules have been identified for many
years, their roles in ADE of PRRSV infection are not well understood. We reported the
effects of porcine FcγRI, FcγRIII, Sn, and CD163 on ADE of PRRSV infection here. The
results would facilitate an understanding of the interaction between PRRSV-antibody
immune ICs, FcγRs, and viral receptors.

2. Materials and Methods
2.1. Cells and Virus

PAMs used in this study were separated by the bronchoalveolar lavage of the lungs
of PRRSV-negative piglets of 4 to 6 weeks old as previously described [33] and then kept
in the RPMI-1640 medium (HyClone, Logan, UT, USA) containing 10% heat-inactivated
fetal bovine serum (FBS; HyClone), 100 U/mL penicillin (HyClone), and 100 µg/mL
streptomycin (HyClone). Marc-145 were routinely cultivated in the DMEM medium
(HyClone) with 10% heat-inactivated FBS at 37 ◦C in 5% CO2. North American PRRSV
used for all experiments was isolated from PAMs and titrated for the 50% tissue culture
infectious dose (TCID50).

2.2. Antibodies

The inactivated purified PRRSV particles were used to immunize the swine for the
generation of the PRRSV-specific polyclonal antibody (pAb) (enzyme-linked immunosor-
bent assay (ELISA) titer: 5200). FcγRI-specific pAb (ELISA titer: 12,800) was from the
rabbits inoculated with the recombinant proteins of porcine FcγRI extracellular domain.
FcγRIII-specific pAb (ELISA titer: 12,800) was from the rabbits immunized with the re-
combinant proteins of porcine FcγRIII extracellular domain. The extracellular N-terminal
domains of porcine Sn protein (shown in Table 1) and the ectocytic SRCR domains of
porcine CD163 molecule (described in Table 2) were analyzed using the SMART online
analysis service based on each protein sequence deposited in NCBI (GenBank ID: NP999511;
EU016226.1). The pAb specific for the extracellular domain of Sn1, 2, 3, 4, 5, 6, 7, 8, 9, or
1–9 (ELISA antibody titers: 6400–12,800) was gained from the rabbits immunized with
recombinant proteins of porcine Sn1 (extracellular domain 1), 2 (extracellular domain 2),
3 (extracellular domains 3 and 4), 4 (extracellular domains 5 and 6), 5 (extracellular do-
mains 7 and 8), 6 (extracellular domains 9 and 10), 7 (extracellular domains 11 and 12),
8 (extracellular domains 13 and 14), 9 (extracellular domains 15, 16, and 17), or 1–9 (ex-
tracellular domains 1 to 17), respectively. The pAb specific for the CD163 of SRCR1, 2, 3,
4, 5, 6, 7, 8, 9, or 1–9 (ELISA antibody titers: 6400–12,800) was obtained from the rabbits
immunized with purified proteins of porcine CD163 SRCR1, 2, 3, 4, 5, 6, 7, 8, 9, or 1–9 (SRCR
domains 1 to 9), respectively. PRRSV-specific IgG, FcγRI-specific IgG, FcγRIII-specific IgG,
Sn extracellular domain-specific IgG, or CD163 SRCR domain-specific IgG was purified
by diethyl-aminoethanol chromatography. PRRSV-negative IgG (PNI) was purified from
PRRSV-negative piglet sera. Rabbit-negative IgG (RNI) was purified from healthy rabbit
serums. Anti-rabbit IgG antibody linked with horseradish peroxidase (HRP) or fluores-
cein isothiocyanate (FITC) and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
antibody labeled by HRP were the products of the Cell Signaling Technology in the USA.
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Table 1. The extracellular domains of porcine Sn protein.

Number Start Position End Position

1 26 136
2 145 235
3 253 312
4 337 397
5 418 509
6 522 582
7 609 707
8 714 792
9 807 882
10 906 966
11 995 1073
12 1091 1169
13 1184 1248
14 1272 1331
15 1358 1433
16 1457 1519
17 1562 1637

Table 2. The SRCR domains of porcine CD163 molecule.

Name Start Position End Position

SRCR1 51 151
SRCR2 158 258
SRCR3 265 365
SRCR4 372 472
SRCR5 477 577
SRCR6 582 682
SRCR7 718 818
SRCR8 823 925
SRCR9 928 1028

2.3. Formation of PRRSV-Antibody ICs

PRRSV-specific IgG or PRRSV-negative IgG (PNI) was diluted to 850 µg/mL. Then,
2000 TCID50/mL of PRRSV suspensions were mixed with 850 µg/mL of PRRSV-specific
IgG or PNI in equal volumes for one hour at 37 ◦C for the formation of the infectious
PRRSV-antibody ICs (marked as PRRSV + ICs) or the negative control group (flagged as
PRRSV + PNI).

2.4. Detection of PRRSV-ADE Infection

PAMs cell monolayer (5 × 105 cells) cultured in 24-well plates (Corning, NY, USA)
was infected with 200 µL of PRRSV + PNI, PRRSV + ICs, or PRRSV containing 200 TCID50
at 37 ◦C. The cell supernatants were harvested in indicated time point to quantify viral
RNA as previously reported real-time RT-PCR [34] and measure virus titers using the
Reed–Muench method.

2.5. RNA Interfering Assay

The negative control small interfering RNA (siRNA) and the siRNA used for silencing
porcine FcγRI or FcγRIII gene (seen in Table 3) were supplied by the Shanghai GenePharma
Corporation in China. 20 pmol of negative control siRNA, FcγRI siRNA, or FcγRIII
siRNA was transfected into PAMs cell monolayer (5 × 105 cells) prepared aforehand
in 24-well plates by utilizing lipofectamine 2000 reagent (Invitrogen, Beijing, China) for
knockdown of the target genes. Between 24–72 h later, the transfected cells were gathered
for quantitative RT-PCR, immunoblot, or flow cytometry. Moreover, 48 h post-transfection,
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200 µL PRRSV + ICs were used to infect the transfected cells for 12 and 24 h at 37 ◦C. Then
the cell supernatants were harvested for detection of viral RNA and titers.

Table 3. The sequences of siRNAs.

Gene Name Sequence (5′-3′)

Porcine FcγRI Forward: GCCUUGAGGUGUCAUGGAUTT
Reverse: AUCCAUGACACCUCAAGGCTT

Porcine FcγRIII Forward: GUGGAGAAUACACGUGUAATT
Reverse: UUACACGUGUAUUCUCCACTT

Negative control Forward: UUCUCCGAACGUGUCACGUTT
Reverse: ACGUGACACGUUCGGAGAATT

2.6. Antibody Blocking Assay

PAMs cell monolayer (5 × 105 cells) seeded in 24-well plates were pre-blocked with
200 µL of each rabbit anti-Sn and anti-SRCR domain IgG or rabbit-negative IgG (RNI) at
2.0 mg/mL concentration before they were infected with 200 µL PRRSV + ICs. The cell
supernatants were harvested in indicated time point for the determination of viral RNA
and titers.

2.7. RNA Extraction and Quantification RT-PCR

Total PAMs RNAs were isolated with the TRIzol reagent (TaKaRa, Dalian, China). The
RNAs were reverse-transcribed into cDNA using the commercialized reagent kit (TaKaRa)
and then subjected to the analysis of relative quantitative RT-PCR with the Bio-Rad’s
CFX 96 Touch System by previously described [27] using specific primer pairs presented in
Table 4. The target gene quantification was analyzed with the 2−∆∆CT method.

Table 4. The sequences of relative quantitative RT-PCR primers.

Name Sequence (5′-3′)

Porcine FcγRI forward
Porcine FcγRI reverse

TGAAACAAAGTTGCTCCCA
GCTGCGCTTGATGACCT

Porcine FcγRIII forward
Porcine FcγRIII reverse

CTGCTGCTTCTGGTTTCA
CCATTCCACCTCCACTC

β-actin forward
β-actin reverse

CGGGACATCAAGGAGAAGC
CTCGTTGCCGATGGTGATG

2.8. Immunoblot Assay

The primary rabbit anti-FcγRI and anti-FcγRIII IgG (20 µg/mL) and the secondary
anti-rabbit IgG antibody (HRP-linked) (1:3000 dilution) were used for the immunoblot
experiment. PAMs cells collected from each sample were lysed, and the cellular proteins
were separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and
transferred onto a polyvinylidene difluoride (PVDF) membrane (Sigma, Saint Louis, MO,
USA). After blocking, the PVDF membrane was probed with the indicated primary and
secondary antibodies. The reference protein was detected with HRP-labeled anti-GAPDH
antibody (1:1000 dilution). The immunolabeled target proteins were visualized with the
GE Healthcare’s ECL chemiluminescence reagent.

2.9. Flow Cytometry

The primary rabbit anti-FcγRI or anti-FcγRIII IgG and the secondary anti-rabbit IgG
antibody (FITC-conjugated) were used for the flow cytometry experiment. At 37 ◦C, PAMs
collected were pretreated with rabbit-negative IgG (RNI), rabbit anti-FcγRI IgG, or rabbit
anti-FcγRIII IgG at 100 µg/mL concentration for one hour and then incubated with anti-
rabbit IgG antibody (1:100 dilution) for one hour. In each step, the cells were washed using
PBS buffer containing 3% FBS. A CytoFLEX flow cytometer from the USA Beckman Coulter
was used to perform flow cytometry analysis.
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2.10. Statistical Analysis

The two-way analysis of variance in GraphPad Prism software (Version 5.0) was used
for analyzing data, and the p values < 0.05 were considered significant.

3. Results
3.1. ADE Activity of PRRSV Infection Exists in PRRSV-Specific Porcine IgG in PAMs

To determine whether pig anti-PRRSV specific IgG could affect PRRSV replication,
PAMs cells were infected with PRRSV + ICs or PRRSV + PNI. Then, we collected the cell
supernatants at different time points for the detection of the production of PRRSV. As
shown in Figure 1, at any time point after infection, the levels of RNA and titers of PRRSV
in supernatants of PAMs cells following PRRSV + ICs infection were significantly more
than that in supernatants of PAMs cells following PRRSV + PNI infection, suggesting that
PRRSV-specific porcine IgG enhanced the replication of PRRSV in PAMs cells. In other
words, ADE activity of PRRSV infection existed in PRRSV-specific porcine IgG.
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Figure 1. Effect of pig anti-PRRSV specific IgG on the replication of PRRSV in PAMs. PAMs cells
were infected with PRRSV + ICs, PRRSV + PNI, or PRRSV. The RNA levels (a) and the virus titers
(b) of PRRSV in cell supernatants harvested were evaluated by real-time RT-PCR and TCID50 assay.
*** p < 0.001.

3.2. FcγRI and FcγRIII Are Responsible for Mediating ADE of PRRSV Infection in PAMs

To test whether activating FcγRs were responsible for mediating PRRSV-ADE infection,
PAMs cells were transfected with porcine FcγRI or FcγRIII siRNA for indicated time points,
and forty-eight hours later the cells were infected by PRRSV + ICs. Twelve and twenty-four
hours later, the production of PRRSV in infected cell supernatants harvested was quantified.
The results seen in Figures 2 and 3 showed that transfection with porcine FcγRI siRNA or
porcine FcγRIII siRNA into PAMs cells caused significant downregulation of porcine FcγRI
mRNA or porcine FcγRIII mRNA at 24–72 h after transfection, and porcine FcγRI protein
or porcine FcγRIII protein at forty-eight hours after transfection, compared to PAMs cells
following negative control siRNA transfection. Additionally, transfection with porcine
FcγRI siRNA or porcine FcγRIII siRNA into PAMs cells also led to a visible reduction
in porcine FcγRI protein or porcine FcγRIII protein on the surface of transfected cells
at forty-eight hours after transfection, compared to negative control siRNA-transfected
cells (Figure 4). These results suggested that siRNA targeting porcine FcγRI or FcγRIII
resulted in knockdown of FcγRI or FcγRIII gene in PAMs cells. Simultaneously, the results
depicted in Figure 5 showed that FcγRI or FcγRIII knockdown in PAMs cells significantly
decreased the RNA and the titers of PRRSV in collected supernatants of the cells following
PRRSV + ICs infection for 12 and 24 h, which suggested that porcine FcγRI and FcγRIII
molecules were responsible for mediating ADE of PRRSV infection.
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Figure 4. The cytomembrane protein level of FcγRI or FcγRIII on PAMs. PAMs cells were transfected
with porcine FcγRI or FcγRIII siRNA for forty-eight hours and then used for the analysis of flow
cytometry. (a) The cytomembrane protein level of FcγRI on the PAMs cells following negative control
siRNA transfection; (b) The cytomembrane protein level of FcγRI on the PAMs cells following porcine
FcγRI siRNA transfection; (c) The cytomembrane protein level of FcγRIII on the PAMs cells following
negative control siRNA transfection; (d) The cytomembrane protein level of FcγRIII on the PAMs
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3.3. Sn and CD163 Are Required for ADE of PRRSV Infection in PAMs

We determined that activating FcγRs were responsible for PRRSV-ADE infection.
We next explored if viral receptors, the porcine Sn and CD163 molecules, were required
for PRRSV-ADE infection. PAMs cells were pre-blocked with rabbit anti-Sn extracellular
N-terminal domain IgG, rabbit anti-CD163 molecule SRCR domain IgG, or RNI for two
hours and then infected with PRRSV + ICs. The infected cell supernatants were harvested
at different time points for the determination of the RNA and the TCID50 of PRRSV. As
illustrated in Figure 6, at twelve and twenty-four hours after infection, the RNA of PRRSV
and the TCID50 of PRRSV in supernatants of PRRSV + ICs-infected PAMs pre-blocked
by anti-Sn1, 2, 3, 4, 5, 6, or 1–9 IgG were observably lower than those in supernatants
of PRRSV + ICs-infected PAMs pre-blocked by RNI, whereas the RNA of PRRSV and
the TCID50 of PRRSV in supernatants of PRRSV + ICs-infected PAMs pre-blocked by
anti-Sn7, 8, or 9 IgG were no significant differences compared to those in supernatants
of PRRSV + ICs-infected PAMs pre-blocked by RNI. As exhibited in Figure 7, at twelve
and twenty-four hours after infection, the RNA of PRRSV and the TCID50 of PRRSV
in supernatants of PRRSV + ICs-infected PAMs pre-blocked by anti-SRCR5 or 1–9 IgG
were markedly weaker than those in supernatants of PRRSV + ICs-infected PAMs pre-
blocked by RNI, while the RNA of PRRSV and the TCID50 of PRRSV in supernatants of
PRRSV + ICs-infected PAMs pre-blocked by anti-SRCR1, 2, 3, 4, 6, 7, 8, or 9 IgG were not
signally different from those in supernatants of PRRSV + ICs-infected PAMs pre-blocked
by RNI. These results showed that specific antibody blocking of Sn1, 2, 3, 4, 5, or 6 domain
of porcine Sn protein or selective antibody blocking of SRCR5 domain of porcine CD163
molecule inhibited ADE of PRRSV infection in PAMs cells, which suggested that Sn and
CD163 were required for PRRSV-ADE infection.
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4. Discussion

IgG is a critical part in the humoral immune system. The primary function of IgG
is specific recognition and binding of the foreign antigens to generate a complex, then
resulting in the losses of the toxicity and the pathogenicity of antigens after the complex
is phagocytized, digested, and cleared by immune phagocytes [35,36]. Nevertheless,
previous studies have shown that viral propagation may be increased by the formation
of virus–antibody ICs, which is called the ADE effect [37]. The phenomenon of ADE
of virus infection has been confirmed for several different types of viruses, including
PRRSV [6,38]. On the one hand, ADE is an actual cause of the pathogenesis of PRRSV-
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persistent infection. On the other hand, ADE in PRRSV infection is a significant obstacle
to the development of effective PRRS vaccines [11,39]. However, the precise underlying
mechanisms connected with ADE of PRRSV infection are still not entirely clear. Fc receptors
(FcRs) are key mediators in immune systems linking the innate immune response with
adaptive immunity. Unfortunately, FcγRs not only protect the organisms from pathogen
infections but also enhance the susceptibility of hosts. The ADE mechanism mediated
by FcRs was first demonstrated in the infection of dengue virus [40]. Firstly, the virus
and its specific antibodies form infectious virus–antibody ICs. Then, the ICs facilitate
the adhesion and endocytosis of the virus to host cells through the FcRs [40,41]. We
found that the knockdown of the porcine FcγRI or FcγRIII gene diminished the ADE
activity of PRRSV infection in PAMs. Meanwhile, treatment of PAMs cells with FcγRI
or FcγRIII-specific IgG to block FcγRI or FcγRIII inhibited enhancement of infection in
the presence of PRRSV antibodies (data not shown). These studies suggested that the
activating porcine FcγRs were responsible for mediating PRRSV-ADE infection, which
was in keeping with the recent reports [16,42]. However, an early study showed that the
ADE of HIV-1 infection proceeding via FcγRI required the virus glycoprotein interaction
with its cell surface receptor, the CD4 molecule [43]. A recent study demonstrates that the
angiotensin-converting enzyme 2 (SARS-CoV-2 receptor) is the secondary receptor required
for FcγR-mediated the ADE of SARS-CoV-2 infection [44]. These studies indicate that the
natural virus receptors have an important influence on the ADE of virus infection, which
provides an intriguing suggestion about the roles of viral receptors in ADE infection by
other viruses.

PRRSV infection is a receptor-dependent event. Sn has been widely studied as a crucial
protein molecule for PRRSV by binding the virus’s membrane protein/glycoprotein 5 (GP5)
complexes [45]. The first N-terminal domain of the porcine Sn extracellular region is a
pivotal domain for interaction with the PRRSV [46,47]. Subsequently, another report shows
that the first four N-terminal extracellular region domains of porcine Sn are necessary for
PRRSV invasion [48]. The CD163 molecule is the other putative cell receptor for PRRSV, and
it is indispensable and sufficient to mediate PRRSV infection [49]. The extracellular SRCR5
domain of the CD163 molecule is a vital domain interacting with PRRSV particles [33]. To
date, it remains unclear whether the involvement of the Sn and CD163 molecules in ADE
of PRRSV infection. A previous study has shown that the viral GP5, a ligand protein for
porcine Sn, is closely associated with PRRSV-ADE infection, implying that porcine Sn may
have an essential effect on PRRSV-ADE infection [50]. We observed that the treatment of
PAMs cells with rabbit anti-Sn1-6 or SRCR5 domain IgG downregulated PRRSV-specific
antibody-enhanced PRRSV infection, but the treatment of PAMs cells with rabbit anti-Sn or
SRCR other domain-specific IgG had no influence on PRRSV-ADE infection, suggesting
that Sn and CD163 molecules were involved in ADE of PRRSV infection. The Sn1-6
extracellular domains of Sn protein and the SRCR5 domain of CD163 molecule were
required for PRRSV-ADE infection. The binding of the PRRSV-antibody ICs to FcγRs might
accelerate PRRSV particle entry by heightening virus interaction with its receptors (Sn and
CD163) expressed on the host cell surface. Nevertheless, the exact mechanism remains to be
further elucidated. In future work, we will explore in depth the mechanism of PRRSV-ADE
infection mediated by FcγRs and virus receptors. Taken together, FcγR-dependent ADE of
PRRSV infection required the participation of the Sn and CD163 molecules. The viral Sn and
CD163 receptors played an influential role in PRRSV infection enhancement. The abilities of
anti-Sn or CD163 antibodies to block infection enhancement in vitro might have important
implications for preventing or decreasing the development of PRRS mediated by antibodies
in PRRSV-infected pigs. These studies should allow a more precise understanding of the
structural basis for the mechanism of PRRSV-ADE infection, which could be crucial for the
development of efficient intervention of PRRSV infection mediated by the antibodies and
would provide references for screening targets of novel PRRS vaccines or antiviral drugs
against the PRRSV.
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