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Abstract: The aim of this research was to estimate the fatty acid (FA) content of intramuscular fat
from beef by Fourier transform mid-infrared (FT-MIR) spectroscopy. Four diets were supplemented
in 10% linseed (LS) and/or 2% conjugated linoleic acid (CLA): CON (without L or CLA), LS, CLA,
and LS+CLA. For each diet, 12 young Holstein bulls were allocated. The spectral response of the
beef samples was analyzed applying FT-MIR spectroscopy (from 400 to 4000 cm−1) and predictive
models were developed using partial least square regression with cross-validation. The obtained
coefficients (R2) for some FA, such as α-linolenic acid with a R2 = 0.96 or n-3 polyunsaturated fatty
acids (n-3 PUFA) with R2 = 0.93, demonstrate that FT-MIR spectroscopy is a valid technique to
estimate the content of FA. In addition, samples were correctly classified according to the animal
diet using discriminant analysis in the region 3000–1000 cm−1. The obtained results suggest that
the FT-MIR spectroscopy could be a viable technique for routine use in quality control because it
provides fast and sustainable analysis of FA content. Furthermore, this technique allows the rapid
estimation of the FA composition, specifically n-3 PUFA and CLA, of nutritional interest in meat. It
also allows the classification of meat samples by the animal diet.

Keywords: FT-MIR spectroscopy; beef; n-3 fatty acids; prediction models

1. Introduction

In recent years, the demand for high quality and safety in food production and
development for new products enriched with bioactive compounds with health promoting
properties has grown. Therefore, the food industries require appropriate analytical tools to
satisfy this demand. Some of the features demanded for these technologies are that they are
fast to perform, easy to apply, and that they require a simple manipulation of the samples,
alongside the avoidance of samples destruction, waste minimization, and low cost [1].

Fat is a critical component of meat because it has a great influence on the maintenance
of muscular tissue reducing protein breakdown and it is the energy storage reservoir. In
addition, intramuscular fat is responsible for the organoleptic properties and a necessary
component of meat products. Fat contributes to and influences palatability, tenderness,
juiciness, and flavor of meat. Currently, the tendency of the meat industry is the modifica-
tion of the lipid profile of meat products, by reducing the saturated fatty acids (SFA) content
and increasing the n-3 and n-6 polyunsaturated fatty acids (PUFA) which are considered
essential to maintain the health [2]. Moreover, several studies have revealed that conjugated
linoleic acid (CLA) and some of the n-3 PUFA provide beneficial effects to human health.
For instance, α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA) present potential anti-inflammatory properties against diseases, such as obesity
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or diabetes [3]. Regarding CLA, studies in animal models suggest protective effects against
obesity and atherosclerosis [4].

Meat composition is influenced by numerous factors. Animal diet is particularly
interesting as it is a factor easy to manipulate and still has an important effect on its
composition [5]. Thus, several dietary intervention trials have been conducted to enhance
the n-3 PUFA and the CLA content in beef [6]. Therefore, increasing these fatty acids (FA)
in the meat is one of the greatest open scientific challenges. One of the alternatives can
be by means of dietary supplementation of PUFA. One of the most widely used natural
sources in n-3 PUFA is flax or linseed. The linseed coat provides protection to FA against
biohydrogenation by ruminal microorganisms and thus facilitates the duodenal passage
of PUFA [7]. Thus, linseed supplementation to bulls has been considered by several
authors [8,9] who observed increments of ALA, EPA, and docosapentaenoic acid (DPA)
proportions. Likewise, Gillis et al. [10,11] and Schegel et al. [12] investigated other dietary
interventions, based on the addition of the CLA in rumen protected form in order to avoid
biohydrogenation of CLA.

In order to assess the effectiveness of the different dietary n-3 PUFA supplementations,
the FA profile changes must be evaluated in meat. That requires an appropriate method for
extraction of fat from meat. This extraction has to be performed with minimal exposure to
heat and light to prevent the modification of n-3 PUFA and CLA and to prevent changes
in FA structure, which reduces the nutritional value of fats. Several techniques have been
employed to analyze FA profile, gas chromatography (GC) being the most commonly used
one. However, this method is not satisfactory, as it requires a lot of sample preparation
and a lot of processing time. To overcome the limitations of classical chemical methods,
alternative techniques based on physical methods have been sought. Mid-infrared (MIR)
spectroscopy arises as an interesting alternative due to its high speed of analysis and
environmental sustainability as no harmful substances for the environment are used [13].

The determination of the FA profile in different types of meat products has been carried
out by different authors using Fourier-transform mid-infrared (FT-MIR) spectroscopy. For
example, Ripoche and Guillard [14] and Flatten et al. [15] studied the profile of FA of
some samples of pork fat and the proportions of DPA and DHA in pork fat, respectively.
Moreover, the fat content is a parameter that is usually controlled during meat production.
Thus, fast and trustworthy techniques would help the meat industry to determine lipid
content. In this sense, a recent study [16] for determining the lipid content of meat samples
from different species showed a good accuracy (R2 = 0.9173) using FT-MIR spectroscopy.
Likewise, Ruiz et al. [17] reported that this technique could be a suitable technique to
differentiate meat from “old vs. young” foals.

Currently, the challenge in the meat industry is to assess PUFA contents because
they are quality attributes of meat products associated with consumers’ health. Fast and
environmentally sustainable methods are required for predicting minority PUFA content in
a reliable way, especially n-3 PUFA of nutritional interest such as DHA, EPA, DPA, and CLA.
The conventional method of extraction is based on the use of chemical solvents (chloroform-
methanol) by multiple steps that requires several hours for the FA determination under
study. Instead, FT-MIR spectroscopy could be an alternative technique to determine this
type of FA of nutritional interest in meat, with or without prior removal of intramuscular
fat. Therefore, the aims of this work are (i) to check the appropriate sample (meat or
extracted fat) to predict the FA content in beef by FT-MIR spectroscopy; (ii) to discriminate
beef samples with different contents in n-3 PUFA and CLA using FT-MIR spectroscopy.

2. Materials and Methods
2.1. Animal Management and Meat Sampling

Beef samples were obtained from 48 Holstein bulls fed with one of four dietary treat-
ments (12 animals per dietary treatment). Animals diets were isoenergetic and isoproteic
and differed in their amount of whole linseed (LS) and rumen-protected CLA (Lutrell©

pure, BASF, Ludwigshafen, Germany): CON (without LS or CLA), 10% LS, 2% CLA, and
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LS+CLA. Composition of the experimental diets, animal productive performance and
carcass characteristics of the animals used in this study have been reported by Albertí
et al. [18]. Animals were cared for in accordance with EU Directive [19]. Finishing period
was reached at 123.0 ± 11.2 days, and then the animals (live weight 458.4 ± 16.6 kg) were
slaughtered at an EU-licensed commercial abattoir following standard procedures. At 24 h
after slaughter, Longissimus thoracis steaks (100 g) were cut at the sixth rib level from the left
half-carcass, vacuum-packaged and frozen, and stored at −20 ◦C until analyses. Samples
were gently thawed at 4 ◦C overnight prior to analyze.

2.2. Extraction of the Intramuscular Fat of the Meat Samples

The Soxhlet method was used to extract the intramuscular fat of the meat samples [20].

2.3. Mid-Infrared Spectra Measurements and Spectral Acquisition

Meat samples were analyzed by direct FT-MIR spectroscopy. In total, five replicates
were performed per meat sample analyzed. Besides, the intramuscular fat extracted from
all samples was also analyzed by FT-MIR spectroscopy (Figure 1). Two extractions of fat
per animal were made. Each fat sample was analyzed in duplicate.

Figure 1. Experimental design.

A Fourier-transform infrared (FTIR) Vertex 80v spectrometer (Bruker Optik GmbH,
Ettlingen, Germany) was used to obtain the infrared spectra. The configuration used in the
experiments was a Globar IR thermal source (operation bandwidth, 6000–50 cm−1), a KBr
beamsplitter (10,000–400 cm−1), and a DLaTGS detector (10,000–250 cm−1). An A225/Q
Platinum Attenuated Total Reflectance (ATR) accessory was used to get all measurements.
A calibration was done before each experiment by measuring the response without any
sample on the ATR. Each sample was placed on the ATR touching the diamond crystal and
32 scans in the 4000–400 cm−1 spectral range were recorded with a resolution of 4 cm−1.
After the measurements, a data analysis was performed to select the wavenumbers of the
peaks with higher intensities of absorption and to calculate then the standard deviation
between the pair of absorption intensities.

2.4. Data Analysis

A specific program of chemometrics, OPUS Quant 2 (Bruker Optik GmbH, Ettlin-
gen, Germany) was used for building the models. The reference method to develop the
regression equations and estimate the content of FA in this work was carried out by GC.
Fatty acid profile was determined in previous research [21]. For the current study, the
most relevant FAs from the nutritional point of view were selected. Table A1 shows the
intramuscular FA content in muscle from young Holstein bulls fed with different diets.
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MIR spectral data were preprocessed by applying the first derivative and vector nor-
malization. Then calibration models between FA values and MIR spectra were computed
by partial least square (PLS) regression and validated using cross-validation. Prediction
residuals were then combined to calculate the root mean square error of cross-validation
(RMSECV) [22,23]. It is known that the main advantage of cross validation is that it requires
a low number of samples because the method is calibrated and validated by the same
group of samples. In this method, one sample is excluded from the group of samples
before starting the calibration and the rest is used to calibrate the method. In this way, the
cycle is repeated retiring a different sample each time until all samples have taken part
for validation once. A principal component analysis (PCA) was performed before PLS
regression models were developed to determine any relevant and interpretable structure in
the data and to detect sample outliers. The optimal number of terms in the PLS calibra-
tion models was specified by the lowest number of factors associated with the minimum
value of RMSECV in order to avoid overfitting the models [22]. Statistics calculated for
the calibrations included the coefficient of determination in cross validation (R2), ratio of
performance to deviation (RPD), and bias.

A spectral region between 2800 and 2300 cm−1 was omitted from PLS analysis, due to
uncertainty in that range, which may be the consequence of the absorption of CO2.

The statistical software SPSS 23.0 (IBM Corp., Armonk, NY, USA) was used to analyze
the fat spectral information, performing a stepwise discriminant analysis (test of goodness
of fit of independent variables by Lambda Wilks; p ≤ 0.05). The aim of these analyses was
to determine the feasibility of classifying beef samples of the same diet together.

3. Results and Discussion

As Gomez et al. [21] found, the diets affect the FA content of beef samples. The content
of ALA in bulls fed following LS and LS+CLA diets were 6-fold higher than those fed with
CON and CLA diets (12.89 vs. 1.96 mg/100 g muscle; p < 0.001). The diet enriched with
n-3 PUFA led to increases of n-3 PUFA. The amount of ALA varies depending on the diet.
This fatty acid is EPA and DPA precursor, and there is a relation between ALA and these
fatty acids. When ALA amount in intramuscular fat is high, there are more EPA and DPA.

3.1. FTIR Spectra Measurement and Assignment of Representative Bands

Figure A1 shows a representative spectrum of the fat samples from Holstein bulls
with the characteristic peaks and the assignment with chemical functional groups obtained
by FT-MIR analysis from 4000 to 400 cm−1. The assignment of the most important bands
was done by matching the wavenumbers with the bibliography references. Table 1 contains
the principal band assignment.

A broad band with low intensity appears around 3005 cm−1. This band is lined up
with the C-H bond vibration of the unsaturated fatty acids, stretching vibration of cis
double bond (C=CH) [24–27]. The signals at 2920 and 2854 cm−1 is related to asymmetric
and symmetric stretching vibration of C-H bonds present on methylene (CH2) and methyl
(CH3) groups in fatty acids [14,24,28].

Between 1800 and 400 cm−1, there is a narrow peak around 1743 cm−1 that stands
out from the rest with a higher absorption intensity than the others. This peak is related
to the stretching vibration of carbonyl bond of esters and free FA [14,24–27,29]. Lower
absorption intensities were shown by the rest of the bands that appear in the spectra
outlined above. Nevertheless, they provide information. The band around 1465 cm−1 is
related to scissoring bending vibration mode of C-H bond in the methyl and methylene
groups [24–26,28–31]. The band at 1160 cm−1 is associated to stretching vibration of C-O
bonds and bending vibration of C-H bonds [24,28,31]. Finally, around 721 cm−1 there is a
band which is related to the overlapping of the methylene (CH2) rocking vibration and the
out of plane vibration of cis-disubstituted olefins [14,24–27].

Figure 2 shows the mean absorbance spectra of 240 beef samples according to the
four dietary treatments. Figure 3 shows the mean absorbance spectra of 96 fat samples
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according to the four dietary treatments. As shown there, all spectra have the same peaks
at the same wavenumbers, revealing that all the samples have the same bonds. Therefore,
the differences among the different diets can only be found in the absorption intensity of
each peak.

Table 1. Wavenumber assignment with the chemical functional groups.

Wavenumber
(cm−1) Functional Group References

3005 CH stretching vibration in cis double bond
=CH; unsaturated fatty acids [24–27]

2920 C-H asymmetric stretching of CH2 and CH3;
aliphatic groups [14,24–27]

2854 C-H symmetric stretching of CH2 and CH3;
aliphatic groups [14,24–28]

1743 C=O stretching of esters: free fatty acids [14,24–27,29]

1465 C-H scissoring vibration [24–26,28,30,31]

1377 Symmetric bending vibrations of CH3 groups [24–27]

1160 C-O stretching vibration y C-H bending [24,28,31]

721 Overlapping of the methylene (-CH2) rocking vibration
and to the out of plane vibration of cis-disubstituted olefins [14,24–27]

Figure 2. Mean absorbance spectra of 240 beef samples according to the four dietary treatments:
CON = control; LS = 10% linseed; CLA = 2% conjugated linoleic acid; LS+CLA.

Figure 3. Mean absorbance spectra of 96 fat samples according to the four dietary treatments:
CON = control; LS = 10% linseed; CLA = 2% conjugated linoleic acid; LS+CLA.
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The spectra of Figures 2 and 3 are different and by comparing them it is noted that
the spectra from intramuscular fat extracted from beef gives more information. A possible
explanation for this is that the water and the rest of components of beef could mask the
spectra of FA.

Figure 4 shows the spectral characteristics of the fat samples in three specific ranges
(3000–2800, 1800–1700, 1500–1000 cm−1). At first sight, the CON sample spectra differ
noticeably with respect to the other samples. This indicates that the method is able to detect
beef enriched by n-3 PUFA and/or CLA.

Figure 4. Average fat FTIR-spectra for fat samples according to the four dietary treatments: CON = control,
LS = 10% linseed, CLA = 2% conjugated linoleic acid, and LS+CLA. Range selected from 3000 to 2800
cm−1 (a), from 1800 to 1700 cm−1 (b), and from 1500 to 1000 cm−1 (c).

3.2. Prediction Models

Partial least square (PLS) was used for constructing the prediction models. The model
validation was done using cross validation, taking out one sample each time.

The PLS analysis was done using the data of GC as reference values. The determi-
nation coefficients (R2) obtained for each prediction model and the errors are shown in
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Table 2. The R2 value informs how close the CG values and FT-MIR predictive values
are. The values varied between 0.96 and 0.15 for the different FA. The main conclusion
is that MIR spectroscopy can be used to predict some FA sums (i.e., ∑n-3 PUFA, ∑CLA,
∑MUFA, ∑PUFA, and ∑SFA) but also for individual PUFA (i.e., ALA, DPA, EPA, RA,
C18:1t10+C18:1t11). The determination coefficients found in this study are lower than
the results obtained in pork [13,14]. Ripoche and Guillard [14] reported higher deter-
mination coefficients for ∑SFA (0.92), ∑MUFA (0.98), and ∑ PUFA (0.98) in pork fat by
FT-MIR spectroscopy. The lower validation coefficients of the present study (∑SFA = 71.12;
∑MUFA = 76.85; ∑PUFA = 71.95), can be explained because ruminants transform FA in the
rumen, and the amount and composition of fat leaving the rumen differ from intake [32].

Table 2. Optimized model of the fatty acid content of beef: coefficients of determination (R2) and root mean square error for
cross-validation (RMSECV) and for calibration (RMSEC).

Fatty Acid

Intramuscular Fat Extracted from Beef Beef

Validation Calibration Validation Calibration

R2 RMSECV R2 RMSEC R2 RMSECV R2 RMSEC

C16:0 78.73 0.94 88.55 0.72 1.30 40.20 7.02 39.30
C18:0 62.47 0.89 83.26 0.63 33.38 23.60 41.27 22.70

C18:1c9 53.85 2.16 82.52 1.41 32.99 28.40 53.58 24.60
C18:1t10+C18:1t11 81.17 0.35 91.29 0.25 28.35 8.12 47.60 7.13

C18:2n-6 (LA) 59.63 1.80 82.58 1.23 34.45 15.60 46.73 14.60
C18:3n-3 (ALA) 96.21 0.15 98.68 0.09 48.72 4.67 68.94 3.78
CLAc9,t11 (RA) 82.03 0.04 87.80 0.03 48.09 1.58 66.81 1.30

CLAt10,c12 15.48 0.01 78.07 0.006 28.33 0.17 55.09 0.14
C20:4n-6 57.49 0.64 77.04 0.49 25.36 8.08 51.90 6.72

C20:5n-3 (EPA) 82.44 0.05 93.82 0.03 37.07 1.61 57.34 1.38
C22:5n-3 (DPA) 86.61 0.06 95.34 0.04 35.41 3.41 52.82 3.04
C22:6n-3 (DHA) 66.64 0.007 82.48 0.006 17.1 0.15 33.63 0.14

Σn-6 57.72 2.53 82.98 1.70 29.02 23.80 47.98 21.00
Σn-3 94.65 0.24 98.01 0.16 45.75 8.73 61.79 7.64

ΣCLA 80.31 0.06 90.10 0.04 36.67 2.97 53.93 2.60
ΣSFA 71.12 1.17 85.35 0.89 18.66 68.30 26.26 66.30

ΣMUFA 76.85 1.83 93.63 1.03 32.42 29.20 53.64 25.20
ΣPUFA 71.95 2.33 88.13 1.60 39.44 29.10 49.95 27.40

R2 = coefficient of determination; RMSECV = root mean square error of cross-validation; RMSEE = root mean square error of estimation
Σn-6: sum of C18:2n-6t9,t12, C18:2n-6, CLAt10,c12,C18:3n-6, C20:3n-6, C20:4n-6, and C22:4n-6. Σn-3: sum of C18:3n-3, C20:5n-3, C22:5n-3,
and C22:6n-3. ΣCLA: sum of CLAc9,t11,CLAt10,c12,CLAc9,c11, and CLAt9,t11. ∑SFA = total saturated fatty acids; ∑MUFA = total
monounsaturated fatty acid; ∑PUFA = total polyunsaturated fatty acids.

ALA was the best predicted FA (R2 = 96.21%). This result could be explained because
the difference in the content among the different groups was higher than the other FA
analyzed by GC. Gómez et al. [20] reported that samples from bulls fed with L and L+CLA
diets were around 8–9-fold higher than those from bulls fed with CON and CLA diets
(Table A1). This FA is critical because it is the precursory of DHA and EPA and those PUFA
are important because they have an effect on the maintenance of normal brain function
and normal vision, and on the maintenance of normal cardiac function [33]. In addition,
the group that had the best R2 (94.65%) was the sum of n-3 PUFA. The worst R2 was
obtained on the prediction of the CLAt10,c12 FA, which had a value of 15.48%. Although
the results obtained in this work are interesting to estimate the FA in intramuscular fat,
more studies are needed to improve the prediction in the content of other fatty acids such
as C18:2n-6(LA), C18:0, and C18:1c9, and especially DHA.

Figure 5 shows the scatter plot for the relationship between the reference value and
predicted value for the main FA that are linked to positive health effects (ALA, EPA, DPA,
and DHA).
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Figure 5. Scatter plot showing the relationship between the reference value, as determined by gas chromatography, and the
predicted value in α-linolenic acid (ALA), docosapentaenoic acid (DPA), eicosapentaenoic acid (EPA), and docosahexaenoic
acid (DHA) contents by MIR spectroscopy; R2 = coefficient of determination. RMSECV = root mean square error of
cross-validation.

ALA is the precursor of EPA, and this in turn of DPA and DHA sequentially. However,
conversion from ALA is very inefficient in humans (below 5–10%). This is one reason why
the diet should provide a sufficient amount of all these n-3 PUFA [34]. On the other hand,
n-3 PUFA are highly susceptible to oxidation during processing and storage of foods. This
oxidation negatively affects the quality of meat by producing off-flavors and reducing
their nutritional value. It is even suspected that free radicals derived from PUFA may be
responsible for certain diseases [35]. Therefore, MIR spectroscopy could allow a quick
analysis of the meat composition and ensure its quality.

3.3. Discriminant Analysis

The last objective of this study was to classify the meat samples from animals fed
with different dietary treatments (CON, LS, CLA, and LS+CLA), so stepwise discriminant
analysis was employed. The spectral data from 3000 to 1000 cm−1 obtained in the fat
extracted from beef samples were used.

The classification matrix of the discriminant analysis is shown in Table 3. When all
samples were taken together, 92.5 % of the cases were correctly classified. This indicates
a good agreement between the real grouping of the animals and the assignment into the
groups by discriminant analysis method.

Table 3. Classification matrix in percentage using the spectral information of the fat samples scanned
from 3000 to 1000 cm−1. Correctly classified cases are in diagonal marked in bold.

Classified into Group

CON CLA LS LS+CLA

Actual group

CON 95.2 4.8 0.0 0.0
CLA 0.0 95.8 4.2 0.0
LS 0.0 16.7 79.2 8.3

LS+CLA 0.0 0.0 0.0 100.0
Control (CON); 10% linseed (LS); 2% CLA (CLA); 10% L + 2% CLA (LS+CLA).
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Figure 6 shows the plot of the two canonical functions for the selected spectral range.
Canonical function 1 indicated that the centroid of CON group was located on the left side
of the plot. The centroid of LS and CLA fell near the center, whereas the centroid LS+CLA
group was located on the right side. Moreover, function 2 discriminated the groups because
the centroids of C and LS+CLA groups were located on the top side, whereas the CLA and
LS were located on the bottom side. Finally, LS+CLA group showed a more homogenous
distribution than the rest of the groups.

Figure 6. Graphic representation of the fat samples from young Holstein bulls fed with the four
different diets (CON, LS, CLA, and LS+CLA) according to stepwise discriminate analysis including
spectra of fat samples. Lines connect each sample with group centroid. Range selected from 3000 to
1000 cm−1.

Therefore, four groups of animal samples were separated depending on the diet
provided (CON, LS, CLA, and LS+CLA) in terms of their spectra obtained by FT-MIR.
These results evidenced that discriminant analysis can be used to explore the relationship
between FA composition and the spectra of beef from bulls and their diets. Moreover, earlier
works using discriminant analysis gave good results to characterize beef FA profile [36], to
distinguish veal of weaned and unweaned calves [37], to separate meat samples according
to aging time [38], to differentiate between four different diets to feed cattle during the
finishing period [39], or to classify beef samples depending on the finishing diet fed to
bulls [40].

4. Conclusions

The present study confirmed the potential of FT-MIR technique for the rapid and
nondestructive measurement of several intramuscular FA from beef. In general, the work
related to the determination and quantification of the FA composition of the meat uses the
conventional method of extraction employing an apolar solvent as it is less aggressive for
GC. This requires several stages of extraction with chloroform-methanol using chemical
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solvents and several hours for the determination of the FAs under study. Even though the
method precedes a fat extraction (6 h) the infrared method is faster because it requires only
1 min per sample in comparison to GC method (1 h). Additionally, infrared spectroscopy is
easier to undertake and low cost. Furthermore, this technique allows the rapid estimation
of the FA composition, specifically n-3 PUFA and CLA, of nutritional interest in meat.
Finally, discriminant analysis allows the classification of samples by the animal diet. In
the absence of previous studies on intramuscular beef fat, the MIR technique allows an
estimation of the content of FA in the intramuscular fat of beef. For that, the fat is extracted
by a standardized method. This analytical technique can be applied for the quality control
of beef, especially in case of nutritional interest n-3 PUFA and CLA, being a rapid and
sustainable method.
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Appendix A

Table A1. Intramuscular fatty acid content (mg FA/100 g muscle) in young Holstein bulls fed with
four different diets a (adapted from Gómez et al. [20]).

CON LS CLA LS+CLA SEM p-Value

C16:0 285.88 300.34 287.63 271.46 30.094 0.926
C18:0 168.09 184.62 180.25 184.92 16.071 0.868

C18:1t10+C18:1t11 14.19 b 21.03 ab 14.97 b 26.31 a 2.724 0.009
C18:1c9 725.80 1203.22 856.82 984.51 143.514 0.127

C18:2n6c9c12 (LA) 106.71 95.07 106.36 111.46 7.116 0.422
CLA9c11t (RA) 2.29 b 3.90 b 3.83 b 5.93 a 0.513 0.000

CLA10t12c 0.95 0.90 0.93 0.97 0.108 0.970
CLA9c10c 1.07 0.76 1.32 0.75 0.219 0.210
CLA9t11t 0.93 c 1.75 ab 1.34 bc 2.21 a 0.191 0.000

C18:3n-3 (ALA) 1.84 b 12.28 a 2.08 b 13.50 a 0.688 0.000
C20:5n-3 (EPA) 2.39 b 4.91 a 2.54 b 5.91 a 0.456 0.000
C22:5n-3 (DPA) 6.62 b 11.78 a 6.91 b 13.26 a 0.911 0.000
C22:6n-3 (DHA) 0.97 0.84 0.98 0.92 0.121 0.834

Σn-6 169.03 154.06 168.17 174.65 10.952 0.593
Σn-3 11.83 b 29.81 a 12.51 b 33.59 a 1.837 0.000

ΣCLA 5.23 b 7.30 ab 7.43 ab 9.86 a 0.865 0.006
ΣSFA 532.71 581.62 551.10 546.36 55.314 0.936

ΣMUFA 873.13 1374.77 1008.04 1148.48 153.656 0.136
ΣPUFA 185.14 190.28 187.18 217.13 13.068 0.284

ΣAG 1590.98 2146.66 1746.32 1911.97 202.047 0.260
Σn-6: sum of C18:2n-6t9,t12, C18:2n-6, CLAt10,c12, C18:3n-6, C20:3n-6, C20:4n-6, and C22:4n-6. Σn-3: sum of
C18:3n-3, C20:5n-3, C22:5n-3, and C22:6n-3. Σ CLA: sum of CLAc9,t11, CLAt10,c12, CLAc9,c11, and CLAt9,t11.
ΣSFA = total saturated fatty acids; ΣMUFA = total monounsaturated fatty acid; ΣPUFA = total polyunsaturated
fatty acids. Different letters in the same row indicate significant differences (p < 0.05). SEM: standard error of
mean. a Four different diets: CON (control), LS (10% linseed), CLA (2%, LS+CLA).
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Figure A1. Example of MIR spectrum of the fat extracted from meat (Holstein bulls) with the
characteristic peaks and the assignment with chemical functional groups.
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