
LTBP2 (OMIM 602091), the gene encoding latent 
transforming growth factor (TGF)-beta binding protein 2, 
was identified in 2009 as a gene causing primary congenital 
glaucoma (PCG; OMIM 231300) [1,2]. More recently, it was 
shown that LTBP2 mutations can also cause megalocornea 
[3,4], microspherophakia [5], and Weill-Marchesani syndrome 
(WMS; OMIM 277600) and promote Marfan syndrome 
(MFS; OMIM 154700) features [6]. The possible contribution 
of LTBP2 to primary open angle glaucoma (POAG; OMIM 
137760) and pseudoexfoliation syndrome (PEX; OMIM 
177650) is addressed in this study. LTBP2 on chromosome 

14 encodes an extracellular matrix (ECM) protein that is a 
member of a superfamily composed of multiple fibrillin and 
LTBP proteins [7,8]. LTBP2 is expressed in elastic tissues 
and associates with fibrillin-1-containing microfibrils [9]. 
It is believed that LTBP2 has functions related to those of 
microfibrils and elastic fibers. In addition to structural roles, 
it may affect TGF-β activities.

Glaucoma, the second leading cause of blindness, is 
a heterogeneous group of optic neuropathies that manifest 
by optic nerve head cupping or degeneration of the optic 
nerve, resulting in a specific pattern of visual field loss [10]. 
Increased intraocular pressure (IOP) is often associated with 
the condition. The disease is sub-grouped based on etiology, 
anatomy of the anterior chamber, and age at onset [10]. POAG 
accounts for 70% of glaucoma cases in Caucasian populations 
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and usually affects individuals past the age of 40 [11]. In 
this form of glaucoma, the anterior chamber angle appears 
normal; this form is associated with variable severity and 
phenotypic expressivity [12,13]. Although POAG in some 
families demonstrates Mendelian inheritance, the disease 
usually presents as a complex disease. After identifying 
LTBP2 as a PCG causative gene, the authors considered the 
gene might also cause POAG [1,2]. A POAG locus (LOD 
scores of 3.99) on chromosome 14q has been reported in a 
linkage study [14]. Cytogenetic studies have also suggested 
a tentative link between 14q and glaucoma [15,16]. Further-
more, a quantitative trait locus for high IOP, a prominent 
feature of glaucoma, has been reported on 14q [17]. In addi-
tion, mutations in the PCG causative gene CYP1B1 have been 
observed in patients with POAG, and it was thought that other 
genes including LTBP2 may also have roles in the etiology of 
both diseases [18-20]. Finally, all the disorders so far identi-
fied that can be caused by mutations in LTBP2 often manifest 
secondary glaucoma.

Pseudoexfoliation (PEX) syndrome is a common disorder 
that usually affects elderly individuals [21]. It is often accom-
panied by glaucoma and is in fact one of the most common 
causes of glaucoma. PEX syndrome is considered a fibrotic 
matrix disorder, characterized by stress-induced elastosis and 
excessive production and abnormal cross-linking of elastic 
microfibrils [22]. Aggregates in the form of what is known 
as PEX material deposit mainly in the anterior segment of the 
eye. PEX material consists of various elastic and microfibril-
related proteins, including fibrillin-1 and LTBP2. Given that 
PEX is a fibrotic disorder often associated with glaucoma 
(PEXG) and that LTBP2 is a component of PEX material, the 
possibility that LTBP2 mutations may be associated with this 
disease was also considered.

We performed mutation screening of LTBP2 in a cohort 
of 90 patients with POAG or PEX syndrome. To the best of 
our knowledge, this is the first time LTBP2 has been screened 
in patients with these disorders. Sequence variations were 
found in both types of patients, and the properties of the 
variations support the proposition that LTBP2 may have a role 
in the etiology of these diseases. Microscopic examination of 
skin fibroblasts of two patients with LTBP2 mutations showed 
notable disruption of the ECM. Our results emphasize that the 
ocular anomalies in some patients with POAG and PEX can 
be due to disruptions in the ECM.

METHODS

This study was performed in accordance with the Declara-
tion of Helsinki and with approval of the ethics board of the 
University of Tehran. All participants or their responsible 

guardians consented to participate after being informed of 
the nature of the research.

Subjects: Forty-two and 48 Iranian individuals with POAG 
and PEX syndrome, respectively, were recruited from the 
Ophthalmology Department of Labbafinejad Medical Center 
(associated with Shahid Beheshti University of Medical 
Sciences) and Hazrat Rassoul Hospital (associated with-
Tehran University of Medical Sciences). The patients did not 
report symptoms of other disorders at the time of recruitment, 
except one patient (211L) who reported a cardiac anomaly as 
described below. None of the 90 patients were related. As will 
be described, one of the patients with PEX syndrome was the 
mother of a patient with PCG examined in a previous study 
[2]. The patients were recruited consecutively, without regard 
to disease presentation being apparently sporadic or familial 
and without regard to age at onset. Sex was distributed 
almost equally in each group of patients. All patients with 
POAG (range 19-76 year; average: 54) and PEX syndrome 
(range 62-83 year; average: 76) syndrome were diagnosed 
by one or two glaucoma specialists (N.N. and S.Y.). Slit-
lamp biomicroscopy, IOP measurement, gonioscopy, fundus 
examination, and perimetry were performed. Perimetry was 
performed at least two times in all patients with POAG and 
PEX syndrome harboring putative disease contributing varia-
tions. IOP measurements were obtained using Goldmann 
applanation tonometry. Criteria for diagnosis of POAG were 
the presence of at least two of the following criteria: an IOP 
greater than 21 mmHg in at least one eye or inter-eye IOP 
asymmetry exceeding 8 mmHg; characteristic glaucoma-
tous optic nerve head or retinal nerve fiber layer (RNFL) 
changes (e.g., vertical cupping, neural rim thinning or loss, 
RNFL dropout); and visual field defects not attributable to 
other causes. None of the patients with diagnosed POAG 
had other ocular anomalies, and all presented with an open 
anterior chamber angle in the affected eyes. Furthermore, all 
patients with POAG were screened for mutations in MYOC 
and CYP1B1 as previously described, and only those without 
disease-associated mutations in these genes were screened for 
variations in LTBP2 [18]. After genetic screening, attempts 
were made to obtain familial data from the patients with 
POAG in whom candidate disease-contributing sequence 
variations were observed.

PEX syndrome diagnosis was based on observation 
of PEX material on the anterior lens capsule and/or pupil-
lary margin after mydriasis by slit lamp biomicroscopy 
[23]. Secondary open angle glaucoma in patients with 
PEX syndrome was diagnosed as described for POAG. 
Thirty-three (70%) of the patients with PEX presented with 
secondary glaucoma (patients with PEXG). Four hundred 
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Iranian unrelated control individuals older than 60 years of 
age without self-reported family history of ocular diseases 
were also recruited.

Latent transforming growth factor-beta binding protein 
2 gene screening: LTBP2 exons and f lanking intronic 
sequences were amplified with PCR, and subsequently 
sequenced with the Sanger protocol [2]. The LTBP2 refer-
ence sequences used were NT_026437.12, NM_000428.2, and 
NP_000419.1. The effects of the variant sequences on splicing 
were predicted by using NNSPLICE 0.9, Human Splicing 
Finder V 2.4.1 and GENSCAN. Potential effects of all varia-
tions on splicing, including those that affected amino acid 
changes, were checked. To determine the extent of the conser-
vation of amino acids altered due to nucleotide variations, 
the amino acid sequences of homologous proteins from other 
species were aligned using the ClustalW2 software. Varia-
tions deemed to contribute to disease status were assessed 
in control individuals with allele-specific PCR protocols 
or restriction fragment length polymorphism analysis. The 
number of control individuals screened differed for the 
different variations and ranged from 200 to 400 (Table 1). The 
structural consequences of these variations were predicted 
using the PolyPhen-2 in silico tool [24]. The sequences of 
all primers used to amplify the LTBP2 exons are available in 
supplementary Appendix 1.

Histology: To assess the effect of an LTBP2 mutation 
observed in a patient with PEX syndrome and previously 
observed in related patients with PCG, the ECM of skin fibro-
blasts from patients harboring the mutation was examined 
using light, immunofluorescent, and electron microscopy. A 
skin tissue specimen with a depth of approximately 6 mm 
was obtained from behind the ears of these patients and 
age- and sex-matched control individuals. The specimens 
were cut into portions and placed in glutaraldehyde or tissue 
freezing medium. One glutaraldehyde-fixed sample from 
each individual was processed for staining with Orcein 
Giemsa to stain elastin and with Trichrome to stain collagen. 
For immunofluorescent staining, cryosections were incu-
bated with goat polyclonal antibody against human LTBP2 
(LTBP2 (N20), Santa Cruz Biotechnology, Inc., Santa Cruz, 
CA) or rabbit polyclonal antibody against human fibrillin-1 
(ab53076, Abcam, Cambridge, England). Negative controls 
were not incubated with primary antibody. The sections 
were subsequently incubated with fluorescent conjugated 
secondary antibodies (Santa Cruz Biotechnology). Nuclei in 
the same sections were counterstained with 4’, 6-diamidino-
2-phenylindole (Invitrogen, Carlsbad, CA). Finally, samples 
were processed for electron microscopy, and 60 nm sections 

were visualized with a Zeiss EM900 transmission electron 
microscope (Carl Zeiss, Jena, Germany).

RESULTS

Thirty LTBP2 sequence variations were observed in the 90 
individuals screened (Appendix 2). Nineteen are previously 
reported variations, and 11 are novel variations. The allele 
frequency of 18 of the non-novel variations as reported in 
the Single Nucleotide Polymorphism Database (dbSNP) 
ranged from 0.012 to 0.405. The dbSNP data incorporates 
data derived from the 1000 Genomes Project. Six of the novel 
variations were observed in controls, created synonymous 
codons, were not highly conserved during evolution, and/or 
were intronic variations predicted not to affect splicing. We 
opted for a conservative approach and considered that these 
24 variations did not contribute to disease status; clearly, 
variations reported in databases and variations observed in 
controls may predispose individuals to disease, particularly 
common and late onset diseases such as POAG and PEX 
syndrome. A previously identified PCG causative muta-
tion and five novel variations were considered reasonable 
candidates for being variations or risk factors contributing to 
POAG and/or PEX. All but one were observed in the hetero-
zygous state. Considerations including position of the affected 
amino acid within the protein, the biochemical nature of the 
amino acid change, the bioinformatics prediction of the effect 
of the change, the extent of the evolutionary conservation, 
and absence in controls were taken into account in making 
this assessment (Figure 1 and Figure 2). Segregation with 
disease status and familial data were also considered for one 
variation (p.Arg495Gln). All the novel variations and data 
evidencing disease association or absence of disease associa-
tion are presented in Table 1 and Appendix 3. LTBP2 protein 
sequence alignments that allow assessment of evolutionary 
conservation are presented in Appendix 4. The position of 
candidate disease-influencing variations and previously 
reported mutations within the LTBP2 protein are presented 
in Figure 3. Some features of the variations observed in this 
study are described further.

Five novel coding variations in LTBP2 assessed as 
causing or as risk factors for disease were observed in five 
of the 42 patients with POAG screened (Table 1). Clinical 
features of the five patients are presented in Appendix 
5. Age at onset in the patients harboring these putative 
POAG-contributing mutations ranged from 22 to 70 years. 
P.Pro432Leu among these was also observed in a patient with 
PEXG. The variation affecting p.Arg495Gln was observed 
in two siblings with POAG (Figure 4A,B). A fundus image 
of an eye of the proband showing features that confirm a 
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diagnosis of glaucomatous optic neuropathy and results of 
perimetry showing visual field loss are presented in Figure 
4C and Figure 5, respectively. Age at onset of the two sisters 
was 20 and 22 years. Furthermore, the deceased father and 
grandfather had had glaucoma and had become blind in one 
or both eyes in the third decade of their lives. Genetic analysis 
showed that the mother carried wild-type alleles, and clinical 
examination showed that she was free of ocular anomalies. 
The nucleotide sequence variation that caused p.Arg495Gln 
was not observed in 400 unaffected elderly ethnically 
matched control individuals. Interestingly, both siblings and 
also another POAG patient (213R) with an LTBP2 mutation 

had the same cardiac anomalies that had previously been 
attributed to LTBP2 mutations in WMS and MFS pedigrees 
[6]. The variation affecting p.Gln1417Arg was the only puta-
tive POAG-contributing variation found that occurred in the 
homozygous state (Table 1).The parents, who are deceased, 
were first cousins. Of the five patients who harbored the novel 
coding variations, all except the patient with the variation 
that caused p.Arg495Gln were apparently sporadic as they 
reported they were the only known individual with POAG in 
the respective families.

Among the 15 patients with PEX and 33 patients with 
PEXG, four novel coding variations were observed that were 
not found in controls (Table 1). The variations affecting 
p.Ile667Leu and p.Met1567Val, though novel and rare (not 
observed in 200 controls), are probably not associated with 
disease (Table 1). The variations that caused p.Pro432Leu and 
p.Tyr1792fsX55 likely contribute to the disease status of the 
patients with PEX syndrome. P.Pro432Leu is the variation 

Figure 1. Screening of c.1999A>C mutation by an allele-specific 
polymerase chain reaction. Polymerase chain reaction (PCR) was 
performed in presence of two pairs of primers, one for amplification 
of a 456 bp fragment in FBN1 and the other for amplification of a 
259 bp fragment in LTBP2. The former served as control for efficacy 
of the PCR reaction. The 3′ terminus of the forward primer for the 
LTBP2 fragment was designed to amplify only the mutated allele 
(c.1999C) and not the wild-type allele. M, size markers; patient with 
PEX, template was from patient with PEX carrying a mutation; 
template in all other lanes is from control individuals. The arrow 
on the left shows the migration position of the LTBP2 product, and 
the arrow on the right shows migration position of FBN1 product. 
Comparable results were obtained in all 100 controls screened.

Figure 2. Screening of c.4912G>A mutation by restriction fragment 
length polymorphism. Polymerase chain reaction products of exon 
34 were digested with HpyCH4IV. Three bands are evident in the 
electrophoretic pattern of mutation carrier (POAG patient), and only 
two bands in the electrophoretic pattern of the control individual. 
M, size markers.

Figure 3. Positions of putative disease-associated mutations in latent transforming growth factor-beta binding protein 2. Positions of disease-
associated mutations observed here are shown above the schematic representation of the latent transforming growth factor-beta binding 
protein 2 (LTBP2) structure, and the positions of the mutations previously reported are presented below the diagram. Diseases associated 
with the mutations are also given. Symbols used for the various LTBP2 domains are indicated; horizontal lines represent protein regions 
not known to be specific domains.
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also observed in a patient with POAG. The difference in the 
frequency of the causative variation in the patients (2/180 
chromosomes) and the controls (0/800 chromosomes) is 
statistically highly significant (p=0.003). The patient with 
PEX syndrome who carried the p.Tyr1792fsX55-causing 
mutation in the heterozygous state was the mother of the 
proband (individual 21) of the PCG pedigree in which LTBP2 
was identified as a PCG causative gene [2]. Observation of 
PEX syndrome in a heterozygous carrier and PCG in a homo-
zygous carrier of the same mutation was intriguing. Histology 
was performed to get some insight into the effects of the 
mutation and the differential effects in the two individuals. 

Skin tissue was used because access to ocular tissue was 
not feasible. Light, electron, and fluorescent microscopy 
shown abnormalities in the ECM of both patients (Figure 6, 
Figure 7, and Figure 8). In the light microscope images, the 
elastic fibers were sparser and fragmented in each patient 
compared to the respective control (Figure 6A–D). In general, 
disruption of the elastic fibers appeared more severe in the 
patient with PCG  (Figure 6A) compared to his mother with 
PEX syndrome (Figure 6B), who was 55 years old and 25 
years older than her son. Collagen fibers were also sparser 
in each patient compared to the respective control (Figure 
6E–H). Finally, electron micrographs also clearly showed 
that the ECM of each patient was sparser than that of the 
controls (Figure 7A compared to Figure 7C, and Figure 7B 
compared to Figure 7D), and that the ECM of the patient 
with PCG was more severely disrupted than the ECM of the 
patient with PEX syndrome (Figure 7A compared to Figure 
7B). Antibodies against LTBP2 and fibrillin-1-stained fibers 
that were longer and thicker in the ECM of the control indi-
viduals (Figure 8 and Figure 9). The fibers were sparse in the 
patient with PCG, but dense and convoluted in the ECM of 
the patient with PEX syndrome. This appearance is charac-
teristic of microfibrils in patients with PEX syndrome [25]. 
The patterns described were consistently observed in multiple 
sections from the individuals studied. When the mother 
was examined in early 2011, she was diagnosed with PEX 
syndrome without glaucoma. Upon reexamination in 2012, 

Figure 4. LTBP2 mutation p.Arg495Gln in a family with primary 
open angle glaucoma. A: Pedigree of the family. 216T, 211L, and 
216L are the ID numbers of living members of the family. Filled 
circles and squares: affected with glaucoma; open circles and 
squares: unaffected phenotype; wt=wild-type allele, m=mutated 
allele. B: Chromatograms showing homozygous wild-type LTBP2 
genotype c.1484G (top) and heterozygous mutated genotype 
c.1484G>A (bottom). C: Fundus image of the proband’s left eye. 
Diffuse optic disc atrophy, enlarged cup-to-disc ratio with notching 
of the neuroretinal rim in the inferior pole of the disc, and severe 
nerve fiber layer loss especially in inferior area are evident.

Figure 5. Visual field defects in the left eye of patient with POAG 
(211L). The single field analysis printout shows severe visual field 
loss with dense superior arcuate scotoma that threatens the fixation 
and inferior nasal field defect.
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Figure 6. Light microscope images 
of skin tissue sections from patients 
with p.Tyr1792fsX55-causing 
mutat ions and age-matched 
control individuals. A–D: Orcein 
Geimsa–stained elastic fibers of a 
homozygous carrier with primary 
congenital glaucoma (PCG; A) and 
control individual (C), a heterozy-
gous carrier with pseudoexfoliation 
(PEX) syndrome (B) and a control 
individual (D) visualized with a 
light microscope. Elastic fibers 
were sparser and fragmented 
in each patient compared to the 
respective control. Examples 
of fragmented fibers and sparse 
regions are shown, respectively, 
with arrows and * symbol. E–H: 
Trichrome stained collagen fibers 
of individual with PCG (E) and 
control individual (G), individual 
with PEX syndrome (F) and control 
individual (H) visualized with a 
light microscope. Collagen fibers, 
stained with blue, were sparser 
in each patient compared to the 
respective control. Arrector pili 
muscles appear red in G.
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her presentation had evolved into PEXG syndrome. Images of 
the eyes of the mother with PEXG syndrome and the son with 
PCG are shown in Figure 10. Depositions of PEX material 
and glaucomatous damage are evident in the mother’s eye.

DISCUSSION

Mutations in LTBP2 have previously been shown to cause 
several disorders, all of which have ocular manifestations, 
and one of the ocular manifestations is often glaucoma [1-5]. 
Contrary to other known genes causing PCG (CYP1B1) or 
POAG (MYOC, OPTN, and WDR36), one can easily consider a 
plausible cellular and molecular basis for association between 
LTBP2 and the glaucoma phenotype. LTBP2 is an extracel-
lular matrix microfibril protein, and defects in the ECM 
of the trabecular meshwork may affect facility of aqueous 
fluid outflow resulting in increased IOP [26]. This notwith-
standing, the consequences of LTBP2 mutations for regu-
lating TGF-β signaling may also be relevant to the etiology 
of glaucoma. Five putative disease-contributing or risk factor 
mutations in LTBP2 were observed among 42 patients with 
POAG without CYP1B1 and MYOC mutations. Although 
the size of the cohort screened was small, the frequency of 
the observed LTBP2 mutations compares well with that of 

other known genes causing POAG [18,27]. Relevant to this 
finding, ADAMTS10 was recently reported as a POAG caus-
ative gene in a canine model of the disease [28]. ADAMTS10 
is a member of a disintegrin and metalloproteinase with 
thrombospondin motifs family of secreted proteases that 
similarly to LTBP2 is involved in the formation of the ECM 
[29]. Both proteins are expressed in the trabecular meshwork 
[2,28]. POAG rarely exhibits Mendelian inheritance, and 
many genetic and possibly non-genetic factors contribute 
to its pathogenesis. Taken together, the data presented here 
support the proposal that structural and/or functional defects 
of the ECM and/or microfibrils are among the factors that 
contribute to POAG and that mutations in genes coding for 
various components of the ECM and microfibrils including 
LTBP2 are implicated in the disease’s etiology. ECM abnor-
malities have also previously been suggested to affect IOP 
elevation in glaucoma [30-33].

PEX syndrome is a fibrillinopathy that can present 
with numerous clinical complications [34]. Ocular tissues 
are most commonly affected. In addition to LTBP2 being a 
component of PEX material, there is increased TGF-β and 
LTBP2 in the aqueous fluid of affected individuals [25]. In 
addition, LTBP2 and FBN1 were identified as upregulated 

Figure 7. Transmission electron 
microscope images of skin tissue 
sect ions f rom pat ients with 
p.Tyr1792fsX55-causing mutations 
and age matched control individ-
uals. Representative electron micro-
graphs of a homozygous carrier 
with primary congenital glaucoma 
(PCG; A) and the control individual 
(C), and a heterozygous carrier with 
pseudoexfoliation (PEX) syndrome 
(B) and the control individual (D). 
More areas that appear devoid of 
extra cellular matrix (ECM) struc-
tures are evident in the image taken 
from the patients’ samples (A, B), 
and the ECM of the patient with 
PCG (A) is sparser than that of his 
older mother with PEX syndrome 
(B). Examples of sparse regions are 
shown with a star (∗). f, fibroblast; 
cb, collagen bundles.
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Figure 8. Fluorescent microscope 
images of skin tissue sections from 
patients with p.Tyr1792fsX55-
causing mutations and age-matched 
control individuals stained for 
latent transforming growth factor-
beta binding protein 2. Representa-
tive immunofluorescent cryosec-
tions from a homozygous carrier 
with primary congenital glaucoma 
(PCG; A) and the control individual 
(C), and from a heterozygous carrier 
with pseudoexfoliation (PEX) 
syndrome (B) and the control indi-
vidual (D). Fibers stained for latent 
transforming growth factor-beta 
binding protein 2 (LTBP2) in the 
patient with PCG are thinner and 
noticeably fewer (A) compared with 
the control individual (C). Fibers in 
the patient with PEX syndrome are 
also thinner, but dense and convo-
luted (B) compared to the control 
individual (D). Examples of longer 
thicker fibers in the control sections 
are shown with arrows; these were 
not seen in the sections of patients’ 
tissues. Negative control is shown 
in Figure 9.
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Figure 9. Fluorescent microscope 
images of skin tissue sections from 
patients with p.Tyr1792fsX55-
causing mutations and age-matched 
control individuals stained for 
fibrillin-1. Representative immu-
nofluorescent cryosections from a 
homozygous carrier with primary 
congenital glaucoma (PCG; A) and 
the control individual (C), and a 
heterozygous carrier with pseudo-
exfoliation (PEX) syndrome (B) 
and the control individual (D). The 
thick and long fibers that stained for 
fibrillin-1 in the control individuals 
(C, D; arrows) were not observed 
in multiple sections derived from 
the patient tissues (A, B). Fibers in 
the patient with PEX syndrome are 
dense and convoluted (B) compared 
to the control individuals (D). 
Negative control is shown in E.
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genes in anterior segment eye tissues of individuals with PEX 
[35]. The role of TGF-β1 in the pathogenesis of PEX has been 
emphasized, and it was suggested that LTBP2 via its effects 
on TGF-β activation may be involved in the disease process 
[25]. Variable incidence of PEX in different populations 
and increased risk in relatives of affected individuals indi-
cate a genetic component in the disease’s etiopathogenesis, 
but knowledge of the genetics of PEX is rudimentary [22]. 
Association between some single nucleotide polymorphisms 
in LOXL1 encoding lysyl oxidase-like 1 and PEX syndrome 
has been reported, although the PEX-associated variants in 
LOXL1 exhibit low penetrance [36-38]. Lysyl oxidase-like 
1 is a cross-linking enzyme with functions in elastic fiber 
formation and stabilization [39]. Here, we report the presence 
of two putative LTBP2 mutations in patients with PEX. One 
mutation affected p.Pro432Leu and was observed in a patient 
with PEXG. The fact that it was also observed in a patient 
with glaucoma argues in favor of its pathogenicity. The 
second mutation caused p.Tyr1792fsX55 and was observed 
in a patient with PEXG; the same mutation in the homo-
zygous state caused PCG in other family members. It was 
absent in 400 control individuals over the age of 60 without 
eye disorders. Penetrance of the p.Tyr1792fsX55-causing 

mutation regarding PEX is apparently incomplete because 
the father of the family who harbored the same mutation was 
diagnosed normal; he is now deceased. Histological analysis 
showed that the p.Tyr1792fsX55-causing mutation disrupted 
the ECM and microfibril structures, and that the disruptions 
were more severe in homozygous carriers of the mutation. 
Histological analysis in a patient with WMS who harbored 
a different mutation in LTBP2 also showed disruption of 
the ECM and microfibril structures. These findings further 
support the contention that LTBP2 mutations may contribute 
to various disorders with ocular manifestations by affecting 
the extracellular matrix.

There is variability in phenotypic consequences of muta-
tions in LTBP2. A notable observation is that the mutation 
affecting p.Pro432Leu was observed in individuals with 
POAG and PEXG. The data presented here suggest that the 
penetrance of most observed LTBP2 mutations is incomplete 
as disease in the patients usually appeared sporadically. This 
is consistent with the common classification of POAG and 
PEX syndrome as complex disorders. As both diseases are 
multifactorial, factors in addition to the LTBP2 sequence 
variations affected disease status in the individuals harboring 

Figure 10. Images of eyes of a 
patient with pseudoexfoliation 
glaucoma syndrome and a patient 
with primary congenital glaucoma 
with heterozygous and homo-
zygous p.Tyr1792fsX55-causing 
mutation in LTBP2, respectively. 
A and B: Images showing deposi-
tion of pseudoexfoliation material 
(arrows) on the endothelial surface 
of the cornea (arrow in A) and at the 
pupillary border of the iris (arrow 
in B) in the eye of an individual 
diagnosed with pseudoexfoliation 
glaucoma (PEXG) syndrome. C: 
Fundus photograph of the same 
PEXG individual exhibiting char-
acteristic features of glaucomatous 
optic neuropathy. Diffuse neuro-
retinal rim thinning with more 
involvement of the inferior rim, 

notching and peripapillary atrophy all around the disc are evident. D: Image of an eye of an individual with PCG showing diffuse corneal 
opacity and calcific band keratopathy.
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the mutation. Phenotypic presentations in individuals of the 
Roma/Gypsy population who harbored homozygous muta-
tions causing p.Arg299X in LTBP2 were reported to range 
from PCG with trabecular meshwork dysgenesis to Marfan 
syndrome-like zonular disease and late onset angle closure 
glaucoma [40]. In another family study, the same p.Arg299X 
mutation was reported to cause a recessive ocular syndrome 
exhibiting megalocornea, spherophakia, and secondary 
glaucoma [3]. Homozygous LTBP2 mutations are likely to 
result in a more severe phenotype; homozygous mutations 
were reported to cause PCG and WMS, which are early 
onset diseases with more severe clinical manifestations than 
POAG and PEX syndrome, which are late onset diseases 
[1,2]. Notably, POAG and PEX are not considered reces-
sively inherited diseases. Phenotypic variability associated 
with FBN1 mutations is also evident. As stated, mutations 
in FBN1 can cause simple ectopia lentis, MFS, WMS as 
well as other related disorders [41]. The mutation affecting 
p.Cys1223Tyr has been observed in patients with MFS [42] 
and Shprintzen-Goldberg syndrome [43]. The variations in 
phenotypic manifestations of mutations in the two related 
genes LTBP2 and FBN1 may be due to environmental, epigen-
etic, or stochastic events. More interesting, it is also likely 
that there are epistatic relationships between genes coding 
various components of the ECM. An intriguing possibility is 
that some ECM-related proteins may be able to compensate 
one another’s functions to different degrees.

In conclusion, we report that LTBP2 mutations may cause 
or be risk factors for POAG and PEX. The findings emphasize 
the importance of the extracellular matrix to biologic func-
tions affected in these disorders. POAG and PEX syndrome 
are common disorders important to public health issues of 
most populations. It is of paramount importance that larger 
patient cohorts with these diseases be screened for mutations 
in LTBP2 and other related ECM protein coding genes to 
better quantify their contributions to the diseases.

APPENDIX 1.

LTBP2 primers. To access the data, click or select the words 
“Appendix 1.” 

APPENDIX 2.

LTBP2 sequence variations observed among 90 POAG and 
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words “Appendix 2.”

APPENDIX 3.

Novel sequence variations in LTBP2. To access the data, click 
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APPENDIX 4.
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APPENDIX 5.
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