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Abstract. The recycling of synaptic vesicles in nerve 
terminals is thought to involve clathrin-coated vesicles. 
However, the properties of nerve terminal coated vesi- 
cles have not been characterized. Starting from a 
preparation of purified nerve terminals obtained from 
rat brain, we isolated clathrin-coated vesicles by a se- 
ries of differential and density gradient centrifugation 
steps. The enrichment of coated vesicles during frac- 
tionation was monitored by EM. The final fraction 
consisted of >90 % of coated vesicles, with only 
negligible contamination by synaptic vesicles. Control 
experiments revealed that the contribution by coated 
vesicles derived from the axo-dendritic region or from 
nonneuronal cells is minimal. 

The membrane composition of nerve terminal-de- 
rived coated vesicles was very similar to that of syn- 
aptic vesicles, containing the membrane proteins syn- 
aptophysin, synaptotagmin, p29, synaptobrevin and the 
ll6-kD subunit of the vacuolar proton pump, in simi- 

lar stoichiometric ratios. The small GTP-binding pro- 
tein rab3A was absent, probably reflecting its dissocia- 
tion from synaptic vesicles during endocytosis. Im- 
munogold EM revealed that virtually all coated 
vesicles carried synaptic vesicle proteins, demonstrat- 
ing that the contribution by coated vesicles derived 
from other membrane traffic pathways is negligible. 
Coated vesicles isolated from the whole brain ex- 
hibited a similar composition, most of them carrying 
synaptic vesicle proteins. This indicates that in ner- 
vous tissue, coated vesicles function predominantly in 
the synaptic vesicle pathway. Nerve terminal-derived 
coated vesicles contained AP-2 adaptor complexes, 
which is in agreement with their plasmalemmal origin. 
Furthermore, the neuron-specific coat proteins AP 180 
and auxilin, as well as the eta1- and act-adaptins, were 
enriched in this fraction, suggesting a function for 
these coat proteins in synaptic vesicle recycling. 

C 
HEMICAL neurotransmission occurs via the regulated 
exocytosis of synaptic vesicles in nerve terminals. 
Synaptic vesicles are highly specialized organelles 

containing a unique set of membrane proteins such as synap- 
sin, synaptophysin, synaptobrevin, synaptotagmin, and also 
the small GTP-binding protein rab3A. Synaptic vesicles are 
thought to originate from the trans-Golgi network and to be 
transported by axonal transport to the nerve terminal where 
they undergo repeated cycles of exo-endocytosis (for review 
see Kelly, 1988; De Camilli and Jahn, 1990; Trimble et al., 
1991; Siidhof and Jahn, 1991). 

The details of synaptic vesicle membrane trafficking in the 
nerve terminal are still poorly understood. In particular, the 
mechanism of vesicle membrane retrieval from the plasma 
membrane following exocytosis remains controversial. 
There is agreement that recycling via coated vesicles is in- 
volved at least under certain conditions (Heuser and Reese, 
1973; Miller and Heuser, 1984). However, the extent to 
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which alternative endocytic pathways are involved is unclear. 
It has been proposed that the majority of the vesicle mem- 
brane is retrieved directly to reform synaptic vesicles, with- 
out the formation of intermediate coated stages. This is sup- 
ported by the lack of correlation between the number of 
coated vesicles and the intensity of stimulation (Ceccarelli 
and Hurlbut, 1980; Torri-Tarelli et al., 1987). Synaptic vesi- 
cles may also re-form via large cisternal intermediates which 
pinch off directly from the plasma membrane. Such inter- 
mediates are frequently observed by EM after strong stimu- 
lation (Heuser and Reese, 1973; Miller and Heuser, 1984). 
Despite these alternatives, the recycling of synaptic vesicles 
via clathrin coated vesicles can be regarded as a prominent 
pathway (for a discussion of this topic see, e.g., Ceccarelli 
and Hurlbut, 1980; Heuser, 1989). 

The coat protein composition of brain-derived clathrin- 
coated vesicles has been studied in detail and is known to 
contain several neuron-specific protein components. The 
clathrin heavy chain and two light chains (LCa and LCb), 
each a separate gene product, are present in all tissues 
(reviewed in Brodsky et al., 1991). In neurons, two addi- 
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tional isoforms of LC~ and one additional form of LCb ex-  

ist .  They are generated by alternative splicing events result- 
ing in the insertion of short stretches of amino acids (Jackson 
et ai., 1987). Similarly, neuron-specific variants of tx- and 
B-adaptin chains were identified (Robinson, 1989; Ponnam- 
balam et al., 1990). These proteins are components of the 
adaptor protein complexes which are thought to link the 
clathrin coat to membrane components (reviewed in Pearse 
and Robinson, 1990). Two such adaptor complexes have 
been identified, AP-1 and AP-2, that are present in all cells. 
Furthermore, two additional coat components have been 
identified that are specific for neurons: AP 180 (Ahle and 
Ungewickell, 1986) which is probably identical with NP 185 
(Kohtz and Puszkin, 1988) and AP 3 (Murphy et al., 1991), 
and auxilin (Ahle and Ungewickell, 1990). 

It is still largely unknown to what extent populations of 
coated vesicles operating in different steps of membrane 
trafficking differ from each other with regard to coat compo- 
sition. It was demonstrated that the adaptor complex AP-1 
is specific for coated vesicles functioning at the exit site of 
the trans-Golgi network, whereas AP-2 is specific for coated 
vesicles involved in endocytosis of plasma membrane com- 
ponents (Ahle et al., 1988; for review see Morris et al., 
1989; Keen, 1990). However, the functional significance of 
the neuron-specific coat proteins and their variants is still an 
enigma. The recycling of synaptic vesicles in nerve terminals 
represents a highly specialized and greatly amplified mem- 
brane trafficking pathway and it is possible that coated vesi- 
cle function in this step is also specialized, requiring specific 
coat components. Therefore, it is important to evaluate 
which of the coat proteins expressed in neurons are compo- 
nents of the coated vesicles involved in this step. 

In the present study, we have attempted the biochemical 
characterization of the coated vesicle subpopulation involved 
in synaptic vesicle recycling. For this purpose, we have de- 
veloped a procedure to isolate coated vesicles from nerve 
terminals free of contamination by coated vesicles derived 
from glial cells or neuronal cell bodies. To identify the origin 
of the coated vesicle membrane, we have analyzed the mem- 
branes for the presence of synaptic vesicle proteins. Our 
results indicate that coated vesicles isolated from nerve ter- 
minals are exclusively derived from synaptic vesicles, with 
no evidence for other pathways, and that these coated vesi- 
cles contain AP-2 adaptor components as well as the neuron- 
specific coat proteins auxilin and AP 180. Furthermore, our 
data indicate that the synaptic vesicle membrane composi- 
tion remains virtually unchanged during recycling, with the 
exception of the G-protein rab3A. 

Materials and Methods 

Antibodies 

Polyclonal antibodies against the ll6-kD subunit of the vacuolar proton 
pump (Perin et al., 1991) were kindly provided by Dr. T. C. Siidhof (Univer- 
sity of Texas, Dallas, Texas). Mouse mAbs raised against bovine 9- and 
/~'-adaptin (mAb 100/1) and a-adaptin (mAb 100/2) (Ahle et al., 1988), aux- 
ilin (mAb 100/4; Ahle and Ungewickell, 1990) and AP 180 (mAb AP180-1; 
Able and UngewickeU, 1986) were kind gifts of Dr. E. Ungewickell (Max- 
Planck-Inst. fiir Biochemie, Martinsried, Germany). mAbs against the 
Golgi-specific protein Gimpt (Yuan et al., 1987) were made available by 
Drs. Suarez-Qiuan (National Institutes of Health, Bethesda, MD) and I. V. 
Sandoval (University of Madrid, Madrid, Spain). mAbs directed against 
clathrin heavy chain were obtained from Boehringer (Mannheim, Ger- 
many). The following monoclonal and polyclonal antibodies directed 

against synaptic vesicle proteins were described previously: rab3A (clone 
CI 42.2; Matteoli et al., 1991); synaptophysin (clone C 7.2; Jahn et al., 
1985); synaptobrevin (rabbit serum; Baumert et al., 1989); synaptotagmin 
(clone CI 41.1; Brose et al., 1992); p29 (rabbit serum; Baumert et al., 
1990). Folyclonal antibodies directed against the neuron-specific insert of 
clathrin light chain (Lea) were obtained by immunizing rabbits with a syn- 
thetic peptide (CVADEAFYKQPFAD) corresponding to the first part of the 
insert (Jackson et al., 1987) which was coupled to hemocyanin as a carrier 
(Schneider et al., 1983). For immunocytochemistry, the serum was affinity 
purified using an enriched light chain-containing fraction as adsorbent 
which was separated by SDS-PAGE and blotted onto nitrocellulose mem- 
brane filters (Olmsted, 1987). The resulting antibodies were specific for 
neuronal clathrin light chains and showed no reaction with nonneuronal 
clathrin light chains (tested with adrenal gland) nor labeling of coated struc- 
tures by immunofluorescence in nonneuronal cell lines. Western blotting re- 
vealed labeling of both neuronal light chains a and of light chain b, indicat- 
ing that the epitopes are residing on the shared sequence elements of the 
inserts (data not shown). 

Subcellular Fractionation 
All steps were carried out at 4~ Coated vesicles were purified from rat 
brain and rat liver according to a modification of several published proce- 
dures (see, e.g., Pearse, 1983). 30 rat brains were homogenized in 300 ml 
of buffer A (0.1 M MES/NaOH, pH 6.5, 1 mM EGTA, 0.5 mM MgC12) 
using a glass-teflon homogenizer (10 strokes at 1,500 rpm). The homogenate 
was centrifuged at 20,000 g for 20 rain (SS 34 rotor; Sorvall Du Pont, Wil- 
mington, DE). The supernatant was collected and centrifuged at 55,000 g 
for 1 h (Ti45 rotor; Beckman Instruments, Inc., Paid Alto, CA). The pellets 
were resuspended in a total volume of 20 ml buffer A (three strokes at 2,000 
rpm in a glass-teflon homogenizer, followed by dispersion through a 27- 
gauge needle). The suspension was then mixed with 20 ml of buffer A con- 
taining 12.5% (wt/vol) Ficoll and 12.5% (wt/vol) sucrose and centrifuged 
for 40 min at 40,000 g (SS34 rotor). The supernatant was removed, diluted 
1:5 in buffer A and centrifuged for 1 h at 100,000 g (Ti45 rotor) to pellet 
coated vesicles. The pellet was resuspended as above in 30 ml of buffer A 
and cleared by centrifugation at 20,000 g for 20 min, The supernatant was 
layered on top of buffer A prepared with D2O containing 8% (wt/vol) su- 
crose and centrifuged for 2 h at 25,000 rpm in a Beckman SW28 rotor. The 
final pellet containing purified coated vesicles was resuspended in 0.6 ml 
of buffer A. 

For the preparation of coated vesicles from nerve terminals, synapto- 
somes were isolated and washed to remove any contaminating coated vesi- 
cles derived from other cellular compartments. For this purpose, 60 rat 
brains were homogenized in 0.32 M sucrose in a glass-teflon homogenizer 
(600 rpm, 10 strokes). The homogenate was centrifuged for 2 min at 5,000 
rpm (SS34 rotor). The supernatant was removed and centrifuged for 12 min 
at 11,000 rpm (SS34 rotor). The pellet was resuspended in 0.1 M K2- 
taarate (pH 7.3) and centrifuged at 6,500 rpm for 4 rain (SS34 rotor). This 
was sufficient to resediment synaptosomes due to the lower density and vis- 
cosity of the tartrate buffer. The outer, white part of the pellet was 
resuspended in tartrate buffer (avoiding the mitochondria-containing red- 
dish core of the pellet) and recentrifuged. The entire pellet was resuspended 
and recentrifuged as before. The pellets were then resuspended in 40 ml of 
10 mM glucose, 5 mM KC1, 140 mM NaCI, 5 mM NaHCO3, 1 mM 
MgCI2, 1.2 mM Na2HPO4, and 20 mM Hepes, pH 7.4, and incubated at 
37~ for 15 min with stirring. The resuspension was diluted 1:2 with 0.1 M 
K2-tartrate (pH 7.3) and centrifuged at 6,500 rpm for 4 min (SS34 rotor). 
The pellets were resuspended in 40 ml tartrate buffer and diluted 1:10 in 
H20 and irmnediately homogenized (three strokes at 2,000 rpm, glass- 
teflon homogenizer). The solution was adjusted to isoosmolarity by adding 
1/10 vol of a 10• stock of buffer A. The subsequent steps were performed 
exactly as described above for the homogenate. 

For removal of the clathrin coat, 40 #l of coated vesicle suspension were 
diluted into 1 ml of 0.3 M Tris-Cl, pH 9.0, and rotated for 1 h at 37~ The 
sample was centrifuged for 15 min at 120,000 g in a Beckman TLA 100.3 
rotor and the pellet was resuspended in 40 tzl of buffer A. Synaptic vesicles 
were immunoisolated as described previously (Burger et al., 1989). 

Immunocytochemistry 
Light microscopy immunofluorescence of frozen sections was carried out 
as described (De Camilli et al., 1983; Baumert et al., 1990). Sprague 
Dawley rats (175-250 g) were anesthetized and transcardially perfused with 
ice-cold 4% formaldehyde (freshly prepared from paraformaldehyde) in 0.1 
M phosphate buffer. 

Negative staining and immunogold labeling of isolated subcellular frac- 
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Figure L Double-immunofiuorescence micrographs showing the localization of the neuronal forms of clathrin light chains (A and C) in 
comparison to the synaptic vesicle protein synaptophysin (B) and the trans-Golgi marker, Gimpt (D) in rat brain sections (A-D) and the 
neuromuscular junction (A and B, insets). Clathrin light chain and synaptophysin immunoreactivity is present in axon terminals which 
outline neuronal perikarya and dendrites (A and B, see arrows). Clathrin light chain immunoreactivity is also present in the nerve terminals 
of the neuromuscular junction, where it is colocalized with synaptophysin immunoreactivity (A and B, insets). Clathrin light chain im- 
munoreactivity is also observed in the region of the Golgi complex, represented by a network of labeled perinuclear particles. The trans- 
Golgi marker, Gimpt, clearly defines the Golgi complex area (see arrows, C and D). Note that the mAb against synaptophysin does not 
recognize the perinuclear pool of the protein, in contrast to polyclonal sera used in earlier studies (see Navone et al., 1986). Bar, 10 #m. 

tions was performed as described (Jahn and Maycox, 1988). For im- 
munolocalization of synaptophysin, mAb C 7.2 (Jahn et al., 1985) was used. 

Other Methods 

SDS-PAGE was performed according to Laemmli (1970). Immunoblotting 
was carried out according to Towbin et al. (1979), using radioiodinated pro- 
tein A as a detection system (Jahn et al., 1985). For the analysis of clathrin 
coat proteins, SDS-PAGE was performed using gradient gels consisting of 
10% acrylamidedO.3% bisacrylamide-18% acrylamide/0.6% bisacryl- 
amide. This allowed all of the coat proteins and the individual adaptor 
subunits to be resolved by a single one-dimensional gel. Protein was deter- 
mined by the method of Bradford (1976), 

Results 

lmmunocytochemical Localization of  the Neuronal 
Forms of  Clathrin Light Chain 

Using affinity-purified antibodies directed against neuron- 
specific clathrin light chains, immunostaining of frozen sec- 
tions obtained from various areas of the central and periph- 
eral nervous systems revealed a distinct staining pattern 
highly reminiscent of that described for synaptic vesicle 
membrane proteins (e.g., Navone et al., 1986), in particular 
that of p29 03aumert et al., 1990). In all sections of the CNS, 
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a punctate pattern surrounding the cell bodies and the den- 
drites was visible (Fig. 1, A and C). Virtually identical pat- 
terns were observed when sections were double-stained with 
mAbs directed against the vesicle proteins synaptophysin 
(p38, Fig. 1 B) or rab3A (not shown). In addition, strong 
labeling of irregularly shaped structures surrounding the nu- 
cleus was observed. Double labeling with a mAb directed 
against the Golgi-specific protein Gimpt resulted in an iden- 
tical staining pattern (Fig. 1, C and D). Similar double- 
labeling patterns were also observed in the peripheral ner- 
vous system, with highly specific labeling of nerve terminals 
(Fig. 1 A). No staining was observed in other regions of the 
neuron including the soluble compartment, or in any non- 
neuronal cell type (e.g., glial cells, etc.). 

These observations demonstrate that those coated vesicle 
populations that carry neuron-specific light chains are co- 
localized with the major pools of synaptic vesicle mem- 
branes, namely in the trans-Golgi area and the nerve termi- 
nals. The localization of neuron-specific forms of the light 
chains in synapses and cell bodies has also been reported re- 
cently using a mAb (Wong et al., 1990). In addition, the 
staining pattern obtained with our light chain antibodies is 
similar to that obtained with antibodies generated against 
clathrin heavy chain in earlier studies (Cheng et al., 1980; 
Bloom and Puszkin, 1983). 

Characterization of Coated Vesicles Isolated from 
Nerve Terminals 

The immunocytochemical evidence suggests that the major 
pools of neuronal-coated vesicles are functionally associated 
with the synaptic vesicle pathway in the nerve terminal and 
possibly also in the Golgi complex area. For a full character- 
ization of the coated vesicle membrane and coat composi- 
tion, we have isolated coated vesicles from nerve terminals 
and whole brain and analyzed these preparations for the 
presence of coat proteins and synaptic vesicle membrane 
proteins both by immunoblotting and immunogold EM. 

For the isolation of coated vesicle subpopulations derived 
from nerve terminals, we purified synaptosomes and isolated 
coated vesicles from their interior after osmotic rupture of 
the synaptosomal membrane (see Materials and Methods). 
To ensure that our synaptosome preparation was not con- 
taminated by coated vesicles released from other parts of the 
cell or from other cell types, synaptosomes were washed sev- 
eral times with isotonic tartrate buffer before lysis. As shown 
in Fig. 2, hypotonic treatment of synaptosomes released 
large quantities of coated vesicle and synaptic vesicle protein 
constituents into the supernatant which were pelleted by a 
subsequent centrifugation at high speed (Fig. 2, lanes B). In 
contrast, no material was released when the incubation was 
performed in isotonic buffer (Fig. 2, lanes C). This experi- 
ment shows that our synaptosome preparation was free from 
adherent coated vesicles. This is supported by the lack of 
electron microscopic evidence for adherent coated vesicles 
on the synaptosomal surface (data not shown). In some ex- 
periments, synaptosomes were further purified by Ficoll- 
step gradients (Fischer yon Mollard et al., 1991) before lysis. 
No significant differences were observed. 

A major concern during the purification of clathrin-coated 
vesicles from nerve terminals is contamination by synaptic 
vesicles. These organelles are similar in size and are far 
more abundant than coated vesicles. For these reasons, we 

Figure 2. Coated vesicles are only released from synaptosomes 
when osmotic rupture of the plasma membrane is performed. Iso- 
lated synaptosomes were lysed by resuspension and homogeniza- 
tion in hypoosmotic buffer or resuspended with isotonic K2- 
tartrate buffer (control, see Materials and Methods). After removal 
of synaptosomal membranes by centrifugation, membranous parti- 
cles released into the supernatant were pelleted at I00,000 g for 20 
min in a Beckman TLA 100.3 rotor. The resulting pellets were 
resuspended and analyzed by SDS-PAGE and immunoblotting 
(equal proportional amounts in both cases). (Lane A) Synapto- 
somes before lysis (5/*g of protein/lane); (lane B) high-speed mem- 
brane pellet derived from synaptosomes treated with hypoosmotic 
buffer (5 tzg of protein/lane); (lane C) high-speed membrane pellet 
derived from synaptosomes treated with isoosmotic buffer (equal 
proportion of the resuspended pellet as in lane B was loaded. (LEE) 
Coomassie blue staining; (righO immunoblots. 

monitored the enrichment of coated vesicles both by EM and 
by immunoblotting. 

Fig. 3 shows the last three stages of coated vesicle purifi- 
cation from synaptosomes as observed by negative staining. 
The first enrichment step after synaptosomal lysis involved 
differential centrifugafion. Although in comparison to ear- 
lier fractions (not shown) coated vesicles are significantly 
enriched, the fraction still contains numerous small profiles 
reminiscent of synaptic vesicles (Fig. 3 a) which were all 
positive for synaptic vesicle proteins in immunogold EM 
(not shown). Ficoll density gradient centrifugation resulted 
in a significant reduction of synaptic vesicle contamination 
(Fig. 3 b). The final purification step (D20/sucrose cush- 
ion) resulted in a clathrin-coated vesicle fraction of high pu- 
rity, with only a minor proportion of uncoated vesicular 
profiles (Fig. 3 c). 

The enrichment of coated vesicles as observed by EM was 
paralleled by a concomitant enrichment of coat proteins. Fig. 
4 shows the electrophoretic profile of subcellular fractions 
obtained during coated vesicle purification. After immuno- 
blotting, staining for the coat components clathrin heavy 
chain and the B/B'-adaptins (not differentiated in this experi- 
ment; see below), revealed a parallel enrichment of these 
proteins with the coated vesicles. 

Comparison of Nerve Terminal Coated Vesicles with 
Synaptic Vesicles and Coated Vesicles Isolated from 
Whole Brain 

Once this pure preparation of nerve terminal-coated vesicles 
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Figure 3. Enrichment of coated vesicles released from nerve terminals during subsequent Ficoll- and D20-sucrose-density gradient cen- 
trifugations, monitored by EM (negative staining). (a) 55,000-g pellet, obtained after lysis of synaptosomes and removal of heavy particles 
(see Materials and Methods). (b) Supernatant obtained after Ficoll-density gradient centrifugation (analyzed after dilution and centrifuga- 
tion at 100,000 g, see Materials and Methods). (c) Pellet obtained after D20-sucrose density gradient centrifugation. Bar, 200 nm. 

was available, we investigated the degree of similarity be- 
tween the membrane protein components of coated vesicles 
and synaptic vesicles, i.e., to determine whether these 
coated vesicles contained membrane proteins previously 
shown to be specific for synaptic vesicles. Therefore, the dis- 
tributions of the vesicle proteins synaptotagmin, synap- 
tophysin, synaptobrevin, and rab3A were monitored in par- 
allel. In addition, the distribution of the ll6-kD subunit of 
the vacuolar proton pump was analyzed. This pump was first 
identified in coated vesicles (Stone et al., 1983), but was 
later also shown to be present in synaptic vesicles (Stadier 
and Tsukita, 1984; Hell et al., 1988; Cidon and Sihra, 
1989). With the exception of rab3A, all of these proteins en- 
riched together with the coat components although not to the 
same extent (Fig. 4). Rab3A did not copurify but rather de- 
riched in the final purification steps. Similarly, none of the 
synapsin isoforms enriched with coated vesicles (data not 
shown). 

Together these data suggest that a major proportion of the 
coated vesicles in nerve terminals carries synaptic vesi- 
cle-derived membranes and is involved in the recycling of 
synaptic vesicles. For comparison, we isolated coated vesi- 
cles and synaptic vesicles from total brain homogenate and 
analyzed their membrane composition. As shown by both 

Figure 4. Enrichment of coated vesicle coat proteins and synaptic 
vesicle membrane proteins during the purification of coated vesi- 
cles from nerve terminals, monitored by SDS-PAGE and immuno- 
blotting (8 #g of protein/lane). (~p) Coomassie blue stain (arrow- 
heads indicate the positions of clathrin heavy and light chains, 
respectively); (bottom) immunoblot. (A) Homogenate; (B) crude 
synaptosomes; (C) washed synaptosomes; (D) 55,000-g pellet, ob- 
tained after lysis of synaptosomes and removal of heavy particles 
(see Materials and Methods). (E) Supernatant obtained after Ficoll 
density gradient centrifugation (analyzed after dilution and centri- 
fugation at 100,000 g; see Materials and Methods). (F) Pellet ob- 
tained after D20-sucrose density gradient centrifugation. 
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Figure 5. Comparison of the 
protein composition of synap- 
tic vesicles (lane A) with that 
of coated vesicles isolated 
from whole brain (lane B) and 
nerve terminals (lane C). 
(Top) Coomassie blue stain 
of a SDS-polyacrylamide gel. 
Asterisks indicate the position 
of the heavy and light chains 
of mAb C 7.2 used for im- 
munoisolation of synaptic 
vesicles. Arrowheads indicate 
the positions of clathrin heavy 
and light chains, respectively. 
(Bottom) Immunoblots. (Lane 
A) 10 #g of protein (including 
IgG); (lanes B and C) 4/zg of 
protein. 

Coomassie blue staining and immunoblot analysis (Fig. 5), 
the protein composition of the two coated vesicle fractions 
is very similar. Furthermore, the ratio of the vesicle mem- 
brane proteins (again with the exception of rab3A, see above) 
is very similar in both coated and the synaptic vesicle frac- 
tion suggesting that these proteins are transported together 
during vesicular membrane traffic. P29 appears to be an ex- 
ception to this pattern, being somewhat more abundant in the 
coated vesicle fraction isolated from whole brain homoge- 
hate. This is in agreement with our earlier observation that 
p29 immunoreactivity in the Golgi complex area is more in- 
tense than that of the other synaptic vesicle proteins (Bau- 
mert et al., 1990). 

In the following experiments, we investigated which of the 
coat proteins are present on nerve terminal coated vesicles 
and how the coat composition of nerve terminal coated vesi- 
cles differs from that of whole brain coated vesicles. As 
shown in Fig. 6, nerve terminal-derived coated vesicles con- 
tain less of the/3'-adaptin than total brain-derived coated 
vesicles. In contrast, all c~-adaptins are present in the nerve 
terminal-derived coated vesicle fraction, with a slight en- 
richment of the c~a~- and c~c~-adaptins. This enrichment 
profile suggests that coated vesicles in nerve terminals con- 
tain predominantly, or even exclusively, AP-2 adaptor pro- 
tein complexes. In addition, the distribution of the brain- 
specific coat components AP 180 and auxilin was studied. 
Both proteins were abundant in the nerve terminal-derived 
coated vesicle fraction, with a slight enrichment in compari- 
son to whole brain-derived coated vesicles, demonstrating 
that both proteins are components of nerve terminal coated 
vesicles. 

Figure 6. Analysis of the coat- 
associated proteins of clathrin 
coated vesicles from whole 
brain coated vesicles (A) and 
coated vesicles purified from 
nerve terminals (B), showing 
the presence of AP-2 adaptor 
components and the neuron- 
specific coat proteins auxilin 
and AP 180 in nerve terminal 
coated vesicles. The proteins 
were separated on special gra- 
dient gels (see Materials and 
Methods), transferred to nitro- 
cellulose membrane filters and 
immunolabeled for/~//3'-adap- 
tin, a-adaptin, AP 180, and 
auxilin with mAbs 100/1, 
100/2, AP180-1, and 100/4, 
respectively. 

In the last series of experiments, both the nerve terminal- 
derived coated vesicle fraction and the whole brain-derived 
coated vesicle fraction were analyzed by immunogold EM 
for the presence of synaptophysin (Fig. 7). These experi- 
ments were performed to determine which proportion of 
coated vesicles in each fraction contains synaptic vesicle- 
derived membranes. 

First, coated vesicles purified from nerve terminals (Fig. 
7, upper) were decoated and the remaining membranes 
immunogold-labeled for synaptophysin. As shown in field b, 
virtually all membrane profiles were labeled (>95 %). This 
demonstrates that essentially the entire population of nerve 
terminal coated vesicles is composed of recycling mem- 
branes derived from synaptic vesicles. This indicates that 
nerve terminals do not contain significant proportions of 
coated vesicles involved in nonvesicular pathways, e.g., 
plasma membrane recycling which is expected to occur dur- 
ing synaptogenesis and synapse turnover. 

Surprisingly, an analysis of whole brain coated vesicles re- 
vealed that again the majority of vesicles was labeled for syn- 
aptophysin after decoating (Fig. 7, middle). The degree of 
labeling was determined by counting labeled and unlabeled 
profiles in several randomly selected fields, totaling >200 
vesicles for each count. The result shows that 83 % of the 
small profiles were labeled with immunogold, whereas the 
few larger profiles present were mostly unlabeled. Since the 
purified coated vesicle fraction used in this experiment con- 
tained <5 % uncoated membrane profiles before decoating 
(most of them considerably larger than coated vesicles), con- 
tamination by free synaptic vesicles is negligible. As a con- 
trol, we purified coated vesicles from liver in parallel using 
precisely the same purification and labeling protocol (Fig. 
7, lower). Virtually no gold was found after decoating (<5 % 
of all profiles were labeled), demonstrating the specificity of 
the immunogold procedure. We conclude that in the brain 
the synaptic vesicle pathway is dominant in coated vesicle 
membrane trafficking and that the contribution of coated 
vesicles derived from nonneuronal cells as well as from 
other, nonvesicular neuronal membrane traffic pathways is 
relatively minor. 
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Figure 7. Immunogold labeling for synaptophysin on negatively stained coated vesicle membranes. The coat was stripped from the vesicles 
before labeling. (a) Coated vesicles before decoating. (b) Decoated membranes, immunogold labeled for synaptophysin. In the nerve termi- 
nal and in whole brain-derived coated vesicles, the majority of profiles are labeled for synaptophysin (arrows point to few unlabeled profiles 
in the whole-brain preparation). Virtually no labeling is observed in the liver sample which was used as a control. Bar, 200 nm. 

Discussion 

In the present study, we have utilized synaptosomes as start- 
ing material for the purification of clathrin-coated vesicles 
from nerve terminals in order to study their coat composi- 
tion and their relationship with synaptic vesicles. Our data 
are consistent with a model in which coated vesicles in the 
nerve terminal function predominantly in vesicle recycling, 

retrieving all synaptic vesicle proteins with the exception 
of rab3A and possibly the synapsins. Furthermore, their coat 
is enriched with components of AP-2 adaptor complex as 
well as with the neuron-specific coat proteins AP 180 and 
auxilin, suggesting a role for these proteins in synaptic vesi- 
cle recycling. 

The ability to isolate synaptosomes represents a unique 
opportunity to obtain clathrin-coated vesicles in a pure form 
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from a distinct subcellular compartment which is specialized 
for regulated secretion and to use them as a starting point 
for functional studies. The isolation procedure we adopted 
overcame one of the main problems associated with the 
purification of these organelles from nerve terminals, 
namely contamination with synaptic vesicles. Under resting 
conditions, synaptic vesicles appear to be far more abundant 
than coated vesicles (see, e.g., Heuser and Reese, 1973; 
Torri-'Parelli et al., 1987), which is reflected by a high ratio 
of synaptic to coated vesicles in the first fraction obtained 
after synaptosomal lysis (see Fig. 3 a). A simplified version 
of this protocol was used for the isolation of clathrin-coated 
vesicles from whole brain and rat liver. The pure fractions 
(Figs. 3 c and 7) contained coated vesicles of heterogeneous 
size which indicates that the purification method does not se- 
lect for clathrin-coated vesicle subpopulations of a certain 
size class. 

It is unlikely that artificial recoating of synaptic vesicles 
(i.e., coat formation after homogenization) occurs during 
our purification procedure. Our attempts to induce coat for- 
mation on purified synaptic vesicles in vitro by addition of 
soluble clathrin chains and adaptor protein complexes were 
unsuccessful (our unpublished observations). Furthermore, 
recent evidence from several laboratories suggests that coated 
pit formation must precede clathrin-coated vesicle formation 
in vitro and, in addition, requires specific incubation condi- 
tions not met by our procedure (Schmid and Smythe, 1991; 
Lin et al., 1991). 

In contrast, we cannot rule out that some decoating of 
clathrin-coated vesicles occurred during our isolation proce- 
dure. To minimize loss of clathrin, we used solutions of high 
ionic strength which are known to prevent the decoating (see, 
e.g., Pearse, 1983 for review) observed in low ionic strength- 
sucrose buffers usually applied for organeUe isolation. For 
example, synaptic vesicles isolated by conventional proce- 
dures (e.g., according to Huttner et al., 1983; Hell et al., 
1988) are associated with significant amounts of adaptor 
proteins but not with clathrin (our unpublished observa- 
tions), suggesting that they are contaminated with partially 
decoated vesicles. This was avoided under the more rapid 
and mild conditions of immunoisolation (Fig. 5). 

One of the most striking observations from this study is 
the fact that coated vesicles from nerve terminals essentially 
contain synaptic vesicle-derived membranes, with no evi- 
dence for a significant contribution from any other mem- 
brane pool. With the exception of the membrane-associated 
proteins synapsin and rab3A (see below), the ratios between 
the individual integral membrane proteins were identical be- 
tween coated and synaptic vesicles, suggesting that after exo- 
cytosis vesicle proteins recycle in bulk with almost fixed 
stoichiometry. These findings strongly support a central role 
of clathrin-coated vesicles in synaptic vesicle retrieval as 
suggested by Heuser and co-workers (see, e.g., Heuser, 
1989). However, the existence of additional retrieval path- 
ways cannot be excluded. 

In contrast to the integral vesicle membrane proteins syn- 
aptotagmin, synaptophysin, p29 and synaptobrevin, the 
membrane-associated proteins synapsin (data not shown) 
and rab3A (Figs. 4 and 5) were barely detectable on clathrin- 
coated vesicles. Whereas the synapsins may have been lost 
during the purification due to high salt concentration (Hutt- 
her et al., 1983), the absence of rab3A probably reflects the 

dissociation of this protein from the endocytotic limb of the 
membrane cycle. It was previously reported that rab3A dis- 
sociates from synaptic vesicles after stimulation of exocyto- 
sis (Fischer von Mollard et al., 1991), but it could not be de- 
termined at which step of the vesicle cycle this occurs. 
Irreversible stimulation of exocytosis by tx-latrotoxin re- 
vealed that rab3A is transferred to the plasma membrane in 
a membrane-bound form (Matteoli et al., 1991). The ab- 
sence of rab3A from clathrin-coated vesicles suggests that 
this protein is selectively segregated from the rest of the vesi- 
cle proteins during the clathrin-dependent membrane re- 
trieval from the plasma membrane. 

Our analysis of the coat proteins clearly suggests that sev- 
eral of the neuron-specific variants function in synaptic vesi- 
cle recycling. Thus, auxilin and AP 180 are major compo- 
nents of nerve terminal coated vesicles. A similar conclusion 
was reached recently by others for the neuron-specific coat 
protein NP 185 (Suet al., 1991) which is probably identical 
with AP 180 (Murphy et al., 1991). Furthermore, our analy- 
sis of the adaptins assigned the adaptor complexes to the 
AP-2 type which agrees with the plasma membrane-derived 
origin of the coated vesicles in nerve terminals. We are 
presently unable to determine whether any of these proteins 
are also present in coated vesicles derived from the soma- 
dendritic area. This is due to the fact that cell body-derived 
coated vesicles cannot be isolated free from coated vesicles 
derived from nerve terminals. In our whole brain coated 
vesicle preparation, the proportion of coated vesicles from 
the perinuclear and dendritic region is therefore unknown. 
However, the slight but selective enrichments of AP 180, 
auxilin, and the otaI- and ~c~-adaptins (Fig. 6) is suggestive 
of an exclusive association with nerve terminal coated vesi- 
cles. The resolution of this issue is, however, dependent on 
the availability of specific antibodies which are suitable for 
immunocytochemistry. 

Surprisingly, coated vesicles isolated from total brain dis- 
played an almost identical membrane composition to those 
isolated from nerve terminals, with >80% of the small 
profiles carrying synaptic vesicle proteins. Identical results 
were obtained when coated vesicles were purified from bo- 
vine brain by an entirely different procedure (free-flow elec- 
trophoresis; our unpublished observations). This again dem- 
onstrates the predominance of the synaptic vesicle pathway 
in the adult brain and shows that the contribution of other 
pathways, e.g., Golgi-derived pathways as well as of coated 
vesicles derived from glial cells, is minor. Due to the un- 
known percentage of nerve terminal-derived coated vesicles 
in this preparation (see above), we cannot determine with 
certainty whether the colocalization of clathrin light chain 
and synapfic vesicle proteins observed by immunocytochem- 
istry in the perinuclear region reflects association with the 
same organelle. Thus, it remains to be determined whether 
coated vesicles are involved in synaptic vesicle formation 
and/or degradation in the neuronal cell body. 

It should be mentioned that our findings differ from two 
earlier studies reporting that only a small proportion of 
coated vesicles (10-25 %) was immunogold labeled with an- 
tibodies directed against the vesicle protein synaptophysin 
(Pfeffer and Kelly, 1985; Wiedenmann et al., 1985). It is 
possible that in these studies the preparation was contami- 
nated by empty cages or that antibody access to the coated 
vesicle membrane was impaired which would explain the 
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discrepancies. The latter problem was circumvented in our 
study by labeling after removal of the clathrin coat to allow 
unrestricted access of the antibody. Taken together, our 
findings demonstrate that membrane components such as the 
vacuolar proton pump and a chloride channel that have been 
previously purified from brain coated vesicles, can be re- 
garded largely as synaptic vesicle-derived (for review see 
Forgac, 1989; Xie et al., 1988). 

In summary, our data show that the major function of neu- 
ronal coated vesicles is to participate directly in the synaptic 
vesicle pathway. Furthermore, the association of specific 
coat components with nerve terminal-derived coated vesi- 
cles suggests a functional specialization of the coat in nerve 
terminals to adapt to the specific requirements of synaptic 
vesicle recycling. 
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