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Abstract 

Type II reference isolates of Toxoplasma gondii are widely used in animal toxoplasmosis models, but studies with Type 
III isolates remain scarce. In addition, these methods often rely on laboratory‑adapted parasite stages that may 
not reflect natural infection. This study presents a new murine model based on an oral infection with oocysts 
from a recently obtained Type III isolate, TgShSp24, which exhibited remarkable morbidity and a distinct tissue distri‑
bution during chronic infection, differing from the recently obtained Type II isolate TgShSp1. This novel model aims 
to better mimic natural infection and provides a valuable tool for testing drugs and vaccines.
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Introduction, methods and results
Importance of well‑characterized murine models 
for studying T. gondii infection
Toxoplasma gondii is a protozoan parasite responsi-
ble for toxoplasmosis, a zoonotic disease that affects 
approximately one-third of the global population. Infec-
tion occurs in all warm-blooded animals, including 
humans, and is transmitted primarily through the inges-
tion of oocysts from contaminated sources, through 
undercooked meat containing tissue cysts, or via vertical 
transmission [1]. The parasite’s life cycle involves sexual 

reproduction in felids and asexual reproduction in inter-
mediate hosts, leading to the formation of cysts in neural 
and muscular tissues. While infections are often asymp-
tomatic in immunocompetent individuals, toxoplasmo-
sis can result in severe conditions such as toxoplasmic 
encephalitis in immunocompromised hosts. Congenital 
cases of toxoplasmosis may result in miscarriage or long-
term health complications [2].

Murine models have been indispensable in advancing 
our knowledge of toxoplasmosis, particularly in eluci-
dating the immunological and molecular mechanisms 
involved in the transition from acute to chronic infec-
tion, tissue cyst formation, and host immune response to 
T. gondii, as well as in establishing models for evaluating 
the efficacy of potential drugs and vaccines [3–7]. How-
ever, established models often rely on laboratory-adapted 
T. gondii isolates that have undergone an undetermined 
number of in  vitro passages, potentially altering their 
virulence and failing to accurately reflect the behavior of 
field isolates [8]. Moreover, T. gondii infection has been 
extensively studied using tachyzoites introduced intra-
peritoneally or subcutaneously into mice because of the 
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ease of laboratory maintenance, but these routes do not 
reflect natural infection pathways [9]. The most widely 
used laboratory-adapted strains are Type II isolates, such 
as ME49 and PRU, and they have been used to study 
chronic infection in mice and to test vaccines and drugs. 
In contrast, studies involving Type III isolates using 
oocysts remain very limited [5, 10].

In this study, we report a Swiss CD1 murine model 
infected with oocysts from the recently obtained 
TgShSp24 isolate. The T. gondii Type III (genotype #2) 
isolate TgShSp24 was obtained from the myocardium of 
chronically infected adult sheep (4–5 years old) of Man-
chega × Lacaune breed, located in the province of Ciudad 
Real (central Spain) [11]. The model was also compared 
with infection using oocysts from TgShSp1, a recently 
obtained Type II (genotype #3) isolate from a T. gondii 
ovine abortion outbreak in a Spanish sheep flock (Assaf 
breed) in the province of Palencia (northwest Spain) [11].

Experimental design and analyses for the development 
of a toxoplasmosis mouse model
This study was carried out with an in  vitro, controlled-
passage field isolate of T. gondii, TgShSp24 (Type III, 
ToxoDB genotype #2), which was compared with the 
well-characterized TgShSp1 (Type II, ToxoDB genotype 
#3), controlled-passage. The isolates were used at low cell 
culture passages, ranging from 8 to 15 passages.

All animal procedures were approved by the Animal 
Welfare Committee of the Community of Madrid, Spain 
(PROEX 290.4/20 and PROEX 062/19), following Span-
ish and EU regulations (Law 3/2007, R.D. 53/2013, and 
Council Directive 2010/63/EU). Forty-five 6-week-old 
female Swiss/CD1 mice (Janvier Labs, Le Genest-Saint-
Isle, France) were used for the experimental infection and 
housed in a controlled environment under a 12-h light/
dark cycle, with rodent feed and water ad libitum. Follow-
ing a 7-day adaptation period, the mice were randomly 
allocated into five groups: four groups of 10 animals 
each (G1, G2, G3, and G4) and one group of five animals 
(G5). Mice were orally inoculated with three different 
doses of TgShSp24 (Type III) to study infection: 25 (G1), 
100 (G2) and 500 (G3) oocysts. To compare the effects 
of strain type at the same dose and as an internal con-
trol to check reproducibility, Group G4 was dosed with 
100 oocysts of TgShSp1 (Type II), as previously described 
[12]. Oocysts were obtained through the oral infection of 
cats [12]. Briefly, Swiss /CD1 mice were intraperitoneally 
inoculated with cell culture-derived tachyzoites (500 
tachyzoites TgShSp24 and 1000 tachyzoites TgShSp1, in 
accordance with their virulence degree in mice), which 
had been maintained at low cell culture passage (n < 15). 
Two months post-inoculation, the mice were euthanized, 
and their brains were collected to feed the kittens. The 

oocysts were maintained at 4 °C until inoculum prepara-
tion within the same year of production. For inoculum 
preparation, sporulated oocysts were quantified using 
a single-use Neubauer chamber (DHC-N01 Neubauer 
Improved CYTO, Gentaur, UK) and subsequently diluted 
in PBS to the required concentrations for each group. The 
control group (G5) was inoculated with PBS. The mice 
were examined twice daily throughout the experiment 
for clinical signs compatible with toxoplasmosis, conven-
iently scored (see figure caption in Figure 1), and weighed 
weekly. Animals that displayed severe loss of body condi-
tion/weight (≥ 20%), respiratory distress, or neurological 
signs were humanely euthanized. All remaining asympto-
matic mice were euthanized 42 days post-infection [9].

Infection dynamics were evaluated by T. gondii DNA 
detection and quantification in target organs: the brain, 
lung, heart, and tongue, as wells as the masseter, quadri-
ceps, and longissimus dorsi muscles, as previously 
described [8]. Additionally, the number of cysts in the 
brain was determined by fluorescence-conjugated Doli-
chos biflorus lectin (DBL) (Vector Laboratories) stain-
ing and counting via microscopy [8]. The IgG immune 
response was evaluated in serum samples collected via 
intracardiac puncture by ELISA as previously described 
[8, 13]. The secondary antibodies used were specific 
monoclonal antibodies against mouse IgG (1:10  000; 
A9044, Sigma Aldrich, Madrid, Spain), IgG1 (1:5000; 
1080-05, SouthernBiotech, Birmingham, USA), and IgG2 
(1:1000; 1070-05, Southern Biotech, Birmingham, USA) 
conjugated with peroxidase enzyme. All the statistical 
analyses and graphical illustrations were performed using 
GraphPad Prism 6 v.6.01 software (San Diego, CA, USA).

The Type III TgShSp24 isolate results in chronic infection 
in mice
In all infected groups, during the first week of follow-
up post infection, only mild clinical signs, such as ruf-
fled coats, were observed in a few mice, regardless of the 
oocyst dose (Figure 1A). The severity of the clinical signs 
increased during the second week, when the majority 
of the infected mice exhibited ruffled coats, potentially 
related to fever, and rounded backs, particularly in the 
G2 and G3 groups, which received the highest infec-
tion doses (100 and 500 oocysts, respectively). These 
behaviors were accompanied by significant weight loss 
(p < 0.05, one-way ANOVA followed by Tukey’s multi-
ple comparisons test) (Figures 1A and B). Despite twice 
daily monitoring and thorough clinical follow-up of the 
animals, two sudden deaths occurred on days 13 and 
14 post-infection in Groups G1 (25 oocysts) and G3 
(500 oocysts), respectively, both of which involved the 
mice with the lowest body weights within their respec-
tive groups. By the third week, most clinical signs had 
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resolved in the majority of mice, with only ruffled coats 
persisting until the end of the experiment (Figure  1A). 
Mice in the group infected with 500 oocysts (G3—Type 
III) were the most affected by the end of the trial (p < 0.05, 
two-way ANOVA) (Figure 1A). One mouse from Group 
G3 was euthanized on day 38 post-infection because of 
the onset of neurological signs. However, no significant 
differences in survival time were observed between the 
groups (Figure 1C) (p > 0.05, Mantel‒Cox log-rank test).

The distribution and parasite loads determined by PCR 
and brain cyst counts per group are shown in Figure 2. In 
all infected groups, the parasite was detected in all ana-
lyzed organs and tissues, with similar detection frequen-
cies and median parasite loads regardless of the oocyst 
dose (Figure  2A). Nevertheless, the brain cyst counts 
revealed a dose-dependent trend, with higher cyst bur-
dens observed at increasing infection doses (Figure 2B). 
Spearman correlation analysis between the parasite bur-
den determined by PCR and the number of brain cysts 
revealed a weak but statistically significant correlation 
[Spearman coefficient (ρ) = 0.54; P = 0.0003]. The two 
mice that succumbed to infection presented the highest 

parasite loads in the lungs and heart, intermediate loads 
in some skeletal muscles, and the lowest parasite burden 
and cyst counts in the brain among all the animals in 
their groups (Figure 2). These findings suggest that death 
occurs during the acute phase of infection. Nevertheless, 
the limited number of affected mice across all doses pro-
vides evidence of a predominant chronic infection fol-
lowing TgShSp24 exposure.

IgG serological analysis confirmed T. gondii infec-
tion, with no significant differences among the infected 
groups. However, two mice from the G1 (infected with 
25 oocysts) remained seronegative at the end of the 
study, indicating no exposure to T. gondii. These mice in 
G1 presented no detectable parasite DNA in any tissue, 
confirming the absence of infection. The mouse from the 
same group (G1) that succumbed to the infection on day 
14 post-infection also did not develop a detectable IgG 
response, likely due to early death. Analyses of specific 
IgG1 and IgG2a levels against T. gondii also revealed no 
significant differences in the IgG1/IgG2 ratios between 
oocyst doses.

Figure 1 Morbidity and mortality in mice infected with oocysts from the TgShSp1 and TgShSp24 isolates. Severity of clinical signs 
(A) according to assigned score: asymptomatic (= 0), ruffled coat (= 1), rounded back (= 2), weight loss/body condition (= 3), and presence 
of neurological signs/sudden death (= 4), body weight graph (B), and Kaplan‒Meier survival curve (C). The curve illustrates the probability 
of survival over time for each group, providing a stepwise representation of survival rates. Each point in (A) and (B) represents the mean value, 
and the bars indicate the standard error. Mortality rates were compared using the Mantel‒Cox log‑rank test, body weights by one‑way ANOVA 
followed by Tukey’s multiple comparisons test, and variation in morbidity scores via two‑way ANOVA. * represents significant differences 
in the infected group compared with the control uninfected group, p < 0.05 (C).
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Figure 2 Parasite loads in the tissues analyzed and the number of brain cysts in each mouse. Graphs represent parasite loads recorded 
in the brain (A), lung (C), heart (D), tongue (E); the masseter (F), quadriceps (G), and dorsal (H) muscles; and cyst counts in the brain (B). Each point 
represents the number of tachyzoites or the number of cysts per milligram of tissue detected in each mouse from different infected groups (see 
the legend), and the transverse line represents the median. The stars indicate the mice that died early in infection: one on day 14 (infected with 25 
TgShSp24 oocysts), one on day 13 (infected with 500 TgShSp24 oocysts), and one on day 18 (infected with 100 TgShSp1 oocysts). Parentheses 
and asterisks indicate significant differences between groups (*p < 0.05; ** p < 0.01; *** p < 0.001; Kruskal‒Wallis test followed by Dunn’s multiple 
comparison test). Note parasite loads and cyst counts of 0 are represented in the graphs as 0.001 and 0.1, respectively, according to the logarithmic 
scale of the graph. The control uninfected group with a load of 0 has not been included in the graphs.
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TgShSp24 (Type III) and TgShSp1 (Type II) isolates 
demonstrated differences in parasite loads and tissue 
tropism during chronic infection
A comparison between Type II and Type III isolates was 
carried out using a dose of 100 oocysts under identical 
experimental conditions, because the lower dose (i.e., 25 
oocysts) could result in infection failure. Morbidity and 
clinical signs caused by the TgShSp24 isolate (G2-Type 
III) were more severe during the acute phase of infec-
tion (< 21  days post-infection) than those caused by the 
TgShSp1 isolate (G4-Type II). However, the severity of 
clinical signs was similar between the two groups during 
the chronic phase of infection (> 28 days post-infection) 
(Figure  1A). With respect to mortality, two mice from 
Group G4 were euthanized on days 18 and 25 post-infec-
tion because of the presentation of neurological signs 
(Figure  1C). Both mice exhibited the highest parasite 
loads in the heart and lungs (Figures 2C and D).

Different dissemination patterns and tissue trop-
isms based on parasite burdens were observed between 
TgShSp24 and TgShSp1 infections. The highest parasite 
loads were detected in mice infected with TgShSp24 
(G2-Type III) compared with those infected with 
TgShSp1 (G4-Type II), particularly in the tongue, quadri-
ceps and loin muscles (p < 0.05, Kruskal‒Wallis test 
followed by Dunn’s multiple comparisons test) (Fig-
ure  2). Additionally, TgShSp24-infected mice presented 
increased median parasite loads in the remaining target 
organs and tissues, suggesting better infection control in 
mice infected with TgShSp1 oocysts. With respect to the 
parasite distribution in tissues between both isolates, in 
the group infected with TgShSp1 (G4-Type II), the high-
est parasite loads were found in the brain, which were sig-
nificantly greater than those in the heart, lung, masseter 
and quadriceps muscles (p < 0.05, Kruskal‒Wallis test fol-
lowed by Dunn’s multiple comparisons test), followed by 
the tongue and dorsal muscles. In contrast, in the group 
infected with TgShSp24 (G2-Type III), the tongue had the 
highest loads, which were significantly greater than those 
detected in the heart and lung (p < 0.05, Kruskal‒Wallis 
test followed by Dunn’s multiple comparisons test).

The IgG responses and IgG1/IgG2a ratios of the mice 
in G4 were similar to those of the mice in G2 (data not 
shown).

Discussion
In this study, a murine infection model based on the oral 
inoculation of oocysts from a Type III TgShSp24 isolate 
was characterized. Oocysts produced from a field isolate 
with minimal cell culture passages were used to avoid the 
consequences of laboratory adaptation on phenotypes, 
including virulence [8]. The advantages of this model are 
as follows: (i) a more natural course of infection using 

oocysts; (ii) the use of recently obtained field isolates, 
which avoids laboratory adaptation seen in strains main-
tained in culture; (iii) the use of a Type III isolate, as stud-
ies involving this type of infection remain limited; and 
(iv) the establishment of a chronic infection model that 
enables the study of drug and vaccine efficacy.

This model demonstrates a chronic infection profile 
similar to that of the Type II (TgShSp1) isolate, with no 
severe mortality outcomes, as expected from Type III 
isolates [14]. Based on the results obtained regarding 
sudden mortality during the acute phase, the implemen-
tation of more thorough weight monitoring of mice in 
future studies is recommended, particularly during the 
second and third weeks post-infection. This approach 
would allow for the detection of rapid weight loss, facili-
tate the identification of humane euthanasia endpoints, 
and minimize, as much as possible, the suffering of ani-
mals due to infection-related consequences. The results 
revealed a clear dose-dependent progression of clinical 
signs, where higher doses of TgShSp24 led to more pro-
nounced clinical effects and increased brain cyst counts, 
consistent with previous findings [15]. Analyses of spe-
cific IgG1 and IgG2a levels against T. gondii also revealed 
no significant differences in IgG1/IgG2 ratios across 
oocyst doses, indicating no association with a Th2 or pre-
dominantly humoral response (IgG1 > IgG2a) or a Th1 
or cellular response (IgG2a < IgG1). Lower doses (i.e., 25 
oocysts) could result in infection failure, as found in this 
study and previously described for TgShSp1 [12].

Importantly, studies on infection with Type III isolates 
using oral inoculation of oocyst are very rare and focus 
mainly on the VEG isolate [5, 10]. The results obtained 
from the standardization of the murine model with the 
Type III isolate TgShSp24 revealed discrepancies com-
pared with VEG-oocyst infection in the same Swiss 
Webster mouse strain [5]. For example, infection of mice 
with 100–1000 VEG oocysts resulted in 100% mortal-
ity [5]. In contrast, a comparable dose of 500 TgShSp24 
oocysts in our study resulted in persistent infection with 
brain cyst formation and widespread tissue dissemina-
tion, and high parasite loads in specific muscles, but 
most of the mice survived the infection. T. gondii clonal 
lineages have traditionally been classified by virulence: 
Type I as highly virulent (100% lethality,  LD100 = 1), Type 
II as intermediate (99–30%,  LD50 ≥ 1000) and Type III 
as nonvirulent (< 30%,  LD50 >  105) [14]. This study aligns 
with the classification regarding mortality, but morbidity 
was greater than that associated with the Type II isolate 
TgShSp1. Other studies conducted with Type I or atypi-
cal isolates have shown high virulence with lethal doses 
as low as 1 oocyst, as traditionally reported in the lit-
erature [16, 17]. Moreover, when comparing Type II and 
Type III isolates, differences in morbidity and tissue cyst 
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distribution among organs in infected animals reflect dis-
tinct pathogenic strategies, likely influenced by specific 
genotype‒host interactions. The differential distribution 
of parasite loads observed in this study aligns with pre-
vious research, which indicates that Type II strains tend 
to exhibit specificity for the brain and more restricted 
systemic dissemination than do Type III strains [13, 18, 
19]. In addition, Type III strains tend to be more virulent 
and produce greater burdens in target organs such as the 
brain and muscles [4, 13, 18].

Recent studies using oocysts from the same T. gon-
dii isolate have been carried out to evaluate infection 
dynamics and standardize models in target species such 
as piglets. This type of infection provides a more natu-
ral route that closely mimics real-world transmission 
[13]. A TgShSp24 Type III murine infection model cor-
relates with a toxoplasmosis model in piglets. Similar 
results were observed in the piglet model, particularly 
the more pronounced clinical manifestations caused 
by the TgShSp24 isolate, including higher and longer-
lasting fevers during the acute phase, followed by partial 
recovery in the chronic phase [13]. These findings align 
with observations in the mice in this study, where higher 
clinical scores were recorded during the acute phase with 
TgShSp24. Moreover, the detection of the parasite by 
PCR in both models revealed a similar distribution across 
target tissues, as well as higher parasite loads in tissues 
from animals infected with the TgShSp24 isolate [13].

In conclusion, the phenotypic variability of these field 
isolates may influence infection outcomes, pathogenic 
mechanisms, and therapeutic approaches, underscor-
ing the relevance of this new model. The murine infec-
tion model developed in this study more closely reflects 
natural routes of transmission, as it involves infection 
with a recently obtained isolate and the oocyst stage. The 
observed similarities also validate the extrapolation of 
the results from mice to piglets, positioning the mouse 
as an efficient and cost-effective model for the prelimi-
nary screening of drugs or vaccines against T. gondii. This 
approach optimizes resources and reduces reliance on 
large animal studies, representing a significant innova-
tion in the preclinical development of control strategies 
for this zoonosis.
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