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Abstract

A common haplotype on 10q26 influences the risk of age-related macular degeneration (AMD) and encompasses two
genes, LOC387715 and HTRA1. Recent data have suggested that loss of LOC387715, mediated by an insertion/deletion (in/
del) that destabilizes its message, is causally related with the disorder. Here we show that loss of LOC387715 is insufficient to
explain AMD susceptibility, since a nonsense mutation (R38X) in this gene that leads to loss of its message resides in a
protective haplotype. At the same time, the common disease haplotype tagged by the in/del and rs11200638 has an effect
on the transcriptional upregulation of the adjacent gene, HTRA1. These data implicate increased HTRA1 expression in the
pathogenesis of AMD and highlight the importance of exploring multiple functional consequences of alleles in haplotypes
that confer susceptibility to complex traits.
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Introduction

Genome-wide association studies (GWAS) have catalyzed

significant progress towards elucidating the molecular basis of

complex traits [1]. However, a substantial gap remains between

association of a trait with a genomic segment and the identification

of the causative allele(s). A locus for AMD, ARMS2 on 10q26,

illustrates this challenge.

ARMS2 is one of several regions in the genome shown by

GWAS to confer susceptibility to the disorder. However, in

contrast to the other confirmed AMD susceptibility loci CFH

(NM_000186) [2–8], C2/BF (NM_000063/NM_001710) and C3

(NM_000064) [9–11], which encompass a single gene; a region on

10q26 that contains three genes has been associated consistently

with AMD susceptibility [12–15]. Recent data have refined this

association to a haplotype that encompasses two genes,

LOC387715 (NM_001099667), a primate-specific transcript with

a proposed mitochondrial function [16] and HTRA1

(NM_002775), a multi-functional serine protease [17–18].

Initial reports describing the association between SNP

rs11200638 in the 59 end of HTRA1 and AMD focused on the

possibility that the disease-associated allele of this SNP increased

expression of HTRA1 [17–18]. However, the inability to verify

this finding in heterologous expression systems led to the

investigation of other alleles in the risk haplotype, and emphasis

was placed on LOC387715 [16]. Consistent with this possibility,

recent sequencing of the AMD-associated haplotype identified

multiple SNPs, including an in/del, that are associated with an

increased risk of AMD, and a decreased LOC387715 mRNA level

with this AMD disease haplotype [19]. To delineate the causal

genetic variations contained in the risk haplotype and to

understand their functional roles in AMD susceptibility, we
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undertook genetic and functional investigations at the ARMS2

locus. We show that loss of LOC387715 is likely necessary but not

sufficient to explain AMD susceptibility and that a common

disease haplotype including the in/del and rs11200638 also has an

effect on the transcriptional upregulation of the adjacent gene,

HTRA1. These data, which implicate increased HTRA1 expres-

sion in the pathogenesis of AMD, suggest that the AMD risk

conferred by this region is potentially driven by multiple variants,

and highlight the importance of exploring multiple functional

consequences of alleles in haplotypes that confer susceptibility to

complex traits.

Results

Several studies have shown previously strong association of

multiple single nucleotide polymorphisms (SNPs) in chromosome

10q26 encompassing PLEKHA1, LOC387715, and HTRA1with

advanced AMD [12–24]. From our previous study [20], we

identified a common disease haplotype TAT tagged by

rs10490924, rs11200638 and rs2293870 that is significantly

associated with a risk of AMD (P = 2.7061029), as well as a

haplotype GGG that is modestly, yet significantly, associated with

protection from AMD (P = 0.003). Next, to define the extent of the

haplotype structures and capture all variants in the region, we

undertook a re-sequencing effort of a region spanning ,100 kb,

starting in the 39-UTR of PLEKA and ending ,20kb downstream

of the 39 UTR of HTRA1 in six individuals with a homozygous risk

haplotype and six individuals with a homozygous protective

haplotype, followed by assessment of association of each

discovered variant with AMD in 200 AMD cases and 200 normal

controls (Table 1, Table S1, Table S2).

In agreement with recent work [19], we discovered that both

risk and protective haplotypes span 21.5kb in the ARMS2 region,

starting from upstream of LOC387715 to rs58077526, in intron 1

of HTRA1 (Figure 1, Table 1, Table S1). We confirmed recent

data [19], according to which 22 SNPs tagged a risk and a

protective haplotype including previously reported SNPs

rs10490924, rs3750848, an in/del, rs3793917, and rs11200638

(Figure 1 and Table 1). Moreover, the reported 54 base pair

insertion and 443 base pair deletion (in/del) at the 39 end of

LOC387715 resides exclusively on the disease risk haplotype that is

strongly associated with a risk of AMD (P = 1.90610226) in a Utah

Author Summary

Age-related macular degeneration (AMD) is the leading
blindness cause in western countries. Several genes
encoding components of the complement pathway—
including CFH, C2/BF, and C3—have been confirmed to
be associated with AMD, as well as a region on 10q26
that encompasses two genes. Recent data have sug-
gested that loss of LOC387715 on 10q26, mediated by an
insertion/deletion (in/del) at its 3’UTR that destabilizes
its message, is causally related with the disorder. We
found that a common disease haplotype including the
in/del and rs11200638 also has an effect on the
transcriptional upregulation of the adjacent gene,
HTRA1. We propose a binary model where downregula-
tion of LOC387715 and concomitant upregulation of
HTRA1 best explain the risk associated with the 10q26
AMD region.

Table 1. Association study for SNPs in 10q26 region in 200 cases and 200 controls in the Utah cohort.

SNP Chromosome Position Risk Allele Case MAF Control MAF Trend p-Value

SNP-2 (New SNP) 124198539-124198544 del 6bp 0.40 0.27 5.9661025

rs11200630 124199674 C 0.39 0.25 8.9561026

ENSSNP6019764 124200359 A 0.39 0.21 5.8661026

rs10490924 124204438 T 0.41 0.23 4.9061027

SNP-3 (New SNP) 124204546-124204547 ins GT 0.49 0.37 3.7561025

rs36212731 124204966 T 0.30 0.20 2.4761023

rs36212732 124205188 G 0.42 0.26 6.6461026

rs36212733 124205201 C 0.41 0.25 4.8561027

rs3750848 124205305 G 0.41 0.23 1.2361026

rs3750847 124205411 T 0.35 0.24 6.4361024

rs3750846 124205555 C 0.45 0.24 5.8761023

SNP-4 (New SNP) 124206332-124206333 ins AT 0.69 0.61 0.02

in/del/Wt 124206811-124207253 ins 54bp, del 443bp 0.40 0.22 2.6661027

SNP-5 (New SNP) 124207752-124207753 ins G 0.48 0.33 5.8161025

rs3037985 124207893 del 7bp 0.68 0.59 0.03

rs3793917 124209265 G 0.40 0.22 3.2261026

rs3763764 124210051 C 0.41 0.21 2.3861027

rs3763764 124210051 G 0.46 0.30 4.2061026

rs11200638 124210534 A 0.41 0.22 2.1961027

rs1049331 124211260 T 0.43 0.29 2.6861023

rs2293870 124211266 T, C 0.53 0.32 5.5661027

rs58077526 or rs61871752 124220014 C 0.38 0.21 2.1761026

doi:10.1371/journal.pgen.1000836.t001
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case-control cohort (705 cases, 650 controls) (Table 2 and Table 3),

as well as an independent replication cohort of northern European

ancestry (442 cases, 434 controls ) (Table 2 and Table 3) and a

third replication cohort of Han Chinese in China (138 cases, 591

controls ) (Table 2 and Table 3) [19].

In contrast to the loss of function role of in/del in LOC387715,

the T allele of SNP rs2736911, a non-synonymous coding SNP

leading to a predicted premature stop (R38X) in LOC387715 is

associated with a protective haplotype T-G-Wt-G (P = 4.0061024,

Figure 2 and Table 2 and Table 4) defined by rs2736911,

rs10490924, in/del/Wt and rs11200638. We replicated these

findings twice and found that this haplotype is clearly not associated

with AMD risk; rather it is (conservatively) neutral and possibly

protective with regard to the disorder (P = 0.001 in the second

replication cohort; P = 0.007 in third Han Chinese cohort, Table 4).

These findings present a paradox. Recent studies have shown

the in/del to cause destabilization of LOC387715, suggesting that

loss of function at that locus might confer risk to AMD. However,

the introduction of the R38X mutation, which is also predicted to

give rise to loss of LOC387715 message due to nonsense-mediated

mRNA decay (NMD), is mildly protective. We considered two

plausible alternatives; either that effect of R38X and the in/del

have different effects on the transcript, or that loss of LOC387715

is insufficient to cause AMD. The first possibility is unlikely. Upon

quantification of LOC387715 mRNA levels in seven placentas

homozygous for the major disease haplotype, we found a 4.7-fold

reduction in endogenous LOC387715 expression (Figure 3A), in

agreement with recent published data [19]. However, we were also

able to examine LOC387715 mRNA levels in five patients

heterozygous for the R38X mutation, where we observed a 50%

Figure 1. Genes and the main SNPs in the AMD 10q26 region. The schematic diagram showing a 100 kb region subject to re-sequencing, the
AMD-associated 21.5 kb region containing 22 SNPs in the same LD block with a disease haplotype. SNPs in bold were chosen for further studies.
doi:10.1371/journal.pgen.1000836.g001

Table 2. Association of rs2736911, rs10490924, in/del/Wt, and rs11200638 in the three independent cohorts.

SNP Case-control cohort Utah cohort Hopkins cohort Han Chinese cohort

Case # vs Control # 705 vs 650 442 vs 434 138 vs 591

rs2736911 Allelic p-value 6.4661025 1.8061023 0.011

Heterozygote OR (95% CI) 0.611(0.475–0.788) 0.655(0.471–0.909) 0.411(0.236–0.715)

Homozygote OR (95% CI) 0.497(0.2233–1.107) 0.254(0.052–1.232) 2.48(0.410–15.031)

rs10490924 Allelic p-value 8.61610226 4.87610234 1.15610213

Heterozygote OR (95% CI) 2.069(1.645–2.603) 3.175(2.333–4.321) 2.664(1.284–5.527)

Homozygote OR (95% CI) 7.191(4.518–11.444) 10.311(6.474–16.422) 8.986(4.335–18.625)

in/del/Wt Allelic p-value Freq. 1.90610226 8.35610234 6.03610213

Heterozygote OR (95% CI) 2.305(1.827–2.908) 3.195(2.339–4.364) 2.395(1.189–4.825)

Homozygote OR (95% CI) 6.879(4.436–10.666) 7.998(5.255–12.173) 7.983(3.965–16.072)

rs11200638 Allelic p-value 3.64610226 2.52610234 5.10610213

Heterozygote OR (95% CI) 2.413(1.922–3.031) 3.315(2.429–4.523) 4.087(1.602–10.425)

Homozygote OR (95% CI) 6.851(4.396–10.676) 10.246(6.550–16.026) 12.932(5.083–32.904)

doi:10.1371/journal.pgen.1000836.t002
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reduction (Figure 3A), suggesting that each of the R38X and in/

del have the same mode of action.

Given these data, we considered the potential role of HTRA1,

the only other locus encompassed by the major risk haplotype, in

the pathogenesis of AMD. We have shown previously a three-fold

increase expression of HTRA1 in the retinal pigmented epithelium

(RPE) of patients with the risk haplotype [17], while others have

also observed increased HTRA1 expression in AMD eyes in

humans [25]. In addition, a functional SNP in the promoter region

of HTRA1 is associated with increased HTRA1 expression in non-

human primates with AMD-like phenotype [26–27]. We therefore

expanded our analyses of mRNA levels in human placentas to

determine the effect of a haplotype on endogenous expression. We

found that, in addition to the observed decrease of LOC387715

message, the disease haplotype is also associated with a 2.7-fold

increase in HTRA1 expression (Figure 3B). These data confirmed

that the in/del or another component of the common risk

haplotype affects LOC387715 mRNA stability. At the same time, it

likely has an effect on HTRA1 expression. Although caution

should be exercised when translating findings from one tissue to

Table 3. Genotyping results of rs2736911, rs10490924, in/del/Wt, and rs11200638 in the three independent cohorts.

SNP Case-control cohort
Utah case-control
cohort

Hopkins case-control
cohort Han Chinese case-control cohort

Groups Case Control Case Control Case Control

Number 705 650 442 434 138 591

rs2736911 Protective Allele T Freq. 0.12 0.18 0.09 0.14 0.07 0.12

HWE 1.00 0.45 0.50 0.71 0.11 0.29

rs10490924 Risk Allele T Freq. 0.38 0.20 0.25 0.24 0.74 0.49

HWE 0.05 0.34 0.66 0.80 0.07 0.99

in/del/Wt Risk Allele in/del Freq. 0.39 0.20 0.53 0.25 0.73 0.49

HWE 0.06 0.88 0.12 0.25 0.08 1.00

rs11200638 Risk Allele A Freq. 0.41 0.22 0.53 0.25 0.77 0.52

HWE 0.38 0.22 0.10 1.00 0.05 0.28

doi:10.1371/journal.pgen.1000836.t003

Figure 2. The haplotype block in D’ of rs2736911, rs10490924, in/del/Wt, and rs11200638 in the Utah case-control cohort. The risk
haplotype C-T-in/del-A is strongly associated with advanced AMD (P = 4.05610228); the non-risk haplotype T-G-Wt-G is significantly associated with
protection of advanced AMD (P = 4.0061024). In/del and Wt refers to presence or absence of 54 base pair insertion and 443 base pair deletion, while
the letters G, T, A refer to nucleotides for the respective SNPs at rs2736911, rs10490924, and rs11200638.
doi:10.1371/journal.pgen.1000836.g002

Genetics and Age-Related Macular Degeneration
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another, these data from placenta should serve as an indication for

the effects of different haplotypes on the gene expression profiles in

the eye.

To test this hypothesis further, we generated expression

constructs that model the effect of the risk and protective

haplotype on the HTRA1 promoter using a luciferase reporter

assay on cultured human retinal pigment epithelial cells (Figure 4A

and 4B). We observed a two-fold increase in luciferase expression

in constructs that modeled the disease haplotype encompassing the

in/del and the A allele of SNP rs11200638 (MT(L+in/del),

Figure 4A and 4B). We detected no increase in luciferase

expression from constructs that contained a short disease

haplotype including the A risk allele of SNP rs11200638 but did

not contain the in/del (MT(S), Figure 4A and 4B). These findings

are consistent with Fritsche et al. and Kanda et al [16,19], who

reported an inability to verify that the A allele of SNP rs11200638

by itself alters transcriptional activity in heterologous cell systems.

We did not observe increased luciferase expression either when we

placed the in/del or A allele of SNP rs11200638 on a construct

containing a protective haplotype, suggesting that the in/del or A

allele of SNP rs11200638 by itself is insufficient to drive HTRA1

expression (WT(L+in/del), WT(L-A), Figure 4B).

Because of the potentially ambiguous nature of in vitro luciferase

assays, we repeated these experiments in an in vivo system, whereby

the constructs containing the disease haplotype including the in/

del and the protective haplotype described earlier (Figure 4A) were

electroporated into the RPE of wild-type adult mice. Luciferase

activity was assayed four days after transfection. Consistent with

Table 4. Haplotype structures generated by the Hapview program using rs2736911, rs10490924, in/del/Wt, and rs11200638.

Case-control cohort Haplotype Case Freq. Control Freq. Chi Square P Value

Utah case-control cohort C-G-Wt-G 0.450 0.590 50.455 1.22610212

C-T-in/del-A 0.340 0.160 120.883 4.05610228

T-G-Wt-G 0.110 0.150 12.723 4.0061024

C-G-Wt-A 0.028 0.024 0.559 0.455

C-T-in/del-G 0.014 0.018 0.602 0.438

T-G-Wt-A 0.009 0.019 4.621 0.032

C-T-Wt-A 0.003 0.009 3.576 0.059

Hopkins case-control cohort C-G-Wt-G 0.370 0.580 76.762 1.93610218

C-T-in/del-A 0.500 0.210 167.657 2.40610238

T-G-Wt-G 0.076 0.120 10.773 0.001

C-G-Wt-A 0.017 0.022 0.708 0.400

C-T-Wt-G 0.010 0.021 3.752 0.053

C-G-in/del-G 0.006 0.018 5.261 0.022

T-T-in/del-A 0.014 0.007 2.085 0.149

Han Chinese case-control cohort C-G-Wt-G 0.170 0.330 27.937 1.2561027

C-T-in/del-A 0.660 0.450 62.000 3.43610215

T-G-Wt-G 0.037 0.084 7.376 0.007

C-G-in/del-A 0.040 0.028 0.992 0.319

C-T-Wt-G 0.023 0.032 0.620 0.431

C-G-Wt-A 0.016 0.031 1.874 0.171

C-T-Wt-A 0.015 0.028 1.502 0.220

T-T-in/del-A 0.017 0.018 0.006 0.940

C-T-in/del-G 0.009 0.014 0.482 0.488

C-G-in/del-G 0.001 0.014 3.488 0.062

doi:10.1371/journal.pgen.1000836.t004

Figure 3. Endogenous expression studies comparing effects of
genotype on HTRA1 and LOC387715. mRNA Expression levels of
LOC387715 and HTRA1 in human placenta tissues according to
haplotypes defined by SNPs rs2736911, rs10490924, in/del/Wt, and
rs11200638. Human placenta tissues from seven individuals with a
homozygous disease haplotype (C-T-in/del-A), five individuals with a
homozygous protective haplotype (C-G-Wt-G), and five individuals with
heterozygous C/T alleles at rs2736911 and homozygous protective
haplotype at rs10490924, in/del/Wt, and rs11200638 (C/T-G-Wt-G) were
harvested and analyzed. (A) In comparison to the haplotype C-G-Wt-G,
mRNA levels of LOC387715 with a homozygous disease haplotype C-T-
in/del-A and a haplotype C/T-G-Wt-G were 4.7-fold and 2.3 fold lower,
respectively. The mean 6 SD is given for each genotype. (B) mRNA
levels of HTRA1 with C-T-in/del-A was 2.7-fold higher compared to that
of C-G-Wt-G, and there was comparable expression levels between C-G-
Wt-G and C/T-G-Wt-G. The mean 6 SD is given for each genotype.
doi:10.1371/journal.pgen.1000836.g003

Genetics and Age-Related Macular Degeneration
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the in vitro data, we observed a significant increase in normalized

luciferase activity in a construct bearing the disease haplotype

tagged by the in/del and A allele of SNP rs11200638 (P = 0.032)

(Figure 4C), whereas no increased luciferase activity was observed

in a construct with the in/del on a protective haplotype

(P = 0.180).

Discussion

The AMD-associated region on 10q26 poses an interesting

problem. Multiple lines of evidence support the causality of both

LOC387715 and HTRA1 in conferring risk to AMD. At the same

time, emerging data suggests that mutations in either gene alone

might be insufficient to confer such risk. The association signal is

best explained by a common disease haplotype including an in/del

in the 39 UTR of LOC387715 and the A allele of SNP rs11200638.

Although there is evidence that AMD patients exhibit loss of

LOC387715 message, the fact that haploinsufficiency in

LOC387715 alone (through the R38X mutation) does not confer

risk to AMD, suggests that either that transcript is unrelated to the

disorder, or that additional events within the risk haplotype must

occur. Although we cannot formally reject the hypothesis that loss

of LOC387715 is irrelevant to the disease, the spatiotemporal

expression pattern of this gene and its exclusive emergence with

the evolution of the macula in non-human primates, provide

partial evidence for its role in AMD pathogenesis [14,16,19,26]. At

the same time, the evidence for the involvement of HTRA1

upregulation is likewise compelling, including i) the upregulation

of the transcript in the major risk haplotype, and ii) the observed

increased HTRA1 expression in AMD eyes.

One can outline reasonable hypotheses to explain each aspect of

the discrepant data. Alternatively, a single hypothesis of dual

causality might explain all the observations. Specifically, we

speculate that concomitant downregulation of LOC387715 and

upregulation of HTRA1 can explain the disease. This theoretical

binary model is consistent with the fact that i) the common AMD-

associated haplotype affects both transcripts and ii) the protective

haplotype containing the R38X LOC387715 allele is associated

with normal HTRA1 expression (Figure 3B). Moreover, we suggest

that if changes in either gene alone were sufficient to confer AMD

susceptibility, one might have expected to discover rare alleles that

recapitulate the effect of the in/del (such as rare loss of function

mutations in LOC387715 or activating mutations in HTRA1),

neither of which have been discovered to date by us or by other

groups. The primate-specific nature of LOC387715 renders

this binary model intractable in model organisms. Nonetheless,

this model may be tested in the monkey using genetic

manipulations.

Figure 4. Heterologous Luciferase assays in vitro and in vivo. Effects of the in/del variants on HTRA1 expression in cultured human RPE cells
and mouse RPE in vivo. (A) Schematic diagram of constructs for luciferase reporter assays. The L and the S denote long and short promoter constructs,
A/G represents the allele at rs11200638, while in/del (black circle) refers to long promoter construct with an in/del. Different HTRA1 promoter
sequences corresponding to risk and wild-type alleles of in/del and rs11200638 (WT(L-A)), WT(L-G), (MT(L+in/del)), (WT(L+in/del), WT(S) and MT(S))
were placed upstream of a pGL3 reporter. (B) Luciferase activities in cultured human RPE cells transfected with different HTRA1 promoter reporter
constructs. The pGL3-Basic vector without insert (negative) was transfected into human RPE cells as a negative control. Renilla luciferase plasmid pTK-
RL was cotransfected with each construct as an internal control for normalization. Normalized luciferase activity was measured in five independent
experiments. The mean 6 SD is given for each construct. (C) Luciferase activities in mouse RPE in vivo corresponding to different HTRA1 promoter
reporter constructs. Reporter constructs were injected into the subretinal space and electroporated into mouse RPE cells. Eighteen, nineteen and
sixteen eyes were injected with WT(L), MT(L+in/del) and WT(L+in/del) constructs respectively. The firefly luciferase value was divided by the Renilla
luciferase value to give the normalized luciferase activity. This was divided by the normalized luciferase activity of empty-PGL3 and pRL-CMV to give
the relative luciferase activity ratio. Each bar represents the mean (6 SEM).
doi:10.1371/journal.pgen.1000836.g004

Genetics and Age-Related Macular Degeneration
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Materials and Methods

Patients
This study was approved by the Institutional Review Boards of

the University of Utah, University of California San Diego, Johns

Hopkins University, and Sichuan Provincial People’s Hospital.

Subjects gave informed consent prior to participation. Participants

underwent a standard examination, which included visual acuity

measurements, dilated slit lamp biomicroscopy, and stereoscopic

color fundus photography. Grading was carried out with the

classification established by AREDS [28]. Diagnosis of advanced

AMD was based on the presence of GA or CNV (equivalent to

AREDS category 4 or 5). Control subjects were .60 years of age,

with no signs of AMD, defined as no drusen or RPE abnormalities

in the Utah collection, and controls in the Hopkins cohort and the

Chinese cohort were defined as being .60 years old, having fewer

than 5 small drusen (,63 um), and no RPE abnormalities. Patient

characteristics of the case-control series are listed in Table 5.

Genotyping
SNPs were genotyped by SNaPshot on an ABI 3100XL

analyzer (ABI, Foster City, CA, USA) according to the

manufacturer’s instructions. PCR and SNaPshot primers are

listed in Table S2. All SNPs had a genotyping success rate .98%

and accuracy .99% as judged by random re-sequencing of 20%

of samples in all three case-control series.

Re-sequencing of haplotypes
To discover all variations in the AMD susceptibility locus at

10q26, we undertook a re-sequencing of 100kb in the region

including genes PLEKHA1, LOC387715 and HTRA1. We chose

DNA samples from six individuals with a homozygous risk

haplotype and six individuals with a homozygous protective

haplotype for re-sequenbcing analysis. We designed PCR primer

pair for amplification of 1kb amplicon; each amplicon had a 50bp

overlap with next amplicons. The PCR amplicons were directly

purified using a Qiaquick kit (Qiagen, Valencia, CA, USA) and

sequenced using forward and reverse primers using the BigDye

Terminator v3.1 Cycle Sequencing Kit (ABI, Foster City, CA,

USA) according to the manufacturer’s instructions. Then the

sequencing results were annotated using the NCBI genomic DNA

sequence information (http://www.ncbi.nlm.nih.gov, build 36).

Statistical analysis
All SNP genotyping results were screened for deviations from

Hardy-Weinberg equilibrium with no SNP showing significant

deviation (p.0.05). The chi-squared test for allelic trend for an

additive model or dominant allele model over alleles was

performed with PEPI version 4.0 [29]. Odds ratios and 95%

confidence intervals were calculated by conditional logistic

regression with SPSS version 13.0. Linkage disequilibrium (LD)

structure was examined with Haploview (version 4.0) [30]. Default

settings were used, creating 95% confidence bounds on D’ to

define pair-wise SNPs in strong LD [31]. Haploview was also used

for allelic association tests.

Endogenous expression levels of HTRA1 and LOC387715
Total RNA was extracted from human placentas, and the first

strand cDNA was generated by reverse transcript using reverse

transcript kit (Invitrogen, Carlsbad, CA, USA). Real time PCR

was performed for HTRA1 mRNA qualification using ABI human

HTRA1 probe real time PCR kit (ABI, Foster city, CA, USA). RT-

PCR was performed to qualify LOC387715 mRNA levels using

primers 59-atggcagctggcttggcc-39 and 59-ttgctgcagtgtggatgatag-39

with ex taq polymerase (TaKaRa Bio USA, Mountain View, CA

USA). GAPDH was used as the internal control. Human placenta

tissues were harvested and genotyped. We measured RNA levels in

seven individuals with a homozygous disease haplotype (C-T-in/

del-A, Figure 3A and 3B), five individuals with a homozygous

protective haplotype (C-G-Wt-G, Figure 3A and 3B), and five

individuals with a homozygous non-risk haplotype with respect to

in/del/Wt and a heterozygous CT allele at rs2736911 (C/T-G-

Wt-G, Figure 3A and 3B). Significance was examined using

SPSS’s independent sample t-test.

Heterologous Luciferase assays
A 4423 bp DNA fragment containing the 21 to 24423 position

from the HTRA1 translation start site including either the risk

haplotype (MT(L+in/del), Figure 4A) or protective haplotype

(WT(L-G), Figure 4A) was PCR amplified from genomic DNA of

an individual with a homozygote risk haplotype or an individual

with a protective haplotype using the following primers: forward:

cgacgcgtcggatgcagccaatcttctcctaac; reverse: agatctcgagcccggc-

gactctggcggcggcggcggtg). A DNA fragment containing 21 to

2100bp from the HTRA1 translation site including either the risk

haplotype (MT(S), Figure 4A) or protective hapotype (WT(S),

Figure 4A) was amplified from genomic DNA of an individual with

a homozygous risk haplotype or protective haplotype using the

primers, cggggtaccaactcctgggctcaaaggat and ccgctcgagtccgc-

gcctggccggggtccctcag. Constructs were subcloned into the Mlu I-

Xho I site of the pGL3-basic vector (Promega, Madison, WI,

USA). All constructs were verified by restriction enzyme digestion

and complete bidirectional DNA sequencing. The wild

type haplotype constructs carrying in/del (WT(L+in/del),

Figure 4A)was generated by subcloning of a fragment containing

in/del cutting from MT(L+in/del) using Mlu I-Nhe I. The wild

type haplotype constructs carrying A allele at rs11200638 (WT (L-

A), Figure 4A) was generated using site-directed mutagenesis kit

(Agilent Technologies, La Jolla, CA). A positive control plasmid

(pGL3-control Vector) containing an SV40 enhancer and

Table 5. Disease status, gender, and age of subjects in the study.

Case-control cohort Utah case-control cohort Hopkins case-control cohort Han Chinese case-control cohort

GA CNV Controls GA CNV Controls CNV Controls

232 473 650 141 301 434 138 591

Sex-Number (%) Female 139 (60) 243 (50) 400 (62) 80 (57) 163 (54) 228 (53) 66 (48) 272 (46)

Male 93 (40) 230 (50) 250 (38) 61 (43) 138 (46) 206 (47) 72 (52) 319 (54)

Average Age-years 84.09 82.85 75.30 82.51 79.51 78.10 68.10 66.50

doi:10.1371/journal.pgen.1000836.t005
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promoter driving luciferase reporter was obtained from Promega

(Madison, WI, USA).

Human RPE cells were split into 24-well plates and cotrans-

fected 24 hours later with 1ng of the transfection control Renilla

luciferase plasmid pTK-RL (Promega, Madison, WI) and 200ng of

one of the following plasmids: pGL3-basic, pGL3-control, WT(L-

A), WT(L-G), WT(L+in/del), MT(L+in/del), WT(S) and MT(S).

Transfections (n = 6, three preps for each construct and 2

transfections for each preps) were done using the Fugene-6

protocol according to manufacturer’s specifications (Roche

Applied Science, Mannheim, Germany). Forty-eight hours after

transfection, cells were washed with PBS twice and luciferase

activities measured with the Dual-Luciferase Assay Kit (Promega,

Madison, WI). Fold induction was derived relative to normalized

reporter activity.

In vivo transfection by electroporation
In vivo transfection was done by subretinal injection of reporter

plasmids followed by electroporation as described [32]. Briefly,

C57BL/6 mice (4–5 weeks old) were given a subretinal injection of

1ml of PBS containing 0.5 ug of pGL3 containing one of the firefly

luciferase constructs described above and 0.25 ng of Renilla

luciferase plasmid ( pRL-CMV, Promega, Madison, WI) for

normalization. After injection, two steel electrodes separated by

about 3.0 mm were placed on the posterior sclera and an

ECM830 electroporator (BTX, San Diego, CA, USA) was used

to deliver eight 50 ms electric pulses separated by 100 ms with

voltage set at 30V. The eyes were enucleated 65–68h after

electroporation and the cornea and lens were removed. Posterior

eyecups were minced and homogenized in 100 ml of Reporter

Lysis Buffer (Promega, Madison, WI). Firefly and Renilla

luciferase activities were measured using 40ml of lysate and a

Dual-Luciferase Reporter Assay System (Promega, Madison, WI).

The firefly luciferase value was divided by the Renilla luciferase

value to give the normalized luciferase activity. The normalized

luciferase activity of each test plasmid injection group was divided

by the normalized luciferase activity of empty-PGL3 and pRL-

CMV injection group to give the relative luciferase activity ratio.

Statistical analysis was done using ANOVA and Bonferroni/Dunn

test.

Supporting Information

Table S1 SNPs identified by re-sequencing.

Found at: doi:10.1371/journal.pgen.1000836.s001 (0.11 MB

DOC)

Table S2 Primers for genotyping of SNPs.

Found at: doi:10.1371/journal.pgen.1000836.s002 (0.05 MB

DOC)
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