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Abstract

Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface
functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand
that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a
siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in
complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry
possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its
presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance
experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability
and advanced functionality is crucial.
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Introduction

The potential of iron oxide nanoparticles (NP) in biomedical

applications is widely recognized: they can act as magnetic

resonance imaging (MRI) contrast agents, superparamagnetic

carriers for drugs or are used in hyperthermia treatments. [1–6] By

improving the synthesis of these particles, their quality and

availability has largely increased. [7–12] When NP are used in

biomedical applications, two requirements are often necessary.

First, their colloidal stability in complex environments is crucial. If

the particles become unstable in for instance blood, they will

precipitate, possibly triggering severe inflammatory responses.

[13–15] Secondly, they should possess accessible anchor points for

molecules or proteins to be coupled onto. This allows NP to

selectively interact with certain targets or to carry drugs close to a

desired location.

However, functionalization of their surface has proven to be

non-trivial. Although multiple different approaches have been

developed, most of them lack a certain degree of control. [16]

Coating their surface with functional polymers is a straightforward

method, but has crosslinking issues and allows little control over

the thickness of the layer and orientation of functional groups. [17]

Since they are not covalently attached to the surface, they could

potentially detach, which would make the particles precipitate.

Growing an additional silica layer on the iron oxide core, on the

other hand, has several advantages: the shell thickness can be well

controlled and it is chemically inert. [18] However, the diameter of

such NP increases by several nanometers, which is often not

desired for biomedical applications. [19] This problem was

circumvented by the introduction of functional siloxane molecules

on iron oxide NP. They also form a silicon dioxide shell, albeit

very thin, and they contain a functional group, which can have

several advantages or uses later on. [20,21].

Even though multiple variants of these silanes are commercially

available, they often do not have the desired structure or

properties. This can easily be related to the complicated handling

of siloxane molecules. Since they react with water and are

relatively intolerant to heat, modification reactions have to be

limited in time and workup. Tucker-Schwartz et al. recently

published an easy method to avoid this direct modification of the

siloxanes, by adopting thiol-ene click chemistry. [22] Their

approach allows to synthesize a very complex molecule first and

attach a siloxane group as the final step. Click chemistry is a

concept rather than a specific reaction, which comprises fast

reactions with very high yields and non-aggressive by-products.

[23,24] In addition the reaction should be modular and have

relatively simple reaction conditions. Very well-known examples

are copper mediated azide-alkyne cycloadditions, thiol-ene and

Diels-Alder reactions. [24,25] In this manuscript we developed a

new ligand, based on a polyethylene glycol (PEG) backbone, and

transformed it into a siloxane by straightforward thiol-ene click
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chemistry. By modifying the end-group of the backbone,

functional groups were easily introduced onto the nanoparticle’s

surface. The high purity and straightforward synthesis of the

ligand makes this method very valuable for large scale and

reproducible functionalization of iron oxide nanoparticles. This

universal method requires only basic knowledge of organic

chemistry and can be widely applicable by scientists without a

substantial chemistry background.

To investigate the full potential of the ligand, several antibodies

(Ab) were coupled to its anchor groups (carboxylic acids) and their

activity was assessed via fiber optic surface plasmon resonance

experiments. As a model system, an antibody (MA-33H1F7)

targeting the serpin plasminogen activator inhibitor-1 (PAI-1)

protein was selected. [26] This protein is an important factor in

the plasminogen-plasmin system since it inhibits plasminogen

activators tissue-type plasminogen activator and urokinase, which

are involved in clot formation and degradation processes in blood.

[27] These Ab were coupled to the NP by using popular EDC-

NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlo-

ride, N-hydroxysuccinimide) chemistry and their presence was

investigated by ELISA (enzyme-linked immunosorbent assay). To

assess their potential in biomedical applications, their colloidal

stability was tested in undiluted human plasma and serum. The

results indicate that the developed ligand has high potential

because of its elegant synthesis, its positive influence on the

colloidal stability of the nanoparticle as well as its properties for

antibody coupling chemistry.

Experimental

1. Materials
2,2-dimethoxy-2-phenylacetophenone (DMPAP, 99%), 4-di-

methylaminopyridine (DMAP, .99%), succinic anhydride (.

99%), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and

mercaptopropyltrimethoxysilane (95%) were purchased from

Sigma Aldrich. Allyl-PEG10-OH was obtained from Polysciences,

Inc. Triethylamine was ordered at Janssen Chimica. N-hydroxy

succinimide (98+%) was obtained from Alfa Aesar. 2-(N-

morpholino)ethanesulfonic acid monohydrate (MES) was pur-

chased at Fluka. The monoclonal antibodies (host: mouse) used in

this study are MA-33H1F7 (target: human PAI-1/t-PA complex)

and MA-T12D11 (target: human TAFI), supplied by the

Therapeutic and Diagnostic Antibodies group of the KU Leuven.

[26].

All ultrasonication steps were performed in a Branson 5510

sonicator bath. Fourier transform infrared spectra were measured

using a Bruker Alpha FT-IR spectrometer equipped with a

Platinum ATR module.

2. Carboxylic acid-terminated PEG
In a 50 ml flask, allyl-PEG10-OH (1eq, 4,00 mmol, 1.992 g)

was mixed with succinic anhydride (1.1eq, 4.40 mmol, 440 mg)

and 4-dimethylaminopyridine (DMAP) (0.02eq, 0.08 mmol,

9.7 mg). This mixture was stirred and heated to 50uC for

16 hours. The resulting product was purified twice by precipita-

tion in cold diethyl ether, centrifugation and drying in vacuum. 1H

NMR (300 MHz, CDCl3): d (ppm) 2.65 (s, 4H), 3.6–3.7 (m, 38H),

4.02 (d, 2H), 4.26 (t, 2H), 5.16–5.30 (m, 2H), 5.8–6.0 (m, 1H). 13C

NMR (75 MHz, CDCl3): d (ppm) 29.2, 29.5, 63.8, 68.9, 69.3,

70.5, 72.2, 117.1, 134.7, 172.1. MS (chemical ionization,

isobutane): m/z = 499 (ester fragment, M+ - C4O3H), 101 (ester

fragment, M+ - C23O11H46).

3. Thiol-ene click chemistry
To form the siloxane-terminated PEG molecule, allyl-terminat-

ed PEG (mixture of modified and unmodified, 1 mmol) was mixed

with (3-mercaptopropyl) trimethoxysilane (1eq, 1 mmol, 185.7 mL)

and 2,2-dimethoxy-2-phenylacetophenone (DMPAP, 0.05eq,

0.05 mmol, 12.8 mg). This mixture was stirred for 1 hour in a

UV chamber, equipped with 3 LEDs (365 nm, output power

200 mW). If smaller quantities are used, a small amount of

chloroform can be added to improve the stirring. [22] The

product was used without further purification. 1H NMR

(300 MHz, CDCl3): d (ppm) 0.76 (t, 2H), 1.70 (m, 2H), 1.85(m,

2H), 2.55 (m, 4H), 2.64 (s, 4H), 3.57 (s, 9H), 3.5–3.8 (m, 40H),

4.26 (t, 2H).

4. Nanoparticle functionalization
The synthesis of iron oxide NP as well as the introduction of

siloxanes onto their surface was performed as reported in our

previous manuscript. [20] In general, 1 mmol of siloxanes is mixed

with 100 mg of Fe3O4 NP in 50 mL of toluene. To this mixture

2.5 mL of triethylamine and 50 mL of water are added. The

solution was placed in a ultrasonication bath for 5 hours, after

which 50 mL of heptane was added to precipitate the particles.

Afterwards, they were attracted magnetically and washed 3 times

with acetone. Finally the particles were dried in vacuum and

dispersed in MilliQ water (with a concentration up to 20 mg/mL).

5. Protein coupling
The concentrated nanoparticle solution was diluted in 50 mM

2-(N-morpholino)ethanesulfonic acid (MES) buffer, pH 5.5, to

reach a final concentration of 3 mg/mL. 0.75 mg 1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) and 0.75 mg N-hydro-

xysuccinimide (NHS) was added to 1 ml of this solution and

shaken for 20 minutes to activate the carboxylic acids. The

antibodies were diluted in 2 mL of the same MES buffer after

which both solutions were mixed and shaken for 1 hour. To

separate the particles from the solution, a Miltenyi Biotech MS

magnetic column was used. After rinsing the column with MilliQ

water, the nanoparticle dispersion was run through the column,

which was placed inside a circular magnet. The column was

washed 2 times with 1 mL of sodium phosphate buffer (20 mM,

pH 7). To elute the particles, the column was removed from the

magnet and 1 mL of phosphate buffer was used as eluent.

6. ELISA
In the ELISA assay, recombinant plasminogen activator

inhibitor (PAI-1) is coated on the plate and free binding sites are

blocked with bovine serum albumin. Samples are applied in

different dilutions as well as a standard curve of MA-33H1F7. [26]

After incubation, horseradish peroxidase (HRP) conjugated rabbit

anti-mouse IgG (Sanbio B.V., Uden, The Netherlands) is applied,

followed by an o-phenylenediamine (OPD) induced colorimetric

reaction. The intensity of the color is directly correlated with the

amount of bound MA-33H1F7. Sample values are calculated

using the standard curve.

7. Surface plasmon resonance (SPR)
An optical fiber was first coated with a gold layer, which was

subsequently covered with a self-assembling monolayer (SAM).

This thiol- and carboxyl-terminated molecule was obtained from

Dojindo molecular technologies. The SAM was activated by a

solution containing 0.4M EDC and 0.1M NHS in a 50 mM MES

buffer (pH 6.0) for 20 minutes. Afterwards the fiber was brought

into a solution containing the antigen, PAI-1 (24 mg/mL) for 25

Heterobifunctional PEG Ligands for Iron Oxide Nanoparticles
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minutes. Finally the fiber was transferred into a blocking solution

(0,1% tween and 0.05% BSA). All subsequent experiments were

performed with 1 mg/ml nanoparticle solutions.

Results and Discussion

The novel PEG-siloxane ligand was designed bearing two

important characteristics in mind: having one accessible functional

group and providing excellent colloidal stability to the nanopar-

ticle. To ensure the first property, a PEG oligomer end-capped

with an allyl functionality was modified with succinic anhydride.

This reaction was performed without solvent, since the anhydride

dissolves in PEG at elevated temperatures. 4-Dimethylaminopyr-

idine (DMAP) was added, as a catalyst, to speed up the reaction.

[28] The available hydroxyl group at the end of the PEG chain

reacts with the anhydride, resulting in a free carboxylic acid (see

Figure 1). This product was purified once by precipitating it in

diethyl ether, which removed traces of the catalyst and excess

anhydride.

The second step of the ligand synthesis involved a click

chemistry reaction. We opted for this approach, since working

with siloxanes is difficult. They react with moisture and are not

resistant to prolonged heating. [22] The thiol-ene click chemistry,

on the other hand, is fast and takes place at room temperature.

Another great advantage of this approach is that the final siloxane

molecule can be added directly to the functionalization solution,

without additional workup. Any traces of the radical initiator or its

by-products are inert in this reaction.

Even though the functionalized PEG molecule could provide

sufficient steric hindrance, which ensures colloidal stability of the

nanoparticle, we chose to mix modified and unmodified PEG

siloxanes during the functionalization step. [20] Thus, the

nanoparticle is covered with a complete PEG shell, where the

modified chains are sterically available, since they are longer.

From the FTIR data (data in SI, Figures S1 and S2) was derived,

that even though the chain length of the ligand is sufficiently short

to enhance the stacking of the molecules (crystalline domains), a

small percentage is coiled (amorphous domains). [20] Because only

a small part of the ligands have a carboxylic acid functionality, the

overall pH sensitivity is reduced. The end result (idealized) is

shown in Figure 2: carboxylic acid groups are now available as

anchor points for future reactions. By Fourier transform infrared

measurements, the presence of modified PEG chains was observed

(data in SI, Figures S1 and S2). All further experiments were

conducted on nanoparticles coated with 90% unmodified and

10% modified PEG siloxanes (molar percentages).

These functionalized nanoparticles show excellent colloidal

stability in multiple different environments. Similarly to our

previous report, we tested the stability in undiluted human serum

and plasma (data in SI, Figure S3). [20] The nanoparticles

(8.660.6 nm, Transmission Electron Microscopy data in SI,

Figure S4), coated with mixed siloxanes, clearly showed the

properties of both PEG and carboxylic acids. In particular they

show enhanced stability in pH ranges above 5, where the

carboxylic acids are charged (picture in SI, Figure S5). In media

like serum or plasma, no precipitation was observed, even after

25 hours at room temperature without agitation. NP were also

coated with 100% modified PEG siloxanes, but these particles had

significantly lower colloidal stability in these acidic environments

(pH 5–6), due to the lack of stabilizing charges. Steric stabilization

by the PEG chains was not sufficient in this case, since to much

carboxylic acids were present. We therefore decided to focus on

nanoparticles with mixed siloxane coatings.

Covalent attachment of the selected Ab onto the NP was

performed via a standard EDC-NHS coupling. [29] The

mechanism is based on the activation of the carboxylic acid with

EDC, which forms an unstable acylisourea intermediate. This

intermediate reacts with NHS to form a stable ester that exhibits

enhanced stability in aqueous environments. Although this extra

step is not strictly necessary, it greatly improves the binding

efficiency, by reducing the occurrence of side reactions on the

acylisourea intermediate. All reactions were performed in a slightly

acidic buffer (MES 50 mM, pH5.5), which improves the final

coupling reaction on two domains. First, the low pH enhances the

activation of the carboxylic acid by EDC. [30] Secondly, the

formed NHS ester has substantially lower hydrolysis rates below

pH7. [30] Further protein crosslinking (second, third, … layer) is

reduced by the slow reaction rate of the partially protonated

amines. [30] A slower reaction rate was preferred in this

procedure, since the formation of a protein corona is also a

thermodynamically favorable process. [31] A higher reaction rate

could result in coating the NP with multiple layers of proteins and

crosslinking between different NP. Afterwards the conjugated NP

were purified by a magnetic column, which has a very large

surface area, since normal attraction with a magnet was too time-

consuming. This was necessary because of the excellent colloidal

stability of the NP in the buffer, which dramatically slows down

the attraction rate. If the NP were precipitated by a highly

concentrated salt solution, it was difficult to redisperse them

afterwards. Using a magnetic column also enabled us to wash the

particles while they were retained on the column. After removing

the magnetic field from the column, the particles were easily

collected by eluting with a PBS buffer.

In this study, we opted for two different Ab: MA-33H1F7,

targeting PAI-1, and MA-T12D11, targeting TAFI, as the

negative control. [26,32].

Figure 1. Reaction scheme. Allyl-terminated polyethylene glycol was modified by reaction with succinic anhydride. 4-dimethylaminopyridine
(DMAP) catalyzes this reaction. Subsequently the allyl functionality is reacted with a thiol-containing siloxane molecule, by thiol-ene click chemistry,
which yields the final carboxylic acid-terminated PEG-siloxane.
doi:10.1371/journal.pone.0109475.g001
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Multiple methods are available to determine the concentration

of proteins on NP; however not all are appropriate when iron

oxide is involved. Colorimetric methods like the Bradford assay

are influenced by the strong light absorption of the black NP,

which makes the results difficult to interpret. [33] Fourier

transform infrared spectroscopy can only confirm the presence

of proteins but is not appropriate for assessing the concentration.

We opted for an ELISA assay in this case, whereby the remaining

proteins in the supernatant and washing fractions were deter-

mined. This way, the amount of proteins on the surface of the NP

can easily be calculated. As a comparison, NP and Ab were also

mixed in the absence of coupling reagents, so only aspecific

adsorption could occur (protein corona formation). [31,34] Hence

this would set a benchmark for the protein concentration of the

hard corona formation (without possible protein crosslinking).

[35,36] When the concentration of proteins was increased ten

times (see Figure 3), the amount of adsorbed proteins does not

change significantly. This indicates that the washing steps remove

all proteins, except the hard corona, which is more strongly

attached to the surface. [35–37] Since all three experiments

without coupling reagents (including error bars) give a similar

value, we learned that the hard protein corona corresponds to 15–

20 micrograms of proteins per milligram nanoparticles, which is

similar to literature for particles of comparable size and shape.

[38–43] When we added the coupling reagents (25+ EDC-NHS),

we obtained a result that was comparable, but slightly higher in

value. This indicates that a small amount of crosslinking is

occurring, which can be expected for EDC-NHS reactions

involving proteins. However the coating of the nanoparticles is

close to the optimal value (solely the hard corona), which

underlines the quality of the coating and the coupling procedure.

Although an ELISA assay can determine the loading capacity, it

is incapable of assessing the activity of the coupled antibodies on

the spherical nanoparticles. To investigate the ability of the Ab to

recognize their antigen (Ag), the nanoconjugates were brought into

contact with a PAI-1-coated surface plasmon resonance (SPR)

optical fiber. By looking at the shift in the plasmon wavelength, the

interaction between Ab and Ag can be assessed. A standard

multimode optical fiber was coated with a gold layer and a self-

assembling monolayer with carboxylic acid end-groups. [44] To

these groups, PAI-1 was coupled via EDC-NHS chemistry

(Figure 4). When the nanoparticles were brought into contact

with the fiber, they induced a shift in the plasmon resonance

relative to their binding efficiency. The binding, as a whole, is the

sum of two separate interactions: the protein corona effect and the

antibody-antigen (Ab-Ag) bond. The first is caused by the aspecific

interaction between the Ab and the Ag, similar to the formation of

a second (soft) corona, this cannot be avoided and hence is viewed

as a background in the signal. The latter, however, is specific for

each Ab-Ag couple.

In this experiment, one can clearly see the difference in SPR

shift, caused by the Ab-Ag interaction. An extra shift of more than

8 nm was measured by the SPR-fiber setup when comparing the

NP, coated with MA-33H1F7 (targeting PAI-1) or MA-T12D11

(targeting TAFI). This result ensures that, although the Ab are

coupled in a random fashion, their activity is retained and they are

still partially sterically accessible. We hypothesize that a large

fraction of the Ab indeed lose their activity due to an unfavorable

direction of bonding. However, the strongly curved, large surface

of the NP allows a high overall antibody loading capacity that

partially compensates for the losses in activity. Future experiments

will focus on employing a more directional coupling strategy,

which will give us more insight in this complex relation.

The excellent colloidal stability of the NP, coated with the PEG-

ligand, will allow to use the particles for various biomedical

applications. Since the ratio of functional ligands can easily be

adjusted, a library of mixed-monolayer nanoparticles can be

synthesized for future experiments. Similarly, the core size of the

NP can be varied, to control the overall size of the bioconjugates.

This can have an important influence on their cell uptake or

retention time in vivo. [45,46] Moreover, they can serve as a

Figure 2. Bioconjugation strategy. The available carboxylic acid groups are activated with EDC-NHS chemistry. The resulting NHS ester reacts
with amine groups of the antibody in a MES buffer. Finally the particles are recovered from the supernatant by a magnetic column.
doi:10.1371/journal.pone.0109475.g002

Figure 3. Nanoparticle-antibody coupling results. If EDC-NHS
coupling reagents are added to the mixture of NP and antibodies,
slightly more proteins are retained on the NP. This indicates that a small
level of crosslinking occurs. When a large amount of antibodies
(without coupling reagents) is added, no significant difference is
observed, which shows that only a hard corona remains on the NP after
washing. All error bars are shown as the percentage error on the total
value.
doi:10.1371/journal.pone.0109475.g003
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platform for the bioconjugation of proteins for multiple applica-

tions like selective magnetic separation or MRI contrast agents.

Conclusions

In order to fully customize the surface coating of iron oxide

nanoparticles, a PEG building block was modified with carboxylic

acid groups and afterwards attached to a siloxane via thiol-ene

click chemistry. These ligands were introduced onto the nanopar-

ticles’ surface, which significantly improved the colloidal stability

in complex environments. To prove their added functionality,

antibodies were coupled to the carboxylic acid end-groups. An

ELISA assay was performed to indirectly determine the amount of

coupled proteins, while SPR experiments confirmed their activity.

Because these ligands provide excellent colloidal stability and can

also act as an anchor point for coupling via a simple modification,

they have high potential in future nanoparticle design for

biomedical applications.

Supporting Information

Figure S1 Fourier transform infrared spectrum (FTIR)
of the original allyl-PEG10-OH ligand and the modified
version. The ester peak at 1725 cm21 is clearly visible after the

ring opening of the anhydride, while the –OH peak around

3500 cm21 disappears.

(DOCX)

Figure S2 Fourier transform infrared spectrum (FTIR)
of the allyl-PEG10-COOH ligand, the oleic acid-coated
and the modified iron oxide nanoparticles. The ester peak

is still clearly visible at 1725 cm21, as well as the different

polyether vibrations between 1250 and 1500 cm21. The presence

of the iron oxide nanoparticles is confirmed by the Fe-O and Si-O

vibrations at respectively, 590 and 1100 cm21. The broad peaks at

1660 and 3400 cm21 are due to the presence of water, which

remains in the PEG layer.

(DOCX)

Figure S3 Absorbance of nanoparticle dispersions in
plasma and serum. To verify the stability of the functionalized

nanoparticles in complex environments; the absorbance of

dispersions in plasma and serum was measured at 1000 nm.

The particles were dispersed at 1 mg/mL and the absorbance was

monitored for 25 hours. A significant decrease of the absorbance

would indicate colloidal instability and precipitation of the

nanoparticles.

(DOCX)

Figure S4 Transmission electron microscopy (TEM)
image of the iron oxide nanoparticles (8.6±0.6 nm).
Their size was determined by ImageJ software.

(DOCX)

Figure S5 The colloidal stability of the nanoparticle
dispersions is excellent, even after 1 year of storage. The

samples (5 mg/mL in water, pH 7) show above have the following

coatings (molar percentages): A, 100% PEG10-OH; B, 10%

PEG10-COOH 90% PEG10-OH; C, 25% PEG10-COOH 75%

PEG10-OH; D, 50% PEG10-COOH 50% PEG10-OH.

(DOCX)
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