

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Comparative analysis data of SF1 and SF2 helicases from three domains of life

Wafi Chaar^a, Hiba Ibrahim^b, Juliana Kozah^c, Hala Chamieh^{d,e,*}

^a Hloul Business Analytics, Omar Daouk Street, Beirut, Lebanon

^b Beirut Arab University, Faculty of Science, Tripoli, Lebanon

^c Université Saint Esprit, Jounieh, Lebanon

^d Azm Center for Research in Biotechnology and its Applications, Lebanese University, Lebanon

^e Department of Biology, Lebanese University, Faculty of Science, Tripoli, Lebanon

ARTICLE INFO

Article history: Received 10 June 2016 Received in revised form 23 January 2017 Accepted 27 February 2017 Available online 3 March 2017

Keywords: Helicase Archaea SF1 SF2 Phylogenetics

ABSTRACT

SF1 and SF2 helicases are important molecular motors that use the energy of ATP to unwind nucleic acids or nucleic-acid protein complexes. They are ubiquitous enzymes and found in almost all organisms sequenced to date. This article provides a comparative analysis for SF1 and SF2 helicase families from three domains of life archaea, human, bacteria. Seven families are conserved in these three representatives and includes Upf1-like, UvrD-like, Rad3-like, DEAD-box, RecQ-like. Snf2 and Ski2-like. The data highlight conservation of the helicase core motifs for each of these families are essential for further studies tracing the evolutionary history of helicase families. The data supplied in this article support publication "Genome-wide identification of SF1 and SF2 helicases from archaea" (Chamieh et al., 2016) [1].

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: http://dx.doi.org/10.1016/j.gene.2015.10.007

* Corresponding author at: Lebanese University, Faculty of Science, Department of Biology, Tripoli, Lebanon. *E-mail address:* hala.chamieh@ul.edu.lb (H. Chamieh).

http://dx.doi.org/10.1016/j.dib.2017.02.047

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Subject area	Biology
More specific sub- ject area	Genomics, Phylogenetics, helicase, archaea
Type of data	Figures
How data was acquired	Computational analysis
Data format	Analyzed
Experimental factors	Protein sequences were retrieved from online databases and used for detection of protein domain conservation and Phylogenetic analysis.
Experimental features	Human, E.coli and archaea protein helicase sequences were aligned using TCOFFEE or PROMALS3DConserved motifs were detected from multiple sequence alignments using WebLOGO software. Phylogenetic analysis were performed using Maximum Likelihood Methods or Bayesian Methods after protein alignment trimming by TrimAl.
Data source location	Lebanese University
Data accessibility	Data is available within this article

Specifications Table

Value of the data

- The presented data on highly conserved amino acids in each of the seven conserved families across the three domains of life is important to design mutagenic studies and therefore determine functional conservation required for helicase function.
- Protein sequence comparison between SF1 and SF2 helicase families will allow establishing key experiments for genetic and biochemical analysis of helicase action.
- Phylogenetic tree data of Upf1-like, ski2-like and rad3-like shed light on the phylogenic relationship between these helicases in archaea, human and *E.coli*. The data offers valuable information on the complex evolutionary history within a helicase family and is a starting point for more detailed evolutionary studies on helicase subfamilies.

1. Data

Four figure files are presented. Fig. 1 denotes a comparative analysis of helicase core motifs in conserved families from archaea, bacteria and human. Figs. 2–4 are phylogenetic trees obtained after Maximum Likelihood analysis for Upf1-like and Rad3-like families, and Bayesian analysis for ski2-like helicase family.

2. Experimental design, materials and methods

All protein sequences were retrieved from existing protein databases and were used with their UniProt accession numbers and were classified into different families as shown in Chamieh et al. [1,2]. Multiple protein sequence alignment was performed using T-COFFEE EXPRESSO program for small sequence numbers (<150 sequences) [3] or PromalS3D for large sequence numbers (>150 sequences) [4]. Fig. 1 was obtained from the multiple sequence alignment files for protein sequences within the same family using the WEBLOGO software [5]. Sequences were inspected for their correct alignment within the helicase core domain. Multiple sequence alignment was trimmed using TrimAl v1.3 method set to automated [6]. The best evolutionary fit model was identified using ProtTest [7].

	Upf1-like	UvrD-like	RecQ-like	DEAD-Box	Ski2-like	Rad3-like	Snf2		
Motif Q									
Human	_~ Q	le Q	F _R e Q	₽ <mark>⊥</mark> e↓Q	<u>Q</u>	Q			
Archaea	_LN_sQ		ERP.	₽⊺⊨↓Q	<mark>∍LY₌⊎Q</mark>	BeeQ	<mark>₽₽₽₽</mark> ₽		
Bacteria	NE SQ.	<mark>⊾N≈≡Q</mark>	FB PGQ	PLQ	LWPSQ	PQRQ	L PHQ		
Motif I									
Human	G <u>e Gigk</u> i i.	AGAGAGKT	Metg CKS	A <u>etGeck</u> T.		sPrGrGK _₹	Demglg K t		
Archaea	GPEGTCKTRT		TGsGKS	TG ₽G <mark>K</mark> T	ISTASCKIE	ARIGYCKT	Demglgkt		
Bacteria	GPPGTGKT9T	AsaCsCKT	TGGGKS	TGIGKT	SAGKTR	A _e tg _y gKt,	DEVGLGKTIE		
Motif II									
Human	DE g	DE-OD-	DEAHC	DEAD	DE	DEAHN	DEAHer		
Archaea	DEASO	DEzQ		DEAD	DEYH	REA	DEXON		
Bacteria	DEASoo	DExQD	PEAHC	DEAD	DEGH	DEsH	DEAH		
Motif III									
Human	UL DE Q P	G D ⊨_Q≘	LTATA	E <mark>SAT</mark> E	L <mark>SAT</mark>	TEGT	LTGTP		
Archaea		X LAIX	ALTATA	ESAT	LSAT	HCSAT	LșGTP		
Bacteria	yly <mark>VGDbkQL</mark> p	VGD _{SR}	ALTATA	FSAT	LSA	TSATL.	LLTATP		
Motif IV									
Archaoa		L.R.N			.⊻E şR				
Alchaea		Tel Xee		±YF⊊∎,LS	LY r⊻ №	THE DOC	ѵ∟⋸∟⊎		
Bacteria	<u> XIAPYNAQv</u>		VB			ele <mark>S</mark> PL:			
Motif V									
Human	⊻_Y _≂ V₽	es JH	VY~AJJA	LYADYA		LL≈V .	EXELLST		
Archaea	VEIVU	TYH	↓ v⊻AT xAF		ATPTLM	∴џ L аТ _{а⊷} G	₽₽v <mark>e</mark> §		
Bacteria	<u>a</u> DF⊻ksTVI		VVATVAF		IUSSPTL	L∞⊌L≿QG₌			
Motif VI									
Human	NVA. TRAs	Ve. TRA	Q _{E_} GRAGRD	HRygRygR	Qm <u>GRAGR</u>	⊴GR ⊥вн			
Archaea	Way TRAKER	EE RECXVACTRA	QETCRACED	HRLGRI9RA	CM_CRACPP ®	OMLORULR	(AFDR. R		
Bacteria	NAV ISRAK	EE&R LXV<R	QETGRAGRDG	HRIGRTGR	NV I GRAGRAY	Q.VCRLIR.			

Fig. 1. Conserved motifs of the helicase core domain for SF1 and SF2 families across the three domains. All protein sequences were retrieved from existing protein databases. Multiple protein sequence alignment was performed using T-COFFEE EXPRESSO program for small sequence numbers (< 150 sequences) (2) or PromalS3D for large sequence numbers (> 150 sequences). Conserved motifs were generated from the multiple sequence alignment files for protein sequences within the same family using the WEBLOGO software.

Fig. 2. Molecular Phylogenetic analysis of the Upf1-like family by Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method based on the Whelan And Goldman+Freq. model (WAG+F). The percentage of trees in which the associated taxa clustered together is shown next to the branches. The analysis involved 58 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 230 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

Fig. 3. Molecular Phylogenetic analysis of Ski2-like family by Bayesian Method. The evolutionary history was inferred by using the Bayesian method based on the MTMam model. The analysis involved 178 amino acid sequences. Evolutionary analyses were conducted in MrBayes. Two runs of 750,000 generations were conducted. Burn-in was set to 25%. Robustness of nodes was assessed with Bayesian posterior probabilities.

Fig. 4. Molecular Phylogenetic analysis of rad3-like family by Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood method based on the WAG+F model. The percentage of trees in which the associated taxa clustered together is shown next to the branches. The analysis involved 85 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 268 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

Phylogenetic analysis was performed using Maximum Likelihood analysis from MEGA7 software [8] or MrBayes with the TOPALI platform [9,10].

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.02.047.

References

- H. Chamieh, H. Ibrahim, J. Kozah, Genome-wide identification of SF1 and SF2 helicases from archaea, Gene 576 (1 Pt 2) (2016) 214–228.
- [2] R. Apweiler, UniProt: the Universal Protein knowledgebase, Nucleic Acids Res. 32 (90001) (2004) 115D-119D.
- [3] J.-F. Taly, C. Magis, G. Bussotti, J.-M. Chang, P. Di Tommaso, I. Erb, et al., Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures, Nat. Protoc. 6 (11) (2011) 1669–1682.
- [4] J. Pei, N.V. Grishin, PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information, Methods Mol. Biol. 1079 (2014) 263–271.
- [5] G.E. Crooks, G. Hon, J.-M. Chandonia, S.E. Brenner, WebLogo: a sequence logo generator, Genome Res. 14 (6) (2004) 1188–1190.
- [6] S. Capella-Gutierrez, J.M. Silla-Martinez, T. Gabaldon, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics 25 (15) (2009) 1972–1973.
- [7] D. Darriba, G.L. Taboada, R. Doallo, D. Posada, ProtTest 3: fast selection of best-fit models of protein evolution, Bioinformatics 27 (8) (2011) 1164–1165.
- [8] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol. 33 (7) (2016) 1870–1874.
- [9] F. Ronquist, M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol. 61 (3) (2012) 539–542.
- [10] I. Milne, D. Lindner, M. Bayer, D. Husmeier, G. McGuire, D.F. Marshall, et al., TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops, Bioinformatics 25 (1) (2009) 126–127.