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Abstract: In this article, we investigate limitations of importing methods based on algorithmic
information theory from monoplex networks into multidimensional networks (such as multilayer net-
works) that have a large number of extra dimensions (i.e., aspects). In the worst-case scenario, it has
been previously shown that node-aligned multidimensional networks with non-uniform multidimen-
sional spaces can display exponentially larger algorithmic information (or lossless compressibility)
distortions with respect to their isomorphic monoplex networks, so that these distortions grow at
least linearly with the number of extra dimensions. In the present article, we demonstrate that
node-unaligned multidimensional networks, either with uniform or non-uniform multidimensional
spaces, can also display exponentially larger algorithmic information distortions with respect to
their isomorphic monoplex networks. However, unlike the node-aligned non-uniform case studied
in previous work, these distortions in the node-unaligned case grow at least exponentially with
the number of extra dimensions. On the other hand, for node-aligned multidimensional networks
with uniform multidimensional spaces, we demonstrate that any distortion can only grow up to a
logarithmic order of the number of extra dimensions. Thus, these results establish that isomorphisms
between finite multidimensional networks and finite monoplex networks do not preserve algorithmic
information in general and highlight that the algorithmic information of the multidimensional space
itself needs to be taken into account in multidimensional network complexity analysis.

Keywords: multidimensional networks; network complexity; lossless compression; information dis-
tortion; graph isomorphism; multiaspect graphs; multilayer networks; information content analysis;
algorithmic complexity

1. Introduction

Algorithmic information theory (AIT) [1–4] has been playing an important role in
the investigation of network complexity. More comprehensive surveys of previous work
regarding algorithmic information (or lossless compression) of networks or graphs, to-
gether with comparisons to entropy-based methods, can be found in [5–7]. For example,
AIT presented contributions to the challenge of causality discovery in network model-
ing [8], network summarization [9,10], automorphism group size [11], network topological
properties [11,12], and the principle of maximum entropy and network topology repro-
grammability [13]. Beyond monoplex networks (or graphs), Santoro and Nicosia [14]
investigated the reducibility problem of multiplex networks. As the study of multidi-
mensional networks, such as multilayer networks and dynamic multilayer networks, has
become one of the central topics in network science, further exploration of algorithmic
information has become relevant.
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In this sense, we show that the currently existing methods that are based on AIT
applied to monoplex networks (or graphs) cannot be straightforwardly imported into the
multidimensional case without a proper evaluation of the algorithmic information distor-
tions that might be present. Our results show the importance of multidimensional network
encodings into which the necessary information for determining the multidimensional
space itself is also embedded.

This article explores the possible combinations of node alignment and uniformity that
can generate algorithmic information distortions and establishes worst-case error margins
for these distortions in multidimensional network complexity analyses. We present a
theoretical investigation of worst-case algorithmic information content (or lossless com-
pressibility) distortions in four types of multidimensional networks that have sufficiently
large multidimensional spaces. We show that:

1. node-unaligned multidimensional networks with non-uniform multidimensional spaces
display exponentially larger distortions with respect to their respective isomorphic
monoplex networks and that these worst-case distortions in the node-unaligned non-
uniform case grow at least exponentially with the number of extra node dimensions;

2. node-unaligned multidimensional networks with uniform multidimensional spaces also
display exponentially larger distortions with respect to their respective isomorphic
monoplex networks and that these worst-case distortions in the node-unaligned uni-
form case also grow at least exponentially with the number of extra node dimensions;

3. node-aligned multidimensional networks with non-uniform multidimensional spaces
also display exponentially larger distortions with respect to their respective iso-
morphic monoplex networks, but these worst-case distortions in the node-aligned
non-uniform grow at least linearly with the number of extra node dimensions;

4. node-aligned multidimensional networks with uniform multidimensional spaces can
only display distortions up to a logarithmic order of the number of extra node dimen-
sions.

These four results are demonstrated in our final Theorem 5 by combining previous
results from [15] (which are briefly remembered in Section 2) and new results from Section 4
in this article. We highlight that, unlike the node-aligned non-uniform case studied in [15]
(in which the worst-case distortions were shown to grow at least linearly with the number
of extra node dimensions), we demonstrate that the worst-case distortions in the node-
unaligned cases grow at least exponentially with the number of extra node dimensions.
In addition, we highlight that the node-aligned uniform case is shown to be the one in
which the algorithmic information content of any multidimensional network and the
algorithmic information content of its isomorphic monoplex network is proved to be
much less distorted as the number of node dimensions increases. This occurs because
any algorithmic information distortion can only grow up to a logarithmic order of the
number of extra node dimensions, which contrasts with the exponential growth in the
node-unaligned cases and with the linear growth in the node-aligned non-uniform case.

The remainder of the article is organized as follows: In Section 2, we present the
previous results achieved in [15], which correspond to the node-aligned non-uniform
case. In Section 3, we study basic properties of encoded node-unaligned multidimensional
networks. In Section 4, we demonstrate the new mathematical results. In Section 5, we
discuss the limitations and conditions for importing monoplex network complexity to
multidimensional network algorithmic information. Section 6 concludes the paper.

This article is an extended version of a previous conference paper [15], whose results
correspond to the node-aligned non-uniform case presented in Section 2. A preprint version
of the present article containing additional proofs is available at [16].

2. Previous Work: The Node-Aligned Non-Uniform Case

Theorem 1 and Corollary 1 below restate the results in [15], which show that, al-
though for every node-aligned multidimensional network there is a monoplex network that
is isomorphic to this multidimensional network [17], they are not always equivalent in
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terms of algorithmic information. In addition, they demonstrate that these distorted values
of algorithmic information content grow at least linearly with the value of p (i.e., number
of extra node dimensions).

Theorem 1. There are arbitrarily large encodable simple node-aligned MAGs Gc given τ(Gc) with
arbitrarily large non-uniform multidimensional spaces such that

K(〈τ(Gc)〉) + O(1) ≥ K(〈E (Gc)〉 | x) ≥ K(〈τ(Gc)〉)−O
(

log2
(
K(〈τ(Gc)〉)

))
,

with K(〈E (Gc)〉) ≥ p−O(1) and K(x) = O(log2(p)), where x is the respective (node-aligned)
characteristic string and p is the order of the MAG Gc.

Corollary 1. There are an infinite family F1 of simple (node-aligned) MAGs and an infinite family
F2 of classical graphs, where every classical graph in F2 is MAG-graph-isomorphic to at least
one MAG in F1, such that, for every constant c ∈ N, there are Gc ∈ F1 and a GGc ∈ F2 that is
MAG-graph-isomorphic to Gc, where

O
(

log2
(
K(〈E (Gc)〉)

))
> c + K

(〈
E
(
GGc

)〉)
.

Remember from [15] that the multidimensional networks are mathematically represented
by multiaspect graphs (MAGs) G = (A , E ) [17,18], where A is the list A of aspects and E
is the composite edge set (i.e., the set of existent composite edges). This way, note that
A = (A (G )[1], . . . , A (G )[i], . . . , A (G )[p]) is a list of sets, where each set A (G )[i] in this
list is an aspect (or node dimension [19]). (In this article one can employ the terms “aspect”
or “node dimension” interchangeably). The companion tuple of a MAG G is denoted by
τ(G ) [18], where

τ(G ) = (|A (G )[1]|, . . . , |A (G )[p]|)

and p is called the order of the MAG. 〈τ(Gc)〉 denotes an arbitrary encoded form of the
companion tuple. We refer to the discrete multidimensional space of a MAG as the discrete
cartesian product×p

i=2 A (G )[i] into which the nodes of the network are embedded. In the
particular case A (G )[i] = A (G )[j] holds for every i, j ≤ p, we say the multidimensional
space of the MAG is uniform.

A MAG is said to be node aligned iff V(G ) =×p
i=1 A (G )[i] and E(G ) = V(G )×V(G ) ,

where V(G ) denotes the node-aligned set of all composite vertices v = (a1, . . . , ap) of G ,
and E(G ) denotes the set of all possible composite edges e = ((a1, . . . , ap), (b1, . . . , bp)) of G .

Following the common notation and nomenclature [20–22], G = (V, E) denotes a
general (directed or undirected) graph, where V is the finite set of vertices and E ⊆ V ×V;
if a graph only contains undirected edges and does not contain self-loops, then it is called
a simple graph. A graph G is said to be (vertex-)labeled when the members of V are
distinguished from one another by labels such as v1, v2, . . . , v|V|. If a simple graph is
labeled this way by natural numbers, that is, V = {1, . . . , n} with n ∈ N, then it is called
a classical graph. In a direct analogy to classical graphs, a simple MAG Gc = (A , E ) is
an undirected MAG without self-loops, so that the set Ec of all possible undirected and
non-self-loop composite edges is defined by Ec(Gc) := {{u, v} | u, v ∈ V(Gc)} and
E (Gc) ⊆ Ec(Gc) always holds. Hence, if a simple MAG Gc is (composite-vertex-)labeled
with natural numbers (i.e., for every i ≤ p, A (G )[i] = {1, . . . , |A (G )[i]|} ⊂ N), then
we say that Gc is a classical MAG. Note that, for classical MAGs, the companion tuples
completely determine the discrete multidimensional space of the respective MAGs. For the
present purposes of this article, all graphs G will be classical graphs and all MAGs will be
simple MAGs (whether node-aligned or node-unaligned). Following the usual definition
of encodings, a MAG is encodable given τ(Gc) iff there is a fixed program that, given τ(Gc)
as input, can univocally encode any possible E (Gc) that shares the same companion tuple.
In other words, if the companion tuple τ(Gc) of the MAG Gc is already known, then one
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can computably retrieve the position of any composite edge e = {u, v} in the chosen data
representation of Gc from both composites vertices u and v, and vice-versa.

〈E (Gc)〉 denotes the (node-aligned) composite edge set string 〈〈e1, z1〉, . . . , 〈en, zn〉〉 such
that zi = 1 iff ei ∈ E (Gc) , where zi ∈ {0, 1} with 1 ≤ i ≤ n = |Ec(Gc)|. Note that
a composite edge set string is an encoding of a composite edge list, which in turn is a
generalization of edge lists [23] so as to deal with the encoding of a MAGs instead of graphs.
Thus, the reader may also interchangeably call the composite edge set string by composite
edge list encoding. A bit string x of length |Ec(Gc)| is said to be a (node-aligned) characteristic
string of Gc iff there is a fixed program that, given x as input, computes the composite edge
set E (Gc) and there is another fixed program that, given the encoded composite edge set
E (Gc) as input, returns the string x. Note that the characteristic string of a MAG differs
from the composite edge set string by the fact that an encoding of the companion tuple
is already embedded into the composite edge set string. On the other hand, Theorem 1
shows this is not always the case for characteristic strings, which in some cases do not have
sufficient information for determining their respective companion tuples.

As established in [17], we say a (node-aligned) MAG G is MAG-graph-isomorphic
to a graph G iff there is a bijective function f : V(G ) → V(G) such that e ∈ E (G ) iff
( f (πo(e)), f (πd(e))) ∈ E(G) , where πo is a function that returns the origin composite
vertex of a composite edge and πd is a function that returns the destination composite
vertex of a composite edge. This way, GGc denotes the classical graph which is MAG-graph
isomorphic to the simple MAG Gc. We know this classical graph always exists from [17].
In order to avoid ambiguities in the nomenclature with the classical isomorphism in graphs
(which is usually a vertex label transformation) we call: such an isomorphism between
a MAG and graph from [17] a MAG-graph isomorphism; the usual isomorphism between
graphs [20,21] as graph isomorphism; and the isomorphism between two MAGs G and G ′ as
MAG isomorphism.

K(w) denotes the (unconditional) prefix algorithmic complexity, which is the length
l(w∗) of the shortest program w∗ such that U(w∗) = w. The conditional prefix algorithmic
complexity is denoted by K(·|·).

More detailed notation, nomenclature and properties of encodable node-aligned
simple MAGs can be found in [15,16].

Beyond the Node-Aligned Case Studied in Previous Work

The results in [15] demonstrate that node-aligned multidimensional networks with non-
uniform multidimensional spaces can display exponentially larger algorithmic information
distortions with respect to their isomorphic monoplex networks. On the other hand, one
may want to also investigate the extent of those distortions when the multidimensional
network is node unaligned and/or the multidimensional space is uniform. The results we
will demonstrate in the following sections differ from the ones of the present Section 2
(and from [15]) by investigating algorithmic information distortions in node-unaligned
multidimensional networks either with uniform or non-uniform multidimensional spaces.
Indeed, in the forthcoming node-unaligned case, additional algorithmic information may
be necessary in order to determine to which permutation α ∈×p

i=2 A (G )[i] a node does
not belong, given that only the necessary and sufficient information to compute E (or
EM) is known a priori. We shall see that this leads to worst-case algorithmic information
distortions that grow at least exponentially with the value of p, which differs from the linear
growth presented by Theorem 1 from [15].

3. The Node-Unaligned Cases

With the purpose of addressing other variations of multidimensional networks in
which a node not belonging to a certain α ∈×p

i=2 A (G )[i] has an important physical
meaning, the node alignment can be relaxed. This gives rise to multidimensional networks
that are not node aligned, such as node-unaligned multilayer networks [24] or node-
unaligned multiplex networks [25].
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As a multiplex network is usually understood as a particular case of a multilayer
network [24,26,27] in which there is only one extra node dimension (i.e., d = 1), we may
focus only on a mathematical formulation of multilayer networks that allows nodes to be
not aligned, which is given by M = (VM, EM, V, L) [24], where:

1. V denotes the set of all possible vertices v;
2. L = {La}d

a=1 denotes a collection of d ∈ N sets La composed of elementary layers
α ∈ La;

3. VM ⊆ V × L1 × · · · × Ld denotes the subset of all possible vertices paired to elements
of L1 × · · · × Ld;

4. EM ⊆ VM ×VM denotes the set of interlayer and/or intralayer edges connecting two
node-layer tuples (v, α1, . . . , αd) ∈ VM.

In this regard, a multilayer network M is said to be node-aligned iff VM = V × L1 ×
· · · × Ld. In the case each α ∈×p

i=2 A (G )[i] can be interpreted as (or is representing) a
layer, it is important to note that there are some immediate equivalences between G and
M [19]:

• V is the usual set of vertices, where V(G ) ≡ A (G )[1];
• each set La is the (a− 1)-th aspect A (G )[a− 1] of a MAG G ;
• VM is a subset of the set V(G ) of all composite vertices, where every node-layer tuple

(v, α1, . . . , αd) ∈ VM is a composite vertex v ∈ V(G );
• EM ⊆ E (G ) is a subset of the set of all composite edges (u, v) for which u, v ∈ VM.

Thus, if VM = V × L1 × · · · × Ld, then one will have that VM ≡ V(G ) and EM ≡ E (G ).
This way, besides notation distinctions, it directly follows that a node-aligned multilayer
network M is totally equivalent to a MAG G ; and, therefore, every result in this paper
holding for simple node-aligned MAGs Gc automatically holds for node-aligned multilayer
networks M that only have undirected edges and do not contain self-loops. Neverthe-
less, since the algorithmic information distortions are based on (and are limited by) the
algorithmic information of the multidimensional space itself and the uniformity (or non
uniformity) of the multidimensional space is determined by the aspects, we highlight
that representing multidimensional networks with MAGs, aspects and companion tuples
facilitates the achievement of our theoretical results.

With the purpose of extending our results to the node-unaligned case, we need to
introduce a variation of MAGs so as to allow into the mathematical formalization the possi-
bility of some vertices not being paired with some α’s, where α ∈×p

i=2 A (G )[i]. Moreover,
we need that node-aligned MAGs become particular cases of our new formalization such
that the algorithmic information between the two formalizations becomes equivalent when
the MAG is node-aligned, which we will show in Lemma 3. To this end, we introduce
a modification on the definition of MAG so that the major differences are in the set of
composite vertices and, consequentially, in the set of composite edges.

Definition 1. We define a node-unaligned MAG as a triple Gua = (A ,Vua, Eua) in which

A = (A (Gua)[1], . . . , A (Gua)[i], . . . , A (Gua)[p])

is a list of sets (each of each is an aspect of Gua),

Vua(Gua) ⊆ V(Gua) =
p

×
i=1

A (Gua)[i]

is the set of existing composite vertices, and

Eua ⊆ Eua(Gua) = Vua(Gua)×Vua(Gua)

is the set of present composite edges (u, v).
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The definition of simple node-unaligned MAGs Guac = (A ,Vua, Eua) follows analo-
gously to the aligned case by just restricting the set of all possible composite edges, so that
Euac(Guac) := {{u, v} | u, v ∈ Vua(Guac)} and Eua(Guac) ⊆ Euac(Guac) hold. In addition,
all other terminology of order, multidimensional space, uniformity, (composite-vertex-)labeling,
and classical MAGs apply analogously as in Section 2 (see also [16]).

As in the node-aligned case, in order to define an unaligned version for the companion
tuple, the latter should completely determine the size of the set Eua(Gua) and, if Gua is a clas-
sical MAG, then the companion tuple should completely determine the multidimenional
space of Gua. In this sense, a node-unaligned version of the companion tuple also needs to
carry the necessary and sufficient information for computably retrieving the set Vua(Gua).

Definition 2. The node-unaligned companion tuple τua of a MAG Gua is defined by the pair
of tuples

τua(Gua) :=
(
(|A (Gua)[1]|, . . . , |A (Gua)[p]|),

(
m1, . . . , m|V(Gua)|

))
,

such that, for every vi ∈ V(Gua) in a previously chosen arbitrary computable enumeration of
V(Gua), vi ∈ Vua(Gua) iff mi = 1 , where mi ∈ {0, 1} and 1 ≤ i ≤ |V(Gua)|.

As for encoding τua, one can also employ the recursive pairing function 〈·, ·〉 as usual:

〈τua(Gua)〉 :=
〈
〈|A (Gua)[1]|, . . . , |A (Gua)[p]|〉,

〈
m1, . . . , m|V(Gua)|

〉〉
.

The MAG-graph isomorphism also suffers a slight modification:

Definition 3. Gua is unaligning MAG-graph-isomorphic to a graph G iff there is a bijective
function f : Vua(Gua)→ V(G) such that e ∈ Eua(Gua) ⊆ Eua(Gua) iff ( f (πo(e)), f (πd(e))) ∈
E(G) , where πo is a function that returns the origin composite vertex of a composite edge and πd
is a function that returns the destination composite vertex of a composite edge.

This way, we can straightforwardly obtain the following Theorem 2 analogously to
the proof of (Theorem 1, p. 54, [17]).

Theorem 2. For every MAG Gua of order p > 0, where all aspects are non-empty sets, there
is a unique (up to a graph isomorphism) graph Gua

Gua
= (V, E) that is unaligning MAG-graph-

isomorphic to Gua, where
|V(Gua

Gua
)| = |Vua(Gua)| .

The proof of Theorem 2 can be found in [16].
It is important to note our choice of notation distinction between the node-aligned

and the node-unaligned case when a graph is MAG-graph-isomorphic to a MAG. The
graph GGua is said to be aligning MAG-graph-isomorphic to the MAG when the set of
possible composite vertices is complete, that is, when it is taken from V(Gua). This was the
case in Section 2. On the other hand, the graph Gua

Gua
is said to be unaligning MAG-graph-

isomorphic to the MAG (which is the case of Definition 3, Theorem 2, Corollary 2, and
Theorem 5(I)(b)) when the possible composite vertices are taken from Vua(Gua) instead
of V(Gua).

Encoding Node-Unaligned Multiaspect Graphs

Encodability of node-unaligned MAGs given the companion tuple works in the same
way as in the node-aligned case. That is, a node-unaligned simple MAG Guac is encodable
given τua(Guac) iff there is a fixed program that, given 〈τua(Guac)〉 as input, can univocally
encode any possible Eua(Guac) that shares the same (node-unaligned) companion tuple.
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First, as in the node-aligned case, note that the encodability of classical node-unaligned
MAGs given the companion tuple can be promptly proved to hold (the proof can be found
in [16]):

Lemma 1. Any arbitrary node-unaligned classical MAG Guac is encodable given τua(Guac).

Secondly, note that the characteristic string of a node-unaligned MAG is defined in a
similar way as in [15] (see also Section 2):

Definition 4. Let
(

e1, . . . , e|Euac(Guac)|

)
be any arbitrary ordering of all possible composite edges

between existing composite vertices of a node-unaligned simple MAG Guac. We say that a bit
string x′ with l(x′) = |Euac(Guac)| is a node-unaligned characteristic string of Guac if, for every
ej ∈ Euac(Guac), one has ej ∈ Eua(Guac) iff the j-th digit in x′ is 1 , where 1 ≤ j ≤ l(x′).

Now, for the node-unaligned composite edge set string, the definition may seem not
so straightforwardly translated from node-aligned case. As one can see below, it is based
on a sequence of the |Ec(Guac)| composite edges, and not on the sequence of |Euac(Guac)|
composite edges. This is because one needs to embed into node-unaligned composite
edge set strings not only the characteristic function of the set Eua(Guac), as in the node-
aligned case, but also the characteristic function of the set Vua(Guac) (which becomes in
turn determined by the ki’s and hi’s in the following definition):

Definition 5. Let
(

e1, . . . , e|Ec(Guac)|

)
be any arbitrary ordering of all possible composite edges of

a node-unaligned simple MAG Guac. Then, 〈Eua(Guac)〉 denotes the node-unaligned composite edge
set string

〈〈
e1, z′1, k1, h1

〉
, . . . , 〈en, z′n, kn, hn〉

〉
such that:

z′i = 1 ⇐⇒ ei ∈ Eua(Guac) ,

ki = 1 ⇐⇒
(
ei = (v, u) ∧ v ∈ Vua(Guac)

)
and

hi = 1 ⇐⇒
(
ei = (v, u) ∧ u ∈ Vua(Guac)

)
,

where z′i, ki, hi ∈ {0, 1} with 1 ≤ i ≤ n = |Ec(Guac)|.

This way, we guarantee not only that the characteristic string x′ can always be com-
putably extracted from 〈Eua(Guac)〉, but also that the set Vua(Guac) can be computably
extracted from 〈Eua(Guac)〉. This will be important in the proof of Theorem 3 later on.
Moreover, once the ordering of Ec(Guac) assumed in Definition 5 is preserved by the sub-
sequence that exactly corresponds to the ordering of Euac(Guac) assumed in Definition 4,
we have in Lemma 2 below that both the node-unaligned simple MAG and its respective
node-unaligned characteristic string become “equivalent” in terms of algorithmic infor-
mation, but again (as occurred for the node-aligned case [15]) except for the minimum
information necessary to encode the node-unaligned companion tuple:

Lemma 2. Let x′ be a bit string. Let Guac be an encodable node-unaligned simple MAG given
τua(Guac) such that x′ is the respective node-unaligned characteristic string. Then,

K(〈Eua(Guac)〉 | x′) ≤ K(〈τua(Guac)〉) + O(1) (1)

K(x′ | 〈Eua(Guac)〉) ≤ K(〈τua(Guac)〉) + O(1) (2)

K(x′) = K(〈Eua(Guac)〉)±O
(

K
(
〈τua(Guac)〉

))
. (3)

The proof of Lemma 2 can be found in [16].



Entropy 2021, 23, 835 8 of 15

As we saw in the node-aligned case, we shall see in the next section that node-
unaligned characteristic strings are not in general equivalent to composite edge set strings
〈Eua(Guac)〉. More formally, we shall show in the following section that there are cases
in which the algorithmic information necessary for retrieving the encoded form of the
node-unaligned simple MAG from its node-unaligned characteristic string is close (except
for a logarithmic term) to the upper bound given by Equation (1) in Lemma 2.

4. Worst-Case Algorithmic Information Distortions

In this section, we investigate worst-case algorithmic information distortions for node-
unaligned MAGs when the multidimensional space is arbitrarily large. In particular, we
study large multidimensional spaces that are non-uniform or uniform.

Before heading toward the theorems themselves, it is important to show the two cases
in Lemmas 3 or 4 for which the set Vua(Guac) trivializes the problem either by reducing it
back to the node-aligned case or by reducing it to a problem of just inserting empty nodes.

The first trivializing case guarantees the consistency of our definitions of node-aligned
and node-unaligned MAGs:

Lemma 3. Let Guac be a node-unaligned simple MAG with Vua(Guac) = V(Guac), where x is its
node-aligned characteristic string and x′ is its node-unaligned characteristic string. Then,

K(〈Eua(Guac)〉) = K(〈E (Guac)〉)±O(1) , (4)

K(x) = K
(
x′
)
±O(1) , (5)

and
K(〈τua(Guac)〉) = K(〈τ(Guac)〉)±O(1) (6)

hold.

The proof of Lemma 3 can be found in [16]. In fact, if Vua(Guac) = V(Guac), the same
proof of Lemma 3 can be employed to show that the strings in the left side of the equations
in Lemma 3 are respectively Turing equivalent to their counterparts in the right side.
Therefore, for any Guac satisfying Lemma 3, any algorithmic information distortion occurs
in the same manner as in the node-aligned case.

The second one guarantees the consistency between network connectedness and
empty nodes. An empty node [24] is a totally unconnected node that is added to the
network in order to recover the node alignment of a former node-unaligned network. Thus,
as expected, if all the composite vertices in Vua(Guac) are connected to at least another
composite vertex in Vua(Guac), then all the possible unconnected composite vertices are
those that redundantly are empty nodes:

Lemma 4. Let Guac be a node-unaligned simple MAG in which every composite vertex in Vua(Guac)
is connected to at least another composite vertex in Vua(Guac). Then,

K(〈Eua(Guac)〉) = K(〈E (Guac)〉)±O(1) (7)

holds and, additionally, 〈Eua(Guac)〉 is in fact Turing equivalent to 〈E (Guac)〉.

The proof of Lemma 4 can be found in [16].
Note that in Lemma 4 one immediately has that

〈
E
(

Gua
Guac

)〉
can be computed from〈

E
(
GGuac

)〉
with a simple algorithm that identifies totally unconnected vertices. Fur-

thermore, one has that
〈

E
(
GGuac

)〉
can be computed from

〈
E
(

Gua
Guac

)〉
, if the value of∣∣V(Guac) \Vua(Guac)

∣∣ is also given as input. Therefore, for any MAG satisfying Lemma 4,
the algorithmic information distortion between the MAG Guac and the unaligning MAG-
graph-isomorphic classical graph Gua

Guac
can only differ from the algorithmic information
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distortion between the MAG Guac and the aligning MAG-graph-isomorphic classical graph
GGuac by O

(
log2

(∣∣V(Guac) \Vua(Guac)
∣∣)) bits of algorithmic information.

Thus, as the reader might notice, the case in which the node nonalignment introduces
more irreducible information into the composite edge set string is when Vua(Guac) 6=
V(Guac) and not every unconnected composite vertex is empty. Under these conditions that
demand a more careful theoretical analysis than the trivializing cases in Lemmas 3 or 4,
we study now that exponential algorithmic information distortions can occur in the node-
unaligned case. An extended version of the proof of Theorem 3 can be found in [16].

Theorem 3. There are encodable node-unaligned simple MAGs Guac given τua(Guac) with arbi-
trarily large non-uniform multidimensional spaces such that

K
(
〈τua(Guac)〉

)
+ O(1) ≥ K

(
〈Eua(Guac)〉 | x′

)
≥ K

(
〈τua(Guac)〉

)
−O

(
log2

(
K(〈τua(Guac)〉)

))
with

K(x′) = O(p) = O
(

log2

(
K
(
〈Eua(Guac)〉

)))
,

where x′ is the respective node-unaligned characteristic string and p is the order of Guac.

Proof. Let Guac be any node-unaligned simple MAG such that w1 and w2 are bit strings
that, respectively, are finite initial segments of a 1-random real number y, where l(w1) = p,
l(w2) = |V(Guac)|, any |A (Guac)[i]| can only assume values in {1, 2} in accordance to the
bits of w1, and the existence of a composite vertex in V(Guac) is determined by the bits of w2.
Remember that, if y is a 1-random real number [4], then K(y �n) ≥ n−O(1) , where n ∈ N is
arbitrary. From Lemma 1, we have that Guac is encodable given τua(Guac). Therefore, there
is a program q′ such that

K(〈τua(Guac)〉) ≤ l
(〈
〈Eua(Guac)〉∗, q′

〉)
≤ K(〈Eua(Guac)〉) + O(1) (8)

holds by the minimality of K(·) and by our construction of q′. In addition, by our construc-
tion of Guac, we will have that

K(〈τua(Guac)〉) ≤ p + |V(Guac)|+ O(log2(p)) (9)

and, since y is 1-random,

|V(Guac)| −O(1) ≤ K(〈τua(Guac)〉) + O(1) . (10)

Since the exact number of 1’s appearing in w2 is given by |V(Guac)|
2 ± o(|V(Guac)|) ,

which follows from the Borel normality [3,28] of w2, we will have that K(l(x′)) = O(p)
holds from the fact that l(x′) = |Euac(Guac)|. Moreover, the Borel normality of w1 also
guarantees that |V(Guac)| = 2(

p
2±o(p)) and, as a consequence, Ω(p) = log2(|V(Guac)|) .

Now, since Eua(Guac) and p were arbitrary, we can choose any node-unaligned characteristic

string x′ such that K
(

x′
∣∣∣ l(x′)

)
= O(1) holds and that there are some composite vertices

in Vua(Guac) that are not connected to any other composite vertex in Vua(Guac). Thus, we
will have that

K
(
x′
)
≤ K

(
l
(
x′
))

+ O(1) ≤

≤ O
(

log2

(
K
(
〈τua(Guac)〉

)))
≤

≤ O
(

log2

(
K
(
〈Eua(Guac)〉

))) (11)

and
K
(
〈τua(Guac)〉

)
≤ K(x′) + K(〈Eua(Guac)〉 | x′) + O(1) ≤

≤ O
(

log2
(
K(〈τua(Guac)〉)

))
+ K(〈Eua(Guac)〉 | x′)



Entropy 2021, 23, 835 10 of 15

hold. Finally, the proof of K(〈τua(Guac)〉) + O(1) ≥ K(〈Eua(Guac)〉 | x′) follows directly
from Lemma 2.

For the purpose of comparison, the next immediate question arises from whether
there might be such a worst-case distortions between composite edge set strings and
characteristic strings when the multidimensional space is uniform and the network is node-
aligned. As the reader might expect, we show in Lemma 5 below that node-aligned MAGs
with uniform multidimensional spaces are more tightly associated to their characteristic
strings in terms of the algorithmic information and, thus, they cannot display the same
distortions as in Theorems 1, 3, and 4. In particular, the distortions in the node-aligned
uniform case can only grow up to a logarithmic term of the order p; and this algorithmic
information necessary to compute the value of p can only grow up to a double logarithmic
term of the length of the node-aligned characteristic string:

Lemma 5. Let Gc be an arbitrary node-aligned classical MAG with arbitrarily large uniform
multidimensional spaces, where |V(Gc)| ≥ 3 and |A (Gc)[i]| ≥ 2 for every i ≤ p. Then,

K(x) ≤ K
(
〈E (Gc)〉

)
+ O(1) ≤ K(x) + O(log2(p)) ≤ K(x) + O(log2(log2(l(x)))) ,

where x is the respective node-aligned characteristic string and p is the order of Gc.

Proof. Since the multidimensional space is uniform, there is a simple algorithm that always
compute the integer value |A (Gc)[i]|, for any i ≤ p, when×p

i=1|A (Gc)[i]| and p are given
as inputs. In addition, in this case, 〈τ(Gc)〉 can be computably built if |A (Gc)[i]|, for any
i ≤ p, and the value of p are given as inputs. Moreover, by solving a simple quadratic
equation with just one possible positive integer solution, there also is a simple algorithm
that always returns the integer value×p

i=1|A (Gc)[i]| when l(x) = |Ec(Gc)| is given as
input. We have from (Lemma 2, p. 6, [15]) that 〈E (Gc)〉 can always be computed if x∗ and
〈τ(Gc)〉 are given as inputs. Thus, by combining all of these algorithms, we will have that

K
(
〈E (Gc)〉

)
≤ K(x) + O(log2(p)) (12)

holds. Since |V(Gc)| = |A (Gc)[1]|p , and |A (Gc)[1]| ≥ 2, then we also have that p ≤
log2(|V(Gc)|) ≤ log2(l(x)) . Therefore, from Equation (12),

K
(
〈E (Gc)〉

)
≤ K(x) + O(log2(p)) ≤ K(x) + O(log2(log2(l(x))))

holds. Finally, to prove that K(x) ≤ K
(
〈E (Gc)〉

)
+ O(1), just note that one can always

computably extract x from 〈E (Gc)〉.

An interesting future research is to investigate whether one can construct an worst-case
example of node-aligned multidimensional network with uniform multidimensional space
that actually displays a distortion of the tight order of log2(p). In any event, Lemma 5 al-
ready demonstrates an upper bound for the worst-case distortion increasing rate with respect
to the value of p (i.e., with the number of node dimensions). In particular, as mentioned
before, this upper bound is given by only a logarithmic term of p.

On the other hand, although we saw in Lemma 5 that uniform multidimensional
spaces can only display very small distortions in the node-aligned case, we show below
in Theorem 4 that worst-case distortions that grow exponentially with p are still possible
in the node-unaligned case. An extended version of the proof of Theorem 4 can be found
in [16].
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Theorem 4. There are encodable node-unaligned simple MAGs Guac given τua(Guac) with
|A (Guac)[i]| ≥ 2 for every i ≤ p and with arbitrarily large uniform multidimensional spaces
such that

K
(
〈τua(Guac)〉

)
+ O(1) ≥ K

(
〈Eua(Guac)〉 | x′

)
≥ K

(
〈τua(Guac)〉

)
−O

(
log2

(
K(〈τua(Guac)〉)

))
with

log2

(
K
(
〈Eua(Guac)〉

))
= Ω(p)

and
K(x′) = O

(
log2

(
K
(
〈Eua(Guac)〉

)))
,

where x′ is the respective node-unaligned characteristic string and p is the order of Guac.

Proof. The underlying idea of this proof is similar to the proof of Theorem 3, but with the
fundamental distinction in the set of all composite vertices×p

i=1|A (Guac)[i]| = |V(Guac)|,
so that now |V(Guac)| = |A (Guac)[1]|p holds instead of |V(Guac)| = 2(

p
2±o(p)). Since

|A (Guac)[1]| = |A (Guac)[i]| ≥ 2 for every i, then we now have that

p ≤ p log2(|A (Guac)[1]|) = log2(|V(Guac)|) . (13)

Thus, from the Borel normality of w2, there will be a program of length

≤ O(p log2(|A (Guac)[1]|)) + O(log2(p))

that returns the integer value |Euac(Guac)| as output, where |Euac(Guac)| = l(x′). Hereafter,
the rest of the proof follows analogously to the proof of Theorem 3.

The proof of Corollary 2 follows from Theorems 2, 3 and 4 in a totally analogous
manner as Corollary 1 follows from (Theorem 1, p. 54, [17]) and (Theorem 2, p. 7, [15]).
Thus, we choose to leave the following proof up to the reader.

Corollary 2. There are an infinite family F′1 of node-unaligned simple MAGs, which may have
either uniform or non-uniform multidimensional spaces, and an infinite family F′2 of classical graphs,
where every classical graph in F′2 is unaligning MAG-graph-isomorphic to at least one MAG in
F′1, such that, for every constant c ∈ N, there are Guac ∈ F′1 and a Gua

Guac
∈ F′2 that is unaligning

MAG-graph-isomorphic to Guac, where

O
(

log2
(
K
(
〈Eua(Guac)〉

)))
> c + K

(〈
E
(

Gua
Guac

)〉)
.

Besides showing that node-unaligned multidimensional networks can display ex-
ponentially larger algorithmic information distortions with respect to their isomorphic
monoplex networks, Theorems 3 and 4 together with Corollary 2 show that these distorted
values of algorithmic information content grows at least exponentially with the order p (i.e.,
with number of node dimensions).

Finally, we can combine our results in order to achieve our last theorem, which
summarizes the results of the present article:

Theorem 5.

(I) There are an infinite family F′′1 of simple MAGs and an infinite family F′′2 of classical graphs,
where every classical graph in F′′2 is MAG-graph-isomorphic to at least one MAG in F′′1 , such
that:
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(a) if the simple MAGs in F′′1 are node-aligned and have a non-uniform multidimensional
space, then for every constant c ∈ N, there are Gc ∈ F′′1 and a GGc ∈ F′′2 that is
(aligning) MAG-graph-isomorphic to Gc, where

O
(

log2
(
K(〈E (Gc)〉)

))
> c + K(

〈
E
(
GGc

)〉
) ,

and this exponential distortion grows at least linearly with the order p of the MAG Gc,
that is,

K(〈E (Gc)〉) ≥ p−O(1) .

(b) if the simple MAGs in F′′1 are node-unaligned and have either non-uniform or
uniform multidimensional spaces, then, for every constant c ∈ N, there are Guac ∈ F′′1
and a Gua

Guac
∈ F′′2 that is (unaligning) MAG-graph-isomorphic to Guac, where

O
(

log2
(
K
(
〈Eua(Guac)〉

)))
> c + K

(〈
E
(

Gua
Guac

)〉)
,

and this exponential distortion grows at least exponentially with the order p of the
MAG Guac, that is,

log2

(
K
(
〈Eua(Guac)〉

))
= Ω(p) .

(II) Let F′′1 be an arbitrary infinite family of node-aligned classical MAGs with uniform multidi-
mensional spaces. Let F′′2 be an arbitrary infinite family of classical graphs such that every
classical graph in F′′2 is (aligning) MAG-graph-isomorphic to at least one MAG in F′′1 and
that both these graph and MAG share the same characteristic string. Then, for every Gc ∈ F′′1
and GGc ∈ F′′2 that is (aligning) MAG-graph-isomorphic to Gc, one has that

K(
〈

E
(
GGc

)〉
) ≤ K

(
〈E (Gc)〉

)
+ O(1) ≤ K(

〈
E
(
GGc

)〉
) + O(log2(p))

and, therefore, any distortion can only grow up to a logarithmic order of p.

Proof. The proof of Theorem 5(I)(a) follows directly from Theorem 1 and Corollary 1,
which were previously demonstrated in [15]. The proof of Theorem 5(I)(b) follows directly
from Theorems 3 and 4 together with Corollary 2. The proof of Theorem 5(II) follows
directly from Lemma 5 and (Lemma 2, p. 6, [15]) by fixing a computable ordering for both
the sets Ec(Gc) and Ec

(
GGc

)
.

5. Limitations and Conditions for Importing Monoplex Network Algorithmic
Information to Multidimensional Network Algorithmic Information

It is known that applying statistical informational measures, such as those based on
entropy, to evaluate lossless compressibility or irreducible information content of encoded
objects may lead to deceiving values in some cases. For example, for some particular
low-algorithmic-complexity networks that display maximal degree-sequence entropy [29]
or for Borel-normal sequences that are in fact computable (and, therefore, logarithmically
compressible) [30], distortions between the entropy-based lossless compression and the
algorithmic-information-based approximation can occur. Other discrepancies between
entropy and algorithmic complexity in network models can be found in [6].

In this regard, one of the advantages of algorithmic information is that, at least
in the asymptotic limit when the computational resources are unbounded, the lossless
compression is proven to be optimal. In addition, it gives values that are object invariant.
This is because, given any two distinct encoding methods or any two distinct universal
programming languages, the algorithmic complexity of an encoded object represented
in one way or the other can only differ by a constant whose value only depends on the
choice of encoding methods or universal programming languages, and not on the encoded
object being compressed. That is, algorithmic complexity is pairwise invariant for any two
arbitrarily chosen encodings.
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The present article contributes by showing that, even in the asymptotically optimal
case given by the algorithmic information, distorted values can occur in multidimensional
networks with sufficiently large multidimensional spaces. Although only dealing with
pairs of isomorphic objects in addition to the above encoding invariance, some may deem
the existence of the distortion phenomena shown in the present work as counter-intuitive
at first glance because they can, in fact, result from only changing the multidimensional
spaces into which isomorphic copies of the objects are embedded.

In order to avoid these distortions in future evaluations of multidimensional network
complexity, our results demonstrate the importance of network representation methods
that take into account the algorithmic complexity of the data structure itself, unlike what
happens for example with adjacency matrices, tensors, or characteristic strings. One of
those representation methods, which was studied in this article, that avoids distortions is
using composite edge set strings. Nevertheless, our results hold for any other form of en-
coding a simple MAG that is Turing equivalent to a composite edge set string. For example,
one can equivalently encode a composite edge set string as an three-dimensional array com-
posed of positive integers, Boolean variables, and lists: the first dimension stores the index
value

〈
a1, . . . , ap

〉
of each composite vertex v =

(
a1, . . . , ap

)
; the second dimension stores

a Boolean value determining whether the composite vertex in the first dimension exists
or not; and the third dimension stores a list containing the index value of each composite
vertice with which the composite vertex in the first dimension forms a composite edge.

On the other hand, when importing previous algorithmic-information-based methods
from monoplex networks (or graphs) into the multidimensional case, another method to
deal with the algorithmic information distortions is to accept an error margin given by the
algorithmic complexity of the companion tuple. This occurs because our results directly
establish that the algorithmic information distortions are always upper bounded by the
algorithmic information carried by the companion tuple, whether node-aligned or node-
unaligned. Thus, even in the worst-case scenario, the value of the algorithmic complexity
of the companion tuple can be always applied as an error margin for the algorithmic
information distortions between multidimensional networks and their isomorphic graphs.

6. Conclusions

This article presented mathematical results on network complexity, irreducible infor-
mation content, and lossless compressibility analysis of node-aligned or node-unaligned
multidimensional networks. We studied the limitations for algorithmic information theory
(AIT) applied to monoplex networks or graphs to be imported into multidimensional
networks, in particular, in the case the number of extra node dimensions (i.e., aspects) in
these networks is sufficiently large. Our results demonstrate the existence of worst-case
algorithmic information distortions when a multidimensional network is compared with
its isomorphic monoplex network. More specifically, our proofs show that these distortions
exist when a logarithmically compressible network topology of a monoplex network is
embedded into a high-algorithmic-complexity multidimensional space.

Previous results in [15] have shown that node-aligned multidimensional networks
with non-uniform multidimensional spaces can display an exponentially larger algorithmic
complexity than the algorithmic complexity of their isomorphic monoplex networks. In
addition, Abrahão et al. [15] show that these distorted values of algorithmic information
content grow at least linearly with number of extra node dimensions.

When dealing with either uniform or non-uniform multidimensional spaces, we show
in this article that node-unaligned multidimensional networks can also display exponential
algorithmic information distortions with respect to the algorithmic information content
of their respective isomorphic monoplex networks. Unlike the case studied in [15], these
worst-case distortions in the node-unaligned case are shown to grow at least exponentially
with the number of extra node dimensions. Thus, the node-unaligned case is more impact-
ful than the previous node-aligned one precisely because exponential distortions may take
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place even with uniform multidimensional spaces. Furthermore, the distortions may grow
much faster as the number of extra node dimensions increases.

On the other hand, we demonstrated that node-aligned multidimensional networks
with uniform multidimensional spaces are limited to only displaying algorithmic informa-
tion distortions that grow up to a logarithmic order of the number of extra node dimensions.
As one might expect, the node alignment in conjunction with the uniformity of the mul-
tidimensional space guarantee that, in any event, the algorithmic information content of
the multidimensional network and the algorithmic information content of its isomorphic
monoplex network are tightly associated, except maybe for a logarithmic factor of the
number of extra node dimensions.

The results in this article show that evaluations of the algorithmic information con-
tent of networks may be extremely sensitive to whether or not one is taking into account
not only the total number of node dimensions but also the respective sizes of each node
dimension, and the order that they appear in the mathematical representation. Due to
the need for additional irreducible information in order to compute the shape of the
high-algorithmic-complexity multidimensional space, the present article shows that iso-
morphisms between finite multidimensional networks and finite monoplex networks do
not preserve algorithmic information in general, so that the irreducible information content
of a multidimensional network may be highly dependent on the choice of its encoded
isomorphic copy. In order to avoid distortions in the general case when studying network
complexity or lossless compression of multidimensional networks, it also highlights the im-
portance of embedding the information necessary to determine the multidimensional space
itself into the encoding of the multidimensional network. To such an end, network represen-
tation methods that take into account the algorithmic complexity of the data structure itself
(unlike adjacency matrices, tensors, or characteristic strings) are required for importing
algorithmic-information-based methods into the multidimensional case. In this way, given
the relevance of algorithmic information theory in the challenge of causality discovery in
network modeling, network summarization, network entropy, and compressibility analysis
of networks, we believe this paper makes a fundamental contribution to the study of the
complexity of multidimensional networks that have a large number of node dimensions,
which in turn also imposes a need to be accompanied by more sophisticated algorithmic
complexity approximating methods than those for monoplex networks or graphs.
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