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In recent years, the studies of the role of microRNAs in adipogenesis and adipocyte
development and the correspondingmolecular mechanisms have received great attention.
In this work, we investigated the function of miR-140 in the process of adipogenesis and
the molecular pathways involved, and we found that adipogenic treatment promoted the
miR-140-5p RNA level in preadipocytes. Over-expression of miR-140-5p in preadipocytes
accelerated lipogenesis along with adipogenic differentiation by transcriptional modulation
of adipogenesis-linked genes. Meanwhile, silencing endogenous miR-140-5p dampened
adipogenesis. Platelet-derived growth factor receptor alpha (PDGFRα) was shown to be a
miR-140-5p target gene. miR-140-5p over-expression in preadipocyte 3T3-L1 diminished
PDGFRα expression, but silencing of miR-140-5p augmented it. In addition, over-
expression of PDGFRα suppressed adipogenic differentiation and lipogenesis, while its
knockdown enhanced these biological processes of preadipocyte 3T3-L1. Altogether, our
current findings reveal that miR-140-5p induces lipogenesis and adipogenic differentiation
in 3T3-L1 cells by targeting PDGFRα, therefore regulating adipogenesis. Our research
provides molecular targets and a theoretical basis for the treatment of obesity-related
metabolic diseases.
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INTRODUCTION

As an important tissue of the body, adipose tissue participates in controlling the body’s overall energy
balance, and the dysfunction of adipose tissue may induce cardiovascular diseases and type 2 diabetes
(Shamsi et al., 2021). Adipocytes, as the key element of adipose tissue, is of great importance for
maintaining systemic metabolism balance (Rajala and Scherer, 2003; Park et al., 2011). Adipocytes
have some special functions. First, they can release adipokines to perform specific endocrine
functions. Secondly, they can also store excessive energy as triglycerides in adipocytes to
maintain systemic energy balance (Cohen and Spiegelman, 2016). Adipocyte hypertrophy and/or
adipocyte hyperplasia tend to result in adipose tissue accumulation (Wang et al., 2018). Previous
research has shown that adipogenic differentiation is the process responsible for adipocyte
hyperplasia (Lee et al., 2017).

The exploration of the signaling pathway of adipocyte differentiation is critical not only for
understanding adipogenesis, but also for developing new therapeutic targets for metabolic diseases,
including diabetes and obesity (Song et al., 2017). Previous studies have identified nuclear proteins,
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peroxisome proliferator-activated receptors (PPARs), and
CCAAT/enhancer-binding proteins (C/EBPs) as key regulators
of adipocyte formation and adipocyte differentiation, and these
two transcription factors jointly regulate the expression of the
lipid metabolism-related genes (He et al., 2008; Villanueva et al.,
2011).

Recent studies have suggested that microRNAs (miRNAs)
seem to play major roles in adipocyte differentiation (Shi
et al., 2016; Vienberg et al., 2017). MiRNAs can affect
adipogenesis-related signaling pathways, target transcription
factors, block the clonal expansion stage of mitosis, and
accelerate or delay adipocyte differentiation during
adipogenesis, thereby regulating adipocyte formation (Chen
et al., 2013; Wosczyna et al., 2021). The miR-140 is produced
by the miR-140 gene. A previous study has reported that miR-140
is extensively, highly, and selectively expressed in chondrocytes
(Papaioannou et al., 2015). Recent investigations have
documented that miR-140 is involved in tumor growth,
metastasis, and pulmonary arterial hypertension (Yang et al.,
2013; Rothman et al., 2016). However, the effects of miR-140 on
adipogenesis and adipocyte development, especially on adipocyte
differentiation regulation, remain largely unclear. miR-140 has
recently been found to regulate the lipid accumulation and
atherosclerosis and to participate in the differentiation of
C3H10T1/2 cells (Liu et al., 2013; Zhao et al., 2021).
Furthermore, C/EBP enhances miR-140-5p expression by
activating its promoter transcript, and it is related to adipocyte
differentiation (Zhang et al., 2015). The aforementioned studies
have shown that miR-140 plays a crucial part in adipocyte
differentiation.

Platelet-derived growth factor (PDGF) activates various cell
processes, for instance, angiogenesis, cell proliferation along with
differentiation, and cell survival by binding to α and β tyrosine
kinase receptors of PDGFRα or PDGFRβ (Heldin, 2013). Upon
binding of PDGF to PDGFRα or β, the α and β subunits dimerize,
thus activating the intrinsic tyrosine kinase activity of these
receptors eventually activating a series of PDGFRα or
PDGFRβ downstream signaling cascades (Kikuchi and Monga,
2015). According to previous reports, PDGF-related signaling
cascades are involved in the onset of fibrosis, cancers, and
atherosclerosis (Stock et al., 2007; Zhang et al., 2007; Zhang
et al., 2009). PDGFRα regulates cellular proliferation,
differentiation, and development of multiple tissues from
embryogenesis to adulthood (Andrae et al., 2008).

Recently, researchers found that PDGFRα has been implicated
in the adipocyte lineage as it is expressed in adipogenic stromal
cells and adipocyte stem cells (ASC) (Berry et al., 2014; Burl et al.,
2018). Previous studies have shown that PPARγ activation
mediated the inhibition of PDGFRα expression in vascular
smooth muscle cells (VSMCs) by inhibiting C/EBP.
Nevertheless, the role of PDGFRα in adipocyte function and
adipocyte differentiation is largely unknown. Recently, it was
shown that miR-140-5p over-expression suppressed the
expression of PDGFRα in cultured mouse palate cells (Li
et al., 2020). Furthermore, reports have shown that GO
enrichment analysis was conducted for the target genes of
miR-140-5p predicted by at least three databases and found

that PDGFRα was positively predicted as downstream targets
of miR-140-5p (Li et al., 2017a). Although the aforementioned
studies indicated that PDGFRαmay be a target gene of miR-140,
no further in vivo or in vitro studies were carried out. Especially,
their molecular function in adipocyte differentiation remains
unknown.

Herein, our data illustrated that the expression of miR-140-5p
was elevated during adipocyte differentiation. The involvement of
miR-140-5p in modulating lipid droplet generation and the
expression of adipogenesis-linked genes was also elucidated.
Furthermore, we revealed the mechanism by which platelet-
derived growth factor receptor alpha (PDGFRα) modulates
adipocyte differentiation. Our data illustrated that the cross talk
of miR-140-5p and PDGFRα 3′-untranslated regions (3′UTR)
induced post-transcriptional silencing, thus resulting in the stable
expression of adipogenesis-linked genes and the maintenance of
3T3-L1 cell properties during adipocyte differentiation.

RESULTS

Expression of miR-140-5p is Modulated
During Adipocyte Differentiation
We hypothesized that miR-140-5p could act as an element
modulating the adipocyte differentiation process and that the
expression of miR-140-5p varied with differentiation time.
Consistent with our expectation, we found that miR-140-5p
mRNA level reached its highest at 24 h and declined afterward
(Figure 1A,B). In addition, we found that the formation of lipid
droplets was gradually elevated with the extension of
differentiation time and reached the maximum after 7 days of
induction by oil red O staining (Figure 1C).

MiR-140-5p Is Identified as Adipogenic
Factor
Further, we studied the influence of miR-140-5p on adipogenic
transcription factors in 3T3-L1 cells. miR-140-5p was
overexpressed by transfecting miR-140-5p mimics and
negative control (NC) into 3T3-L1 cells. Our results showed
that the transcription contents of C/EBPδ, PPARγ, C/EBPα, and
adipocyte fatty acid binding protein (aP2) drastically increased in
miR-140-5p mimic transiently transfected cells (Figure 2A). But
there was no significant change in the expression level of C/EBPβ
after over-expression of miR-140-5p (Figure 2A). Consistently,
the protein contents of PPARγ, C/EBPβ, and C/EBPδ were
significantly higher after transfecting miR-140-5p (Figure 2B,
Supplementary Figure S1A). Oil red O staining results illustrated
that the transfection of miR-140-5p strongly induced the lipid
droplet formation in preadipocytes (Figure 2C). These findings
imply that miR-140-5p accelerated lipid droplet generation via
expediting adipogenesis in 3T3-L1 preadipocytes.

Moreover, miR-140-5p inhibitor was inserted into 3T3-L1
preadipocytes via transfection. After the miR-140-5p inhibitor
was transfected into 3T3-L1 cells, the expression of miR-140-5p
was significantly reduced (Figure 2D). Western blotting data
revealed that the knockdown of miR-140-5p resulted in reduced
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PPARγ and C/EBPβ protein expressions compared with the NC
group (Figure 2E, Supplementary Figure S1C). However, qRT-
PCR data illustrated that silencing of miR-140-5p induced no
statistically significant difference in the expression of
adipogenesis-linked genes (Supplementary Figure S1B). Oil
red O staining analysis revealed that the silencing of miR-140-
5p reduced lipid production and accumulation in 3T3-L1 cells
(Figure 2F). Overall, our data illustrate that miR-140-5p acts as
an important regulator for adipocyte differentiation.

PDGFRα Is Identified as a Direct Target of
miR-140-5p
We screened the putative mRNA from the candidate target genes
contributing to adipocyte differentiation downstream miR-140-5p
against themiRbase andTargetScan databases. Previous research has
reported that the stimulation of the PDGFRα signaling pathway
possibly restricts the differentiation of adipocyte precursor cells into
adipocytes (Haider and Larose, 2019). Based on this, we speculated
that miR-140-5p promoted adipogenesis via PDGFRα. Our analysis

indicated that the PDGFRα gene’s 3′UTR contained miR-140-5p
target sequences (Figure 3A). To determine whether PDGFRαwas a
direct target of miR-140-5p, a luciferase reporter vector was
constructed by putting PDGFRα 3′UTR behind the luciferase
gene. We co-transfected the vector or PDGFRα 3′UTR with NC
mimics or miR-140-5pmimics into 293T cells. In comparison to the
control group, the PDGFRα 3′UTR vector luciferase enzyme activity
was repressed after co-transfection with miR-140-5p. Furthermore,
co-transfection with either the NC or miR-140-5p mimics exhibited
no change in the luciferase enzyme activity of the vector (Figure 3B).

Consistent with miRNAs’ post-transcriptional mechanism,
PDGFRα displayed a significant reduction at both the mRNA
level and protein level after miR-140-5p mimics’ transfection
(Figure 3C, Supplementary Figure S2A). The PDGFRα mRNA
level was evaluated by qRT-PCR after miR-140-5p inhibitors or NC
inhibitor was transfected into 3T3-L1 cells. Transfection with miR-
140-5p inhibitor resulted in no remarkable variation in PDGFRα
mRNA levels, but there was a significant elevation in the protein level
(Figure 3D, Supplementary Figure S2B). These findings indicate
that PDGFRα is miR-140-5p’s direct target.

FIGURE 1 | miR-140-5p expression during adipocyte differentiation. (A) Expression of miR-140-5p at 24, 48, and 72 h during differentiation of preadipocytes
treated with differentiation cocktail or DMI based on qRT-PCR. miR-140-5p expression in this study was normalized with U6 as the internal control. (B) miR-140-5p
expression at diverse time points (1 day before differentiation, 0, 1, 2, 3, 5, and 7 days) during differentiation of preadipocytes. 3T3-L1 cells were inoculated with
differentiation cocktail or DMI based on qRT-PCR. (C) Oil red O staining of preadipocytes at diverse time points (1, 2, 3, 5, and 7 days) during differentiation (100-
fold magnification). Data are given as mean ± SD (n = 3, with three replicates in one independent experiment). Remarkable difference is given at the levels of *p < 0.05,
**p < 0.01, and ***p < 0.001 via two-tailed Student’s t test.
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Over-Expression of PDGFRα Suppresses
Expression of the Adipogenesis-Linked
Genes and Impairs Lipid Droplet Synthesis
We also assessed how PDGFRα influences the expression of
adipogenic transcription factors. We transfected 3T3-L1 cells
with pEGFP-N1-PDGFRα to enhance PDGFRα function and
found that aP2, C/EBPα, PPARγ, C/EBPβ, and C/EBPδ

expressions significantly decreased in pEGFP-N1-
PDGFRα–transfected 3T3-L1 cells (Figure 4A), indicating that
PDGFRα dampened the expression of adipogenic transcription
factors during adipocyte differentiation. Western blot assay data
of the protein samples confirmed the reliability and validity of
qRT-PCR results, illustrating that over-expression of PDGFRα
resulted in a decrease in C/EBPα, PPARγ, C/EBPβ, along with
C/EBPδ protein content (Figure 4B, Supplementary Figure S3).

FIGURE 2 | Adipogenesis regulation via miR-140-5p as the adipogenic factor. (A) Expression levels of miR-140-5p and adipogenic genes after transient
transfection with negative control mimics (Control) or miR-140-5pmimics in 3T3-L1 cells based on qRT-PCR analysis. (B)Western blot assessment of expression level of
adipogenesis-linked genes after 3T3-L1 cells were transfected with miR-140-5p mimics, as well as control mimics. (C)Oil red O staining of 3T3-L1 cells in cell transfects
of miR-140-5p mimics and control mimics (100-fold magnification). (D) Expression levels of miR-140-5p in 3T3-L1 preadipocytes transfected with miR-140-5p
inhibitors (Inhi-miR-140-5p) and negative control (Control) based on qRT-PCR analysis. (E) Adipogenesis-linked gene protein content in 3T3-L1 cell transfects of miR-
140-5p inhibitor or control inhibitor. (F) Oil red O staining of preadipocytes—3T3-L1 in the miR-140-5p inhibitor transfection group (Inhi-miR-140-5p) and control group
(100-fold magnification).
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Oil red O staining analysis demonstrated that over-expression of
PDGFRα effectively inhibited lipid production and accumulation
(Figure 4C). Overall, the above results indicate that PDGFRα
negatively influences adipogenesis-related gene expression and
lipid droplet synthesis.

PDGFRα Knockdown by Specific siRNA
Increases Adipogenesis-Related Gene
Expression and Intracellular Lipid
Accumulation
To determine whether PDGFRα was engaged in adipogenesis,
PDGFRα-specific siRNA was used to knock down PDGFRα in
3T3-L1 cells (Figure 5A, Supplementary Figure S4A). qRT-PCR
along with Western blot assay data illustrated that transfection of
3T3-L1 cells, respectively, with Si-PDGFRα 1, 2, and 3 reduced
PDGFRα function (Figure 5A) and that the expressions of
adipogenesis-associated transcription factors were dramatically
increased (Figures 5B,C, Supplementary Figure S4B). In

addition, oil red O staining results illustrated that the
knockdown of PDGFRα dramatically induced triacylglycerol
accumulation in 3T3-L1 cells (Figure 5D). The
aforementioned results exhibited that PDGFRα knockdown
induced adipogenesis-linked gene expression and promoted
intracellular lipid accumulation.

Overall, our data illustrated that miR-140-5p activated the
adipogenesis-associated transcription factors and enhanced
intracellular triacylglycerol accumulation, thus promoting
adipogenesis by targeting PDGFRα.

DISCUSSION

miR-140 is located in the intronic region of the geneWwp2 which
codes for a ubiquitin E3 ligase (Inui et al., 2018). It is highly
expressed in skeletal and chondrocyte cells, and it is crucial for
bone development (Nakamura et al., 2011). Previous studies have
suggested that stem cells originating from adipose tissues can

FIGURE 3 | PDGFRα as a direct target of miR-140-5p. (A) Docking site sequence of miR-140-5p to 3′UTR of PDGFRα gene according to the TargetScan
database. (B) Relative luciferase enzyme activity of PDGFRα-3′UTR vector and control vector after co-transfection with miR-140-5p mimics (miR-140-5p) or negative
control mimics (Control) in HEK293T cells. (C) PDGFRαmRNA and protein levels after transient transfection of 3T3-L1 cells with miR-140-5p mimics or control based on
qRT-PCR and Western blot. (D) PDGFRα expression levels after transient transfection of 3T3-L1 cells with miR-140-5p inhibitors (Inhi-miR-140-5p) or control
based on qRT-PCR and Western blot.
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differentiate into either osteoblasts or adipocytes (Uccelli et al.,
2008; Keating, 2012). MicroRNAs (miRNAs) have been found to
perform essential regulatory functions in adipocyte development
(Tang et al., 2009; Lee et al., 2011). Furthermore, other studies
have found that gga-miR-140-5p promotes intramuscular
adipocyte differentiation via targeting retinoid X receptor
gamma (Zhang et al., 2018) and miR-140-5p may be involved
in the adipogenic and osteogenic lineage differentiation of human
adipose-derived stem cells (Li et al., 2017b). These studies
indicate that miR-140 may function in the differentiation
process of adipocytes. However, little is known regarding miR-
140’s accurate role in adipogenesis. In this study, our data
illustrated that miR-140-5p level was induced in 3T3-L1 cells
during adipocyte differentiation and that miR-140-5p was
necessary for 3T3-L1 preadipocytes to sustain their adipogenic
differentiation and lipogenesis. Our data illustrated that miR-
140-5p might be involved in adipogenesis. An earlier study also
suggests that this microRNA is upregulated during adipogenesis
in hASCs (Li et al., 2017b). However, it remains unknown how
miR-140-5p promotes adipocyte differentiation and whether it
has any role in adipogenesis.

Our investigation of the impact of miR-140-5p on adipocyte
differentiation revealed its significance in the determination of
cell destiny. Over-expression of miR-140-5p in preadipocytes

induced lipogenesis and adipocyte differentiation, but the
knockdown of endogenous miR-140-5p impeded lipogenesis
and adipocyte differentiation. Our data illustrated that miR-
140-5p was a positive modulator for lipogenesis and adipocyte
differentiation. Previous research has reported that Wnt/β-
catenin, mTOR signaling pathways, PPARγ, and C/EBPs are
the signaling pathways affected by miRNAs (Wang et al.,
2013; Li et al., 2015; Liang et al., 2015; Gu et al., 2016).
Consistent with this, our data illustrated that miR-140-5p
elevated the expression of adipogenic transcription factors
such as PPARγ and C/EBPs. Here, we demonstrated that miR-
140-5p promotes adipocyte differentiation by directly targeting
and regulating PDGFRα, a critical functional marker of adipocyte
progenitor cells (Berry and Rodeheffer, 2013; Sun et al., 2017).
Based on the Targetscan data resource analysis, we screened the
miR-140-5p target genes which have complementary sites of
miR-140-5p in the 3′UTR region. Through luciferase assays,
and qRT-PCR along with Western blot analyses, we confirmed
that PDGFRα was a miR-140 target gene regulating adipocyte
differentiation.

Some studies have reported that PDGFRα activation inhibits
adipogenesis, thus promoting the generation of profibrotic cells
(Iwayama et al., 2015; Hogarth et al., 2019). However, another
research study has shown that PDGFRα promotes adipocyte

FIGURE 4 | Influence of PDGFRα on adipogenesis-linked gene expression and lipid droplet synthesis in 3T3-L1 cells. (A) qRT-PCR analysis of the expression of
adipogenesis-associated genes after transfection with pEGFP-N1-PDGFRα (PDGFRα) or control in 3T3-L1 cells. (B) Western blotting analysis of the expression of
adipogenesis-associated transcription factors after transfection with pEGFP-N1-PDGFRα (PDGFRα) or control in 3T3-L1 cells. (C) Illustrative images of oil red O after
transient transfection with pEGFP-N1-PDGFRα (PDGFRα) or control (100-fold magnification) in 3T3-L1 cells.
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progenitor cell differentiation to generate beige fat (Gao et al.,
2018). In this study, PDGFRα expression was reduced under the
induction of miR-140-5p during adipocyte development, thus

increasing the adipogenesis-related genes (C/EBPs and PPAR)
expression as well as enhancing lipid aggregation in 3T3-L1
preadipocytes. Furthermore, during adipocyte differentiation,

FIGURE 5 | Increase in adipocyte differentiation-related gene expression and enhancement in lipid droplet synthesis by PDGFRα knockdown. (A) qRT-PCR along
with Western blot assays of PDGFRα expression after transfection of 3T3-L1 cells with PDGFRα siRNA 1(Si-PDGFRα1), PDGFRα siRNA 2(Si-PDGFRα2), and PDGFRα
siRNA 3(Si-PDGFRα3), respectively. (B)Western blot assessment of the expression of adipocyte differentiation-related transcription factors after being transfected with
PDGFRα siRNA (Si-PDGFRα) or control in 3T3-L1 cells. (C) RT-PCR analysis of mRNA expression of adipocyte differentiation-related genes after transfection with
PDGFRα siRNA (Si-PDGFRα) or control in 3T3-L1 cells. (D) Illustrative images of oil red O after transient transfection with PDGFRα siRNA (Si-PDGFRα) or control in 3T3-
L1 cells (100-fold magnification).
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over-expression of PDGFRα reversed the miR-140-5p–induced
increase in adipogenesis-related gene expression. Our findings
suggest that miR-140-5p can limit the suppression of
adipogenesis-related gene expression and intracellular lipid
accumulation by PDGFRα, thus contributing to adipogenesis.
Consistent with this idea, PDGFRα is involved in the
differentiation of cardiomyocyte differentiation (Xu et al.,
2019). However, the signaling pathway in response to
PDGFRα activation is still largely unknown, and thus the
molecular processes regulating the expression and function of
adipogenesis-related genes remain to be further investigated in
future research.

In conclusion, our data illustrates that miR-140-5p is involved
in adipocyte differentiation and the development of adipocyte
precursor cells into adipocytes, thus promoting lipogenesis. Here,
we identified PDGFRα as an miR-140-5p direct target involved in
adipocyte differentiation. Therefore, miR-140-5p might be a new
potential target for the clinical diagnosis and treatment of obesity
and related metabolic diseases. Since our results are limited to
in vitro experiments, future studies will explore its role in obesity-
related metabolic diseases. Nonetheless, our findings elucidate an
essential function of miR-140-5p in adipocyte differentiation and
adipogenesis. Our results indicate that inhibition of miR-140-5p
expression via an aptamer might be a potential therapeutic
strategy to treat obesity and obesity-related metabolic diseases.

MATERIALS AND METHODS

Cell Culture, Cell Transient Transfection,
and Adipocyte Differentiation
All cells were cultured in high-glucose DMEM (Life
Technologies, Carlsbad, United States) containing
streptomycin, penicillin, and 10% FBS in a 5% CO2 humid
incubator at 37°C. Cells were inoculated into dishes or plates,
and then transfected with vectors, siRNA, or mimics on day 2
post inoculation. We used lipofectamine RNAiMAX and
lipofectamine 2000 for cell transient transfection (Invitrogen,
Carlsbad, United States). Two days after the 3T3-L1 cells
attained confluence, cell differentiation was induced by an
activation cocktail consisting of 100 nM insulin, 1 μM Dex,
0.5 mM IBMX (Sigma-Aldrich, Germany), and 10% FBS. The
medium was renewed with 10% FBS DMEM enriched with
100 nM insulin every 2 days until the cells grew into mature
adipocytes.

RNA Extraction and qRT-PCR
The RNAiso Plus reagent (Takara, Japan) was adopted to isolate
low–molecular-weight RNA along with total RNA. The cDNA
was prepared using the Prime Script RT Reagent Kit with gDNA
Eraser (Takara, Japan). The qRT-PCR was conducted with SYBR
Green qPCR Mix reagent (Monad, Wuhan). The comparative-Ct
approach (2-ΔΔCt approach) was employed to compute gene
relative expression levels.

Western Blots
Whole-cell protein was isolated from 3T3-L1 cells by using the
lysis buffer (Beyotime, China). We determined the protein
concentrations with a BCA protein assay kit (Beyotime,
China). SDS-PAGE was performed to separate protein lysates,
and the obtained protein was then transferred to the NC or PVDF
membrane (Millipore, United States). Then, the membrane was
inoculated for 2 hours with 5% skimmed milk, and then
inoculated overnight with anti-C/EBPα (18311-1-AP,
Proteintech, Chicago), anti-PDGFRα (bsm-52829R, Bioss,
China), anti-C/EBPδ (36,790, Signalway Antibody), or anti-C/
EBPβ (23431-1-AP, Proteintech, Chicago) at 4°C. After three
washes, the membrane was inoculated with 1:5,000 or 1:10,000
dilution of the secondary antibody for 1.5 h at RT (room
temperature). After three washes again, the membrane added
with enhanced chemiluminescence (Bio-Rad, United States) was
exposed in the imaging system.

Luciferase Reporter Assay
Themouse PDGFRα 3′UTRwas added to the psiCheck2 vector to
construct the luciferase report vector (Promega). The potential
docking site seed sequences of miR-140-5p were found to be 5′-
AACCACT-3’. After the 48-h transfection, the activity of
luciferases was assessed in the Dual Luciferase Enzyme
Reporter Assay System (Promega).

Identification of miR-140-5p Target Genes
miR-140-5p potential downstream target genes were identified
based on data from the following three databases: PicTar (https://
pictar.mdc-berlin.de/), MicroRNA.org (https://www.mirbase.
org/index.shtml), and TargetScan (http://www.targetscan.org/
vert_72/).

Oil Red O Staining Assay
The cells were rinsed with PBS buffer and fixed in 10% formalin
for 1 h at 4°C after cell differentiation. After fixation, the cells were
rinsed thrice with PBS and stained with 0.35 percent oil red O
(Sigma-Aldrich, Germany) for 1 hour at RT. The cells were
assessed and photographed after washing with distilled water.

Statistical Methods
All the data were given as the mean ± standard deviation (SD) of
at least three replicates. All the data were analyzed and plotted
using GraphPad Prism 6. Student’s two-tailed t-test was
performed to assess the statistically remarkable differences
between groups. *p < 0.05, **p < 0.01, and ***p < 0.001
represented the three levels of significant differences.
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