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Abstract: Effective computational prediction of complex or novel molecule syntheses can greatly help
organic and medicinal chemistry. Retrosynthetic analysis is a method employed by chemists to predict
synthetic routes to target compounds. The target compounds are incrementally converted into simpler
compounds until the starting compounds are commercially available. However, predictions based
on small chemical datasets often result in low accuracy due to an insufficient number of samples.
To address this limitation, we introduced transfer learning to retrosynthetic analysis. Transfer learning
is a machine learning approach that trains a model on one task and then applies the model to a related
but different task; this approach can be used to solve the limitation of few data. The unclassified
USPTO-380K large dataset was first applied to models for pretraining so that they gain a basic
theoretical knowledge of chemistry, such as the chirality of compounds, reaction types and the
SMILES form of chemical structure of compounds. The USPTO-380K and the USPTO-50K (which was
also used by Liu et al.) were originally derived from Lowe’s patent mining work. Liuetal
further processed these data and divided the reaction examples into 10 categories, but we did
not. Subsequently, the acquired skills were transferred to be used on the classified USPTO-50K
small dataset for continuous training and retrosynthetic reaction tests, and the pretrained accuracy
data were simultaneously compared with the accuracy of results from models without pretraining.
The transfer learning concept was combined with the sequence-to-sequence (seq2seq) or Transformer
model for prediction and verification. The seq2seq and Transformer models, both of which are
based on an encoder-decoder architecture, were originally constructed for language translation
missions. The two algorithms translate SMILES form of structures of reactants to SMILES form of
products, also taking into account other relevant chemical information (chirality, reaction types and
conditions). The results demonstrated that the accuracy of the retrosynthetic analysis by the seq2seq
and Transformer models after pretraining was significantly improved. The top-1 accuracy (which is
the accuracy rate of the first prediction matching the actual result) of the Transformer-transfer-learning
model increased from 52.4% to 60.7% with greatly improved prediction power. The model’s top-20
prediction accuracy (which is the accuracy rate of the top 20 categories containing actual results) was
88.9%, which represents fairly good prediction in retrosynthetic analysis. In summary, this study
proves that transferring learning between models working with different chemical datasets is feasible.
The introduction of transfer learning to a model significantly improved prediction accuracy and,
especially, assisted in small dataset based reaction prediction and retrosynthetic analysis.

Keywords: retrosynthesis; SMILES structure; reactants; products; transfer leaning; artificial intelligence;
transformer; seq2seq
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1. Introduction

Organic synthesis is a crucial discipline that predicts accesses to molecules. Two closely related
problems contribute to the synthesis of new molecules: forward reaction prediction and retrosynthetic
reaction prediction. Forward reaction prediction is inference of the potential products of a given set of
reactants, reagents and reaction conditions. The retrosynthetic reaction prediction is the inverse solution
to the problem of synthesis. The retrosynthetic reaction prediction starts from the target compounds and
transforms them into simpler compounds that are commercially available (Figure 1). Synthetic organic
chemistry underpins many areas of chemistry, but the execution of complex chemical syntheses requires
expert knowledge usually acquired over many years of study and hands-on laboratory practice [1]
Driven by improved computing power, data availability and algorithms, the development of artificial
intelligence (AI) technologies with the potential to streamline and automate chemical synthesis is
becoming a reality. A few decades ago, computational algorithms could help chemists predict the
synthetic routes to some simple target molecules [2]. Although the reaction routes to these compounds
can easily be artificially designed without the help of a computer, the use of algorithm models in
retrosynthetic prediction has proved to be feasible. However, as computing models become increasingly
sophisticated and datasets continue to be enriched, predicting synthetic methods for novel or complex
molecules by using Al is no longer an impossible task.

O=C(OCCCC(/C=C/C=Cl/c1cccect)C(F)(F)F)ciceceet O=C(OCCCC(Br)C(F)(F)F)c1cccce! ~ C=C/C=Clc1cccect

Figure 1. An example of a retrosynthetic prediction. The target module is shown to the left of the
arrow and predicted reactants are displayed to the right. The SMILES code for each compound is
also indicated.

Actually, both simple and complex chemical structures can be treated as a special kind of language
that can be recognized by computers. More importantly, the structure and the language should be freely
and correctly converted into each other. The simplified molecular-input line-entry system (SMILES),
as a computational language, is just a recognizable text sequence inline notation format [3]. Through the
transformation of equivalent chemical structures into SMILES codes, several practical sequence models
can be successfully applied to reaction prediction. The main models include the sequence-to-sequence
(seq2seq) model [4], an encoder-decoder recurrent neural network, and the Transformer model [5],
which is an attention-based neural machine translation (NMT) model. The Transformer and seq2seq
models were originally designed for natural language translation and some researchers have applied
them to the prediction of forward reaction and the prediction of retrosynthetic reaction, respectively [4,5].
Chemical structures can be treated as a special kind of language—specifically, SMILES. Therefore,
researchers have innovatively applied the Transformer and seq2seq models to chemical reaction
predictions and have regarded prediction tasks as language translation.

Using end-to-end training on a combination of artificially generated reactions, Nam and Kim
first introduced the concept of treating chemical reactions as a translation problem [6]. The authors
explored forward reaction prediction based on two training sets: one from the patent database and one
from the reaction templates in an organic chemistry textbook by Wade [4]. Schwaller et al. applied the
seq2seq model to predict the outcomes of complex organic chemistry reactions [7]. Based on a much
larger and updated dataset (Lowe’s dataset [6]) and using Luong’s attention mechanism, which is a
computer module that can make it easier for neural networks to focus on chemical information such
as a reaction center, the prediction accuracy of neural networks has significantly improved. Liu et al.
made the first steps toward using the seq2seq model in retrosynthetic analysis [8]. The authors
used a dataset containing 50,000 reactions classified into ten different reaction classes. Consequently,
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the seq2seq model can not only predict the reaction products in the forward reactions but also perform
retrosynthetic prediction analysis.

The Transformer, another frequently used model, was proposed by Vaswani [5]. The Transformer
is based solely on attention mechanisms, thus dispensing entirely with recurrence and convolutions.
Schwaller and Lee’s group successfully applied a Molecular Transformer model to uncertainty-calibrated
chemical reaction prediction [9]. Lee also used the Transformer model to unify reaction prediction and
retrosynthesis across pharma chemical space [10]. Experiments by the authors on two machine translation
tasks showed that the Transformer was superior to the seq2seq model [5].

Machine learning and data mining techniques have been used in numerous real-world applications
where the training data and testing data are taken from the same domain or dataset [11]. However,
in some real-world scenarios, this approach is difficult to execute because of a lack of useful data or
of difficulty in collecting matching data for training [12]. In such cases, transfer learning would be a
desirable methodology for a target domain trained on a related source domain.

Transfer learning is a machine learning method in which a model developed for a task is reused
as the starting point for a model on a second task, thereby transferring knowledge from a source
domain to a target domain; an example of transfer learning is solving one problem and applying it to a
different but related problem [13]. Research on transfer learning has attracted increasing attention
since 1995 under different names, such as learning to learn, life-long learning, knowledge transfer,
inductive transfer, multitask learning, knowledge consolidation and context-sensitive learning [14].
Transfer learning has been successfully applied to many machine learning problems, including text
sentiment classification, image classification and multilanguage text classification [15-17]. In theory,
as a kind of Al technology, transfer learning can also be applied to organic and medicinal chemistry,
especially reaction prediction and retrosynthetic analysis based on datasets containing very limited
data volume.

Some chemical reaction predictions and retrosynthetic analysis target specific reaction types,
such as oxidation reactions involving special oxidants, coupling reactions catalyzed by particular
metals and specific ligands catalyzing the activation of hydrocarbons and asymmetric synthesis.
Existing datasets often include very few of the above reactions. When the deep learning method is
applied to retrosynthetic analysis or predictions of the products of these reactions, it is difficult to
obtain accurate prediction results because the dataset is too limited to adequately train the model.

Therefore, in this work (Figure 2), to increase the accuracy of retrosynthetic analysis, we introduced
the transfer learning strategy to the seq2seq and Transformer models. First, pretraining was performed
on a large chemical reaction dataset. After being adequately trained, the models obtained special
chemical reaction knowledge. Second, the learned knowledge was successfully transferred to be used
on a smaller dataset. Finally, with the chemical skills from the pretraining, the models could output
results with increased accuracy after a short and limited training on a small dataset. To compare with
the previous results, we deliberately selected the same small dataset as the reference data.
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Figure 2. Designing concept and process of transfer-learning-aided retrosynthetic analysis.

2. Methods

2.1. Dataset Preparation

The USPTO-380K dataset [6] was first used for the pretraining of the seq2seq and Transformer
models. The USPTO-50K dataset [8] was then applied to the corresponding seq2seq-transfer-learning and
Transformer-transfer-learning models (data sets are available in the Supplementary Materials).

2.1.1. Pretraining Dataset Preparation: USPTO-380K

The large dataset applied in the pretraining of the seq2seq and Transformer models was named
USPTO-380K and included approximately 380,000 examples. The source of the reaction examples was
derived from Lowe’s patent mining work, which extracted these openly available reaction examples
from the United States Patent and Trademark Office (USPTO) patents granted between 1976 and 2016.
The reaction examples were preprocessed to eliminate all reagents, and the reactants and products
were maintained without dividing them into ten classes, as Liu did [8]. Moreover, the duplicate,
incomplete or erroneous reactions were filtered as noisy data. Additionally, for the testing dataset,
the reactions in Liu’s dataset (USPTO-50K) were removed from our USPTO-380K dataset.

2.1.2. Small Dataset Preparation: USPTO-50K

The small dataset we used in this paper is USPTO-50K and is applied to seq2seg-transfer-learning
and Transformer-transfer-learning models. This dataset contains 50,000 reaction examples and was
also used by Liu et al. [8]. The source of the dataset is USPTO patents prepared by Lowe [6].
The dataset was subsequently split into training, validation and test datasets (8:1:1). As shown
in Table 1, these 50,000 reactions were classified mainly into 10 reaction types. The contextual
information, including reagents, temperature and reaction time, was further eliminated so that the
reaction examples included only starting materials and their corresponding products.
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Table 1. Distribution and description of the major reaction classes within the processed reaction
dataset [18].

Class Description No. of Examples Percentage of Dataset (%)
1 heteroatom alkylation and arylation 15122 30.3
2 acylation and related processes 11913 23.8
3 C-C bond formation 5639 113
4 heterocycle formation 900 1.8
5 protection 650 1.3
6 deprotection 8353 16.5
7 reduction 4585 9.2
8 oxidation 814 1.6
9 functional group interconversion (FGI) 1834 3.7
10 functional group addition (FGA) 227 0.5
2.2. Models

2.2.1. Seq2seq Model

The seq2seq model is based on an encoder-decoder architecture that consists of two distinct
recurrent neural networks (RNNs) working cooperatively [19]. The encoder addresses the input
sequence and then exports the corresponding context vector to the decoder. The decoder applies
this representation to pass a set of predictions. These two RNNs consist of long short-term memory
(LSTM) cells, which efficiently dispose of long-range relations in sequences [20]. This architecture has
a bidirectional LSTM (BLSTM) encoder and an LSTM decoder [21]. The BLSTM encoder consists of
two LSTM cells in which one handles the sequence in the forward direction and the other handles
the sequence in the backward direction. In this sense, the BLSTM processes input sequences in two
directions and it possesses context from not only the past but also the future. Moreover, an additive
attention mechanism that connects the target inputs with the source outputs is applied to this model [22].
Molecules can be equivalently represented as a sequence of SMILES. From a linguistic point of view,
SMILES and a chemical reaction can be regarded as separate languages. Therefore, predicting the
corresponding chemical reaction can be regarded as a language translation task. The seq2seq model is
a language translation model, so this model can be applied to chemical reaction prediction.

2.2.2. Transformer Model

The Transformer model, which is based on an encoder-decoder architecture, shows state-of-the-art
performance in chemical reaction prediction and retrosynthetic analysis [9,23,24]. The architectural
feature of the Transformer model completely relies on the attention mechanism. The encoder consists
of several identical layers, and each layer contains two different sublayers: the first sublayer is a
multi-head self-attention mechanism, and the second is a position feedforward network. Before layer
normalization, a residual connection to the two sublayers is commonly introduced. The decoder
consists of six identical layers, and each layer has three sublayers. In addition to two sublayers that
are the same as those in the encoder, a third layer, a masked multi-head self-attention mechanism,
is added to the decoder. Remarkably, a major feature of the Transformer model (multi-head attention)
makes the Transformer model superior to the seq2seq model by allowing the Transformer model to
concurrently attend to various representations [5]. First, the chemical reactions were converted into
SMILES for training the Transformer model. The SMILES of the target compounds were then input
into the model, and the Transformer model output the reactant SMILES.
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2.3. Performance Evaluation

Top-1 means that the predicted results by the model scan stops as soon as the first prediction
is found. Top-2 means that the predicted results by the model scan stops as soon as the first two
predictions are found. In top-N, the “N” represents all positive integers. Namely, the top-N could be
top-1, top-2, top-3 and so on. Top-N means that the predicted results by the model scan stops as soon
as the first N predictions are found. The top-N accuracy refers to the percentage of the ground truth
reactant set that was found within the top N predictions made by the model. The calculation formula
is as follows:

Top-N Accuracy = (right predictions)/(ground truth) x 100%

The accuracy is estimated for the classification problem in our prediction task. True positives
(TPs) are results that match the ground truth and have a confidence score above the threshold, and true
negatives (TNs) are results that do not match the ground truth and have a confidence score below the
threshold. Results that match the ground truth but have a confidence score below the threshold are
counted as false negatives (FNs), and results that do not match the ground truth but have a confidence
score above the threshold are regarded as false positives (FPs).

3. Results and Discussion

The top-N accuracy (especially the top-1 accuracy), which refers to the percentage of examples in
the ground truth reactant set, is usually used as a key measure of the validity of a model. These examples
are the actual patent literature-reported reactant set for the corresponding target molecule in the
test dataset, which is found within the top-N predictions made by the model. Figure 3 shows the
influence of training time on the top-1 results. With the help of the chemical skills acquired in the
pretraining, models utilizing transfer learning obtained the “chemical talent” at the very beginning
and were no longer “naive” like the single seq2seq or Transformer model. The transfer-learning-based
models were very highly top-1 accurate from the start of the training; thus, at this point, their accuracy
was already similar to the highest accuracy achieved. The top-1 accuracy of the seq2seq and
Transformer models increased slowly during training; these models achieved the highest levels and
reached a plateau in approximately 10 h. The transfer-learning-based, seq2seq-transfer-learning and
Transformer-transfer-learning models were markedly more accurate than the corresponding single
seq2seq or Transformer models.

seq2seq-transfer learning ——seq2seq baseline Iransformer-transfer Learning —Transformer baseline
70% 70%
60% 60%
50% £ 50%
40% 7 40%
30%
20%
10% 10%

0% 0%
0 2 4 6 8 10 0 4 6 8 10

Time (h) lime (h)

Accuracy (%)

re

Figure 3. The top-1 accuracies of the seq2seq/seq2seg-transfer-learning and Transformer/Transformer-
transfer-learning models as a function of time.

A comparison of the top-N accuracies of the seq2seq-transfer-learning model and Liu’s seq2seq
model [8] is shown in Table 2. With the introduction of the transfer learning strategy, the accuracy of
the seq2seg-transfer-learning model in retrosynthetic analysis displayed a significant improvement
over that of the seq2seq baseline. Moreover, this improvement increased steadily. The top-1, top-3,
top-5, top-10 and top-20 accuracies increased between 6.2% and 7.2%. For instance, the accuracy
of top-1 increased from 37.4% to 44.6%, an improvement of 7.2%; the accuracy of top-5 increased
from 57.0% to 64.1%, an improvement of 7.1%; and the accuracy of top-20 increased from 65.9% to
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72.1%, an improvement of 6.2%. The obtained data also clearly demonstrated that when the chemical
knowledge learned from the pretraining was transferred to the test model, the retrosynthetic analysis
results were more accurate than the results obtained without transfer learning.

Table 2. Comparison of the top-N accuracies ? of the seq2seq and seq2seg-transfer learning models.

Top-N A %
Model op-N Accuracy (%)

Top-1 Top-2 Top-3 Top-5 Top-10 Top-20

seq2seq baseline P 37.4% - 52.4%  57.0%  61.7% 65.9%
seq2seq-transfer learning  44.6%  54.8% 59.4% 64.1%  68.8% 72.1%

2 Data are related to the test data set containing 5004 reactions.  The testing results are from the seq2seq2 model of
Liu et al. [8].

Table 3 shows the performance of the Transformer and Transformer-transfer-learning models.
These results indicate that for retrosynthetic analysis, the accuracy of the Transformer model was
remarkably superior to that of the seq2seq model. According to our calculation results, the accuracy of
the Transformer-transfer-learning model ranged from being 8.3% to 14.6% higher than the accuracy of
the Transformer baseline. The top-1 accuracy of the Transformer-transfer-learning model was 60.7%,
which represented state-of-the-art performance based on an open-source patent database containing
50,000 reaction examples [6]. The top-20 accuracy of the model increased to 88.9%, which is an excellent
result in retrosynthetic analysis. Table 4 shows TPs, TNs, FPs and FNs in top-1 predictions after transfer
learning in transformer model. The F;-score [25], a statistical measure, is used to rate performance as a
weighted harmonic mean of precision and recall. Here are the relevant calculation formulae.

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)
Fq = (2:Precision-Recall)/(Precision + Recall)

In our experiment, the F;-score of top-1 predictions by the Transformer-transfer-learning model
can reach 67.3% which reveals good performance of our model. Apart from the real accuracy we
used, delta_ accuracy is also critical for estimating model improvement. The delta_ accuracy [25,26] is
calculated by the formula Delta_accuracy = Accuracy — [(TP + EN)(TP + FP) + (TN + EN)(TN + FP)] /
(N " 2)). In the case of contingency table values given in Table 4, delta_ accuracy is 9.0%, which is good
and significant result.

Table 3. Comparison of the top-N accuracies ? of the Transformer and Transformer-transfer-
learning models.

Top-N A %
Model op ccuracy (%)

Top-1 Top-2 Top-3 Top-5 Top-10 Top-20

Transformer baseline 524%  63.3% 671% 70.8%  73.2% 74.3%
Transformer-transfer learning  60.7%  74.0% 794%  83.5% 87.6% 88.9%

2 Data are related to the test data set containing 5004 reactions.
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Table 4. True positives (TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs) in
top-1 predictions ? by the Transformer-transfer-learning model.

Positive (exp.)  Negative (exp.)

Positive (pred.) 2021 776
Negative (pred.) 1191 1016
Total 5004

@ Data are related to the test data set (N = 5004 reactions).

Figure 4 illustrates the detailed top-1 and top-10 accuracies for the 10 reaction classes. In terms of
the top-1 results, the seq2seg-transfer-learning models performed significantly better than the seq2seq
model for reaction classes 1 (heteroatom alkylation and arylation, with 10.2% improvement) and 4
(heterocycle formation, with a significant 21.1% increase). Moreover, the Transformer-transfer-learning
model demonstrated favorable results (a 21.1% increase in accuracy) for reaction class 4.

seq2seq baseline seq2seq-transfer learning I'ransformer baseline & Transformer-transfer leaming

0% 90%

Reaction class

Reaction class

o 80% _ 0% (
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Figure 4. The top-1 and top-10 accuracies of the seq2seq/seq2seq-transfer-learning and
Transformer/Transformer-transfer-learning models by reaction class. 1. Heteroatom alkylation and
arylation. 2. Acylation and related processes. 3. C—C bond formation. 4. Heterocycle formation.
5. Protections. 6. Deprotections. 7. Reductions. 8. Oxidations. 9. Functional group interconversion

(FGI). 10. Functional group addition (FGA).

When the performance is based on the top-10 results, the Transformer-transfer-learning model was
very highly accurate for reaction classes 3 (C—C bond formation, with a significant increase of 19.3%)
and 4 (with a remarkable 31.1% increase); these results are significantly better than those of the other
three models. However, the seq2seq-transfer-learning model is slightly more accurate than seq2seq.

The above results all proved that introducing the transfer learning strategy, especially to the
Transformer model, significantly improved the accuracy of retrosynthetic analysis. Because the
Transformer-transfer-learning model effectively understood and used the chemical knowledge gained
from the pretraining, introducing transfer learning was very helpful in increasing the accuracy of
predictions, even for some small datasets. For example, reaction class 4 contains only 900 reactions,
but the top-1 and top-10 accuracies of the Transformer-transfer-learning model were remarkably more
accurate than those of the Transformer model alone by 21.1% and 31.1%, respectively.
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As illustrated in Table 5, the accuracy of the top-1 prediction by the Transformer model for
heterocycle formation reactions (class 4) was significantly lower (by only approximately 40%) than the
accuracy of the top-1 prediction for other reaction types. This difference in accuracy is mainly because
the ring-forming reaction itself is very complicated, and the prediction is fairly difficult. Moreover, in the
heterocycle formation reactions, the SMILES codes underwent a complex transformation between the
linear and cyclic structures, thereby significantly increasing the probability of errors. All of these factors
made this prediction accuracy the lowest among those for the 10 types of reactions. However, with the
help of pretraining, the Transformer-transfer-learning model can identify the chemical structures with
increased accuracy; e.g., the accuracy of the top-1 prediction remarkably increased by 21.1% to 61.1%.

Table 5. Comparisons and representative examples (selected from the test set) of the Transformer and
Transformer-transfer-learning models in the retrosynthetic prediction of heterocycle formation reactions.

Retrosynthetic Analysis

Target Compound Transformer Model Transformer-Transfer-Learning Model
(Incorrect Prediction) (Correct Prediction)

The Transformer model displayed limited understanding and identification of nonaromatic rings
containing heteroatoms, especially spiro and bridged ring structures. In the conversion of SMILES
codes and chemical structures in the retrosynthetic analysis, corresponding errors in ring structures
occurred frequently (Table 6). For example, the structure of compound 4 contains a 7-membered ring
lactam skeleton. However, the structure of the raw material predicted by the Transformer model is a
9-membered ring lactam. In terms of compound 6, the (15)-8-azabicyclo [3.2.1] octane in its structure
was incorrectly recognized as (6R)-2-azabicyclo [4.2.0] octane. For all seven error examples produced
by the Transformer model in Table 6, the Transformer-transfer-learning model could successfully
predict the correct structures of the starting materials, thereby demonstrating the high superiority of
this model.
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Table 6. Comparisons and representative examples (selected from the test set) of the Transformer and
Transformer-transfer-learning models in retrosynthetic prediction with nonaromatic heterocycle structures.

Retrosynthetic Analysis

Target Compound Transformer Model Transformer-Transfer-Learning Model
(Incorrect Prediction) (Correct Prediction)
o] o) ‘ o |
=
A< on cUNN <« Jih o Yool ol
0 0 _O
3 F o F /A/l 3 F
| O |
Br Br
Br
R R
Ft O‘é E o;é Ft O‘é
N N
3 A ‘ﬁo F><;N‘<O A «O
o' © ~o"No —y °
4 QVM C'W\N Q\‘H C'W
o © Noe © o ©
o] o) o]
HNJ\fO )J\ (o) 0 O__Br
5 LNe o HNTON-NF2 7 Br HN)kf 7 )
N/\L/)/Br e L/ K/N‘NHZ O
O Q) )¢ o
o N
6 “\N\D\N/N* /\O—-NHZ OV\©\N’N\\ Ox N'N~‘
9 e o - =
E N F N F%\N
F FF F
F
0 o o
N N N7
o T ol O 0w oAk
7 %NJ\ND\ %NH Cl)\N/ NH CI)\N

Another common deficiency of the Transformer model in retrosynthetic prediction was the

misidentification of chiral structures. As shown in Table 7, when the target compounds contained one
or more chiral carbons, although the Transformer model predicted the chemical structure of the raw
material, the model often produced a stereo configuration error, in which the stereo configuration of
the corresponding R or S enantiomers was misidentified. The Transformer-transfer-learning model
understood chirality better than the Transformer model alone and successfully identified the exact
structure of the enantiomer. In the prediction of target compound 3, although the chlorine-atom-bonded
carbon atom is in the S configuration, the raw material predicted by the Transformer model was
racemic. However, the Transformer-transfer-learning model accurately identified this carbon atom as
having the S configuration.
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Table 7. Comparisons and representative examples (selected from the test set) of the Transformer and
Transformer-transfer-learning models in retrosynthetic prediction with chiral carbon atoms.

Retrosynthetic Analysis

Target Compound Transformer Model Transformer-Transfer-Learning Model
(Incorrect Prediction) (Correct Prediction)
N Cl N._Cl
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Consistent with our previous research findings [23], when the target compound contained a
tert-butyl moiety, SMILES code and prediction errors usually occurred in the Transformer model in the
prediction process. As shown in Table 8, the prediction of target compounds 1 and 2 did not obtain any
reactant due to errors in the SMILES codes; these errors occurred frequently in the whole prediction for
all reaction classes. For the target compounds 3-6, the predicted reactant structures were far from the
desired results, and the target compounds were completely impossible to synthesize with the starting
materials. However, after pretraining based on the large dataset, the Transformer-transfer-learning
model had a highly improved ability to recognize and translate the structures of the compounds,
thereby greatly reducing the negative effect of the tert-butyl structure on the prediction results and
significantly improving the accuracy of the retrosynthetic analysis.
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Table 8. Comparisons and representative examples (selected from the test set) of the Transformer and
Transformer-transfer-learning models in retrosynthetic prediction with tert-butyl moieties.

Retrosynthetic Analysis

Target Compound Transformer Model Transformer-Transfer-Learning Model
(Incorrect prediction) (Correct Prediction)
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4. Conclusions

In summary, the pretraining phase of the Transformer-transfer-learning model increases the
ability of the model to accurately understand the complex structural characteristics of compounds
and accumulate chemical knowledge related to organic reactions. More importantly, this model
can successfully transfer learned chemistry knowledge and skills to a new retrosynthetic prediction
model, thereby significantly improving the accuracy of predictions which translate products SMILES
to reactants SMILES, and the quality of results.

To facilitate comparisons and verify the value of transfer learning, the USPTO-50K dataset was used
for prediction and verification. However, in fact, the transfer learning strategy can be flexibly applied to
additional available or self-built small datasets for retrosynthetic analysis. Hypothetically, in addition
to retrosynthetic prediction, transfer learning can also be used for reaction prediction. Our future work
will focus on the application of transfer learning to certain name reactions. Predicting the outcomes
of complex name reactions involving regioselectivity and site-selectivity is an extremely difficult
mission even for experienced chemists. This means that this area of research could benefit from Al
prediction tools.
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Supplementary Materials: Training, validation and test sets (SMILES structures of reactants and products
including reaction class designation) used in modelling are given.

Author Contributions: Conceptualization—R.B. and H.D.; methodology—H.D., C.Z. and L.W,; software—C.Z.;
data curation—]J.G., C.Z. and L.W.; writing—original draft preparation, R.B., C.Z., ].G. and C.Y.; writing—review
and editing, R.B. and C.Y.; project administration—H.D.; funding acquisition—H.D. and R.B. All authors have
read and agreed to the published version of the manuscript.

Acknowledgments: This project was supported by the National Natural Science Foundation of China, NSFC (Grant
Nos. 81903438 & 81803340) and the Zhejiang Natural Science Foundation (LY20H300004).

Conflicts of Interest: Authors declare no competing interest.

References

1.  Almeida, A.F; Moreira, R.; Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence.
Nat. Rev. Chem. 2019, 3, 589-604. [CrossRef]

2. Judson, P. Knowledge-Based Expert Systems in Chemistry; Royal Society of Chemistry (RSC): Cambridge,
UK, 2009.

3. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and
encoding rules. J. Chem. Inf. Model. 1988, 28, 31-36. [CrossRef]

4. Nam, J.; Kim, ]. Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions.
2016. Available online: https://arxiv.org/abs/1612.09529 (accessed on 29 December 2016).

5. Vaswani, A. Attention is All You Need. 2017. Available online: https://arxiv.org/pdf/1706.03762 (accessed on
6 December 2017).

6. Lowe, D.M. Extraction of Chemical Structures and Reactions from the Literature. 2012. Available online:
https://doi.org/10.17863/CAM.16293 (accessed on 9 October 2012).

7. Schwaller, P.; Gaudin, T.; Lanyi, D.; Bekas, C.; Laino, T. “Found in Translation”: Predicting outcomes
of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci. 2018, 9,
6091-6098. [CrossRef] [PubMed]

8.  Liu, B.; Ramsundar, B.; Kawthekar, P; Shi, J.; Gomes, J.; Nguyen, Q.L.; Ho, S.; Sloane, J.; Wender, P.A;
Pande, V.S. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models. ACS Central Sci.
2017, 3, 1103-1113. [CrossRef] [PubMed]

9.  Schwaller, P; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular Transformer:
A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Central Sci. 2019, 5, 1572-1583.
[CrossRef] [PubMed]

10. Lee, A.A.; Yang, Q.; Sresht, V.; Bolgar, P.; Hou, X.; Klug-McLeod, ].L.; Butler, C.R. Molecular Transformer
unifies reaction prediction and retrosynthesis across pharma chemical space. Chem. Commun. 2019, 55,
12152-12155. [CrossRef] [PubMed]

11.  Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1817. [CrossRef]

12.  Pan, S.J.; Yang, Q. A Survey on Transfer Learning Sinno Jialin Pan and Qiang Yang Fellow. IEEE T. Knowl.
Data Eng. 2009, 22, 1345-1359. [CrossRef]

13. Olivas, E.S.; Guerrero, ].D.M.; Sober, M.M.; Benedito, ] R.M.; Lopez, A.].S. Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods and Techniques-2 Volumes; Information Science Reference:
Hershey, NY, USA, 2009.

14. Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41-75. [CrossRef]

15. Luo, Y;; Liu, T.,; Tao, D.; Xu, C. Decomposition-Based Transfer Distance Metric Learning for Image
Classification. IEEE Trans. Image Process. 2014, 23, 3789-3801. [CrossRef]

16. Wang, C.; Mahadevan, S. Heterogeneous domain adaptation using manifold alignment. In Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
16-22 July 2011.

17.  Prettenhofer, P.; Stein, B. Cross-language text classification using structural correspondence learning.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala,
Sweden, 11-16 July 2010.

18. Schneider, N.; Stiefl, N.; Landrum, G.A. What’s What: The (Nearly) Definitive Guide to Reaction Role
Assignment. |. Chem. Inf. Model. 2016, 56, 2336-2346. [CrossRef] [PubMed]


http://dx.doi.org/10.1038/s41570-019-0124-0
http://dx.doi.org/10.1021/ci00057a005
https://arxiv.org/abs/1612.09529
https://arxiv.org/pdf/1706.03762
https://doi.org/10.17863/CAM.16293
http://dx.doi.org/10.1039/C8SC02339E
http://www.ncbi.nlm.nih.gov/pubmed/30090297
http://dx.doi.org/10.1021/acscentsci.7b00303
http://www.ncbi.nlm.nih.gov/pubmed/29104927
http://dx.doi.org/10.1021/acscentsci.9b00576
http://www.ncbi.nlm.nih.gov/pubmed/31572784
http://dx.doi.org/10.1039/C9CC05122H
http://www.ncbi.nlm.nih.gov/pubmed/31497831
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1109/TIP.2014.2332398
http://dx.doi.org/10.1021/acs.jcim.6b00564
http://www.ncbi.nlm.nih.gov/pubmed/28024398

Molecules 2020, 25, 2357 14 of 14

19.

20.

21.

22.

23.

24.

25.

26.

Seq2seq Model. Available online: https://github.com/pandegroup/reaction_prediction_seq2seq.git (accessed on
30 November 2017).

Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Newural Comput. 1997, 9, 1735-1780. [CrossRef]
[PubMed]

Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural
network architectures. Neural Netw. 2005, 18, 602-610. [CrossRef] [PubMed]

Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate.
2014. Available online: https://arxiv.org/abs/1409.0473 (accessed on 19 May 2016).

Duan, H.; Wang, L.; Zhang, C.; Li, ]. Retrosynthesis with Attention-Based NMT Model and Chemical Analysis
of the “Wrong” Predictions. RSC Adv. 2020, 10, 1371-1378. [CrossRef]

Transformer Model. Available online: https://github.com/hongliangduan/RetroSynthesisT2T.git (accessed on
22 August 2019).

Lu¢i¢, B.; Batista, J.; Bojovi¢, V.; Lovri¢, M.; Sovi¢-Krzi¢, A.; Beslo, D.; Nadramija, D.; Viki¢-Topi¢, D.
Estimation of Random Accuracy and its Use in Validation of Predictive Quality of Classification Models
within Predictive Challenges. Croat. Chem. Acta 2019, 92, 379-391. [CrossRef]

Batista, J.; Viki¢-Topi¢, D.; Luéi¢, B. The Difference between the Accuracy of Real and the Corresponding
Random Model is a Useful Parameter for Validation of Two-State Classification Model Quality.
Croat. Chem. Acta 2016, 89, 527-534. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


https://github.com/pandegroup/reaction_prediction_seq2seq.git
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.ncbi.nlm.nih.gov/pubmed/16112549
https://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1039/C9RA08535A
https://github.com/hongliangduan/RetroSynthesisT2T.git
http://dx.doi.org/10.5562/cca3551
http://dx.doi.org/10.5562/cca3117
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Dataset Preparation 
	Pretraining Dataset Preparation: USPTO-380K 
	Small Dataset Preparation: USPTO-50K 

	Models 
	Seq2seq Model 
	Transformer Model 

	Performance Evaluation 

	Results and Discussion 
	Conclusions 
	References

