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Image segmentation plays an important role in daily life. (e traditional K-means image segmentation has the shortcomings of
randomness and is easy to fall into local optimum, which greatly reduces the quality of segmentation. To improve these
phenomena, a K-means image segmentation method based on improved manta ray foraging optimization (IMRFO) is proposed.
IMRFO uses Lévy flight to improve the flexibility of individual manta rays and then puts forward a random walk learning that
prevents the algorithm from falling into the local optimal state. Finally, the learning idea of particle swarm optimization is
introduced to enhance the convergence accuracy of the algorithm, which effectively improves the global and local optimization
ability of the algorithm simultaneously. With the probability that K-means will fall into local optimum reducing, the optimized
K-means hold stronger stability. In the 12 standard test functions, 7 basic algorithms and 4 variant algorithms are compared with
IMRFO. (e results of the optimization index and statistical test show that IMRFO has better optimization ability. Eight
underwater images were selected for the experiment and compared with 11 algorithms. (e results show that PSNR, SSIM, and
FSIM of IMRFO in each image are better. Meanwhile, the optimized K-means image segmentation performance is better.

1. Introduction

In recent years, image segmentation has attracted much
attention and research by researchers. It is of great signif-
icance to the future image processing field. As a key step of
image processing, image segmentation plays an important
role in extracting objects of interest from images. At present,
it has important research value in medicine, agriculture,
ocean, and other fields. Image segmentation can be divided
into four categories: threshold segmentation, region seg-
mentation, edge segmentation, and segmentation methods
based on specific theories. (e clustering algorithm is a
typical unsupervised learning algorithm. It uses the idea of
clustering differentiation to solve the problem. (e way to
solve the problem is simple and easy to understand. It has
been successfully applied in many fields [1]. Cluster image
segmentation has also been successfully studied. K-means is
the most common and easiest clustering method among
them, but K-means has the disadvantage of large random-
ness and easily fall into local optimum, which makes it

impossible to control the cluster center reasonably. Swarm
intelligence algorithms is an algorithm with global opti-
mization performance and strong versatility that is suitable
for parallel processing. (is type of algorithm can find the
optimal solution or approximate the optimal solution within
a certain period of time. [2] Intelligent optimization algo-
rithm opens up a new way for image segmentation. In terms
of clustering segmentation, Hrosik RC and others improved
the K-means clustering algorithm based on the firefly al-
gorithm, which could achieve better segmentation average
error, peak signal-to-noise ratio, and structural similarity
index on medical images; [3] Li h and others proposed a
k-means clustering algorithm based on dynamic particle
swarm optimization (DPSO), which had better visual effect
than traditional K-means clustering in image segmentation
and obvious advantages in improving image segmentation
quality and efficiency; [4] Shubham and others applied gray
wolf optimizer (GWO) [5] to the segmentation of satellite
images; [6] (erefore, an intelligent optimization algorithm
is of great significance in the field of image segmentation.
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With the rapid development of swarm intelligence al-
gorithms, a variety of new algorithms are emerging. In
addition to the algorithms mentioned above, there are other
algorithms as follows: monarch butterfly optimization
(MBO) [7], elephant herding optimization (EHO) [8], moth
search (MS) algorithm [9], Harris hawks optimization
(HHO) [10], etc. Manta ray foraging optimization (MRFO)
is a new swarm intelligence optimization algorithm pro-
posed in 2020. With excellent searchability, fewer param-
eters, simple model and easily understood, it is better than
particle swarm optimization (PSO) [11, 12], genetic algo-
rithm (GA) [13, 14], Differential Evolution (DE) [15, 16],
Cuckoo Search (CS) [17], gravitational search algorithm
(GSA) [18], and ABC [19] in some function optimization
[20], and it has been successfully applied to solar energy
[21, 22], ECG [23], generator [24, 25], power system [26],
cogeneration energy system [27], geophysical inversion
problem [28], directional overcurrent relay [29], feature
selection [30], hybrid energy system [31], and sewage
treatment [32]. Although MRFO has good optimization
ability, it still has its own defects. In complex problems, the
search ability is limited and the diversity of the population
can not be guaranteed.(emain reason is that the individual
searches orderly, highly dependently, and inflexibly.

At present, researchers have noticed this point and
carried out successive studies, such as Mohamed Abd Elaziz,
who combines fractional calculus with MRFO to correct the
direction of manta ray movement. (is algorithm has been
verified by CEC 2017 test function and is applied to image
segmentation problems with good feasibility [33]. Mohamed
H. Hassan combines a gradient optimizer with MRFO to
reduce the probability that the algorithm will fall into a local
optimum, which has a good effect in single-objective and
multiobjective economic emission scheduling [34]. Haitao
Xu uses adaptive weighting and chaos to improve MRFO, so
as to efficiently handle thermodynamic problems [35].
Essam H. Houssein uses reverse learning to initialize the
population so as to increase the diversity of the population
and apply it to the threshold image segmentation problem
with good segmentation quality [36]. Bibekananda Jena adds
an attack capability to MRFO, which allows it to jump out of
local optimization and find a globally optimal solution. It is
then applied to the image segmentation problem of 3D
Tsallis [37]. Mihailo Micev fuses Simulate Anneal (SA) with
MRFO and applies it to the Proportional Integral Derivative
(PID) controller. (e fused algorithm is superior to other
algorithms [38]. In addition, Serdar and others adopt op-
position-based learning and SA to improve the convergence
effect of MRFO. It has better control performance when
applied to fractional order proportional integral derivative
(FOPID) controller [39]. Although the currently proposed
variants of MRFO have achieved some results, the following
problems still exist:

(1) Most scholars use the fusion of other algorithms to
improve the search ability, but this will bring higher
time complexity, and the algorithm after fusion may
not be able to complement each other so as to present
perfect results.

(2) Reverse learning can only solve inversely in a certain
space, but in complex high-dimensional situations,
there are fewer individual optimization methods,
and they cannot jump out of the local optimal state
perfectly.

(3) In the optimization process, the above algorithm
cannot completely balance the local search and
global search capabilities, which results in insuffi-
cient convergence accuracy of the algorithm.

Based on the above analysis, this paper presents an
improved algorithm for manta rays, which uses random
walk learning to make individuals wander randomly in
space, to increase the diversity of the population, and
avoid premature convergence of the algorithm, and then
we use Lévy flight for long-distance and short-distance
searches to balance the local and global searches of the
algorithm. Finally, the learning idea of particle swarm is
introduced. Two learning factors are used to improve the
convergence accuracy of the algorithm 12 functions are
used to verify the validity and feasibility of IMRFO. (en
eight underwater image datasets are used in K-means
image segmentation. (e results show that IMRFO has
better generalization ability and better segmentation
quality.

(e innovations and contributions of this paper are as
follows:

(i) A random walk learning algorithm is designed to
increase the diversity of the population and reduce
the probability of the algorithm falling into local
optimization to a certain extent.

(ii) Lévy flight and learning factors are introduced to
balance the searchability of the algorithm, which
makes the algorithm have a good convergence
effect.

(iii) In 12 standard test functions, IMRFO is compared
with 7 other algorithms to show its superiority and
feasibility. Next, two statistical tests are used to
emphasize the optimization performance of the
algorithm. It is compared with the recently pro-
posed variants of the algorithm. Finally, ablation
experiments were performed, all the results show
that IMRFO has a good search ability.

(iv) IMRFO is applied to K-means underwater image
segmentation. (e results of 11 algorithms show
that IMRFO performs well.

(e structure of this paper is as follows: Section 2 in-
troduces the basic MRFO algorithm, Section 3 introduces
the improved IMRFO algorithm and related analysis. Sec-
tion 4 describes the process of IMRFO optimizing K-means
image segmentation. Section 5 tests the performance of
IMRFO and compares the related algorithms. Section 6
describes and analyses the performance of each algorithm in
K-means image segmentation. Section 7 summarizes the
experimental results of this paper. (e last section expresses
the advantages and disadvantages of IMRFO and future
research directions.
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2. Manta Ray Foraging Optimization

Manta rays feed on plankton, which are mainly water mi-
crofauna. When feeding, they suck water and prey into their
mouths with angular head leaves.(ey then filter prey out of
the water through improved rabbles. Individuals of the
manta rays work together to find the best food. Inspired by
the behavior of the manta rays, the algorithm is divided into

chain feeding, spiral-feeding, and somersault foraging.(ere
are three stages of spiral and empty foraging.

2.1. Chain Feeding. At this stage, the manta ray population
will be arranged in an ordered chain to collaborate in
feeding, which will maximize the amount of plankton in the
pocket. (e mathematical model of the chain feeding pro-
cess can be expressed as follows:
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In formula (1), xd
i (t) denotes the d-dimensional infor-

mation of the location of the first manta ray in generation t.
R is a random number that obeys a uniform distribution of
[0,1]. α � 2 · r ·

�������
|log(r)|

􏽰
is the weight factor, xd

best(t) is the
d-dimensional information of the best location found so far
(e manta ray at position i depends on the manta ray at
position i-1 and the best food position found so far. N

represents the population number. (e update of the first
manta ray depends on the optimal location.

2.2. Spiral Feeding. When a manta ray finds a good food
source in a certain space, each individual approaches a
manta ray in front of it, in addition to spirally moving
toward the food. (e spiral-feeding process can be repre-
sented by the following mathematical model:
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where β � 2er1(T− t+1)/T · sin(2πr1), a weight factor repre-
senting the spiral motion, T being the largest number of
iterations, r being the rotation factor and obeying [0,1]
uniform random numbers. In addition, in order to improve

the efficiency of population foraging, MRFO randomly
generates a new location during the optimization process
and then performs a spiral search at that location. Its
mathematical model is as follows:
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xd
rand(t) represents a new location in space.

2.3. Somersault Foraging. When a certain manta ray finds a
food source, its position can be regarded as an axis. Each
manta ray tends to wander around the axis and flip to a new
location. Its mathematical model is as follows:
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S is the flip factor, which determines the flip distance. R2
and r3 are two random numbers that are uniformly dis-
tributed [0,1]. As S values vary, individual mantas flip to
locations in search space that are symmetrical to the optimal
solution at their current location.

3. Improved Manta Ray Foraging Optimization

From the above formulas, it can be seen that more com-
munication between individuals and orderly work can
improve the searchability of the algorithm and perform a
wide-ranging search. On the one hand, the lack of initiative
of individuals in the population limits their ability to de-
velop. On the other hand, updates within the population are
related to the best location. When encountering high-di-
mensional complex problems, the change of the optimal
position is similar, which results in less change in the two
updates before and after the algorithm, which limits the
algorithm’s optimization ability. (erefore, a flexible change
strategy is needed to improve the development ability and
local convergence effect of the algorithm.(is paper uses the
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Lévy flight strategy to improve individual blindness search,
and random walk learning is used to prevent the algorithm
from falling into a local state and the learning idea of particle
swarm to improve the search accuracy of the algorithm.

3.1. Why Each Modification Has Been Proposed? MRFO is
based on a group of animals collaborating in feeding, which
results in fewer optimizationmethods and a lack of flexibility
and fineness. (erefore, individual initiative is required to
increase the diversity of the population in order to find high-
quality solutions in space.

(erefore, this paper analyses and solves the defects of
the algorithm from the following three points. Firstly, it is
necessary to make the population individuals better dis-
tribute the whole space so as to develop the vision of the
algorithm and improve the global search ability of the al-
gorithm. Lévy flight is a classical strategy, which can fly in a
given space in the way of alternating long and short dis-
tances. It has been used by most scholars to improve the
search ability of the algorithm. Secondly, some individuals
need to be independent and never be limited by group
characteristics. Random walk learning is an uncertain way of
walking. (e traditional random walk can only be carried
out in local areas. However, the random walk learning
designed in this paper can make large location differences
between different individuals and improve the population
diversity of the algorithm. Finally, information sharing
among individuals is needed to improve the local search
ability of the algorithm and find high-quality solutions. (e
learning factor is derived from the particle swarm optimi-
zation algorithm, which is used to speed up the information
exchange of the population, prevent the early invalid search,
improve the local search ability of the algorithm, and im-
prove the accuracy of the solution to a certain extent.

3.2. Lévy Flight Strategy. When manta ray individuals per-
form chain search, all individuals follow the population to
search, which leads to the lack of flexibility of the algorithm
and can not perform a better search range. (erefore, the
Lévy flight strategy [40, 41] is introduced to enable indi-
viduals to search long and short distances, increase the
diversity of the population, and enable individuals to fully
diffuse into the whole space. (e location update format for
joining Lévy flight strategy is as follows:

xi
′(t) � xi(t) + l⊕levy(λ). (5)

In formula (8), xi(t) represents the position of the i-th
individual in the t-th iteration, ⊕ is an arithmetic symbol
representing point-to-point multiplication. l� 0.01(xi(t)-xp)
denotes a step length control parameter, xp represents the
position of the best individual in the population.

Lévy flight formula is as follows [42]:

Levy(x) � 0.01 ×
r4 × σ

r5
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􏼌􏼌􏼌􏼌
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where r4 and r5 are random numbers within the range of
[0,1], ξ. (e general value is 1.5. σ is calculated as follows:
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Γ(1 + ξ) × sin(πξ/2)
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􏼠 􏼡

(1/ξ)
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where Γ(x) � (x − 1)!, the schematic diagram of Lévy flight
is shown in Figure 1. Lévy flight can search long and short
distances in a certain space and balance the global and local
search of the algorithm.

3.3. Random Walk Learning. In the optimization process,
MRFO has the probability of falling into the local opti-
mum, which makes the current optimum individual
unreliable, so it is necessary to disperse all the individuals
to find a better solution. Unlike random walks, the
learning factors at the best and worst locations are in-
troduced to make individual escape directional and re-
duce unreasonable walk. (e specific mathematical model
of RWL is as follows:
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In formula (8), ((2/1 + t/M. sin(π/2.r)) − 1) is the si-
nusoidal random factor that uses the mathematical prop-
erties of the sinusoidal function to fluctuate toward the
optimal solution and continuously adjusts the step size based
on the worst position of the current population so that the
search path can span the entire solution space. M is the
maximum number of iterations, and c1 and c2 represent two
learning factors, random numbers that obey a normal dis-
tribution. e

(−t/M).(xt
i,j

−xt
worst) is the control step, (c1.x

t
best

− c2.X
t
i,j) is the direction of control. As shown in Figure 2(a),

(a) is the distribution of individuals without introducing
RWL, (b) introduces the individual distribution of RWL; we
can see that the introduction of RWL enables individuals to
master global information, makes the individual distribution
more even, and finds the global optimal solution.

3.4. PSO Algorithm Learning Ideas. (ere are two learning
factors in PSO to develop local solutions, which can effec-
tively improve the convergence accuracy of the algorithm.
(erefore, the formula of introducing two learning factors is
as follows:

x
t+1
i,j � b1 · x

t
i,j + b2 · rand(1) · BestX − x

t
i,j􏼐 􏼑. (9)

b1, b2 are two learning factors, and BestX is the optimal
position of the current population. As can be seen from the
formula, this strategy exploits individuals between the
current one and the optimal one to enhance the local search
of the algorithm.

3.5. Improved Manta Ray Foraging Optimization. To im-
prove the local search capability of MRFO and reduce the
probability of falling into local optimum, an improved
manta ray algorithm is presented in this paper. (e
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algorithm uses random walk learning to prevent the algo-
rithm from falling into the local state after each iteration and
to improve the global search ability of the algorithm. (en,
the Lévy flight mechanism is combined to improve the
blindness of the manta ray algorithm and to balance the
searchability of the algorithm. Using two learning factors of
particle swarm optimization to improve the search accuracy
ultimately makes the algorithm improve effectively both in
local and global aspects. (e specific pseudocode is shown in
Algorithm 1.

4. K-Means Image Segmentation
Based on IMRFO

(e principle of the traditional K-means algorithm is to
select K cluster centers randomly, so the way to select them is
uncertain, resulting in large differences in the final results
and easy to fall into local optimum.(erefore, it is necessary
to select an appropriate initial cluster center. Intelligent
optimization algorithm has been successfully applied to
K-means to improve its randomness and the defect of falling
into local optimum. (e improved manta ray foraging
optimization optimizes K-means so that the initial cluster

centers are well controlled. (e objective function is as
follows:

f � 􏽘
n

i�1
􏽘

m

j�1
Xi − Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (10)

Xi is a pixel gray value of the image and Yi is the J-th
clustering center. (e optimal initial number of clustering
centers is obtained by IMRFO to minimize the fitness value
of the objective function.

K-means image segmentation based on IMRFO is
mainly divided into two parts:

(1) Use the global search capabilities of IMRFO to find
the best initial cluster center in the image point set

(2) (e initial cluster centers of the IMRFO output are
segmented in the K-means algorithm

(e specific flow chart is shown in Figure 3.

5. Performance Analysis and Test

5.1. Performance Test. To verify the effectiveness and fea-
sibility of IMRFO, 12 benchmark functions [43, 44] are

(a) (b)

Figure 2: Distribution of algorithm individuals (a) original algorithm (b) algorithm with GWL.
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Figure 1: Lévy flight diagram.
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Input
M：Maximum number of iterations
N：Population sparrows
Output：Xbest, fg
Initialize population
t� 1;
While(t<M)
Update the position of the population according to formula (8)%RWL
For i� 1 to N do
If rand<0.5 then
If t/M< rand then
Update the position of the individual according to formula (3)
Else
Update the position of the individual according to formula (2)
End if
Else
Update the position of the individual according to formula (1)
End if
Update the position of the population according to formula (5)% Lévy flight
Get the current best and worst
For i� 1 to N do
Update the position of the individual according to formula (4)
End for
(e position of the individual is updated according to formula (9)% PSO algorithm learning ideas
Get a new Xbest, fg, Xworst;
End while
Get the final Xbest, fg.

ALGORITHM 1: (e framework of the IMRFO.

Determining Number of Cluster
Centers K 

Output from IMRFO serves as the initial cluster center for
K-means algorithm 

The Euclidean distance between each pixel point of the
image and the cluster center is calculated. 

Partition to the nearest cluster center based on the principle
of minimum distance 

Calculate the current mean for each class
Update Cluster Center

Convergence
or not?

Output results

NO

YES

Figure 3: K-Means image segmentation based on IMRFO.
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selected to verify its function optimization ability. (e
specific test function information is shown in Table 1. F1-6 is
a unimodal function, F7-11 is a complex multimodal
function, and F12 is a fixed-dimensional function. In ad-
dition, F1-11 is tested in different dimensions to verify the
optimization ability of the algorithm in high-dimensional
cases. To prove that IMRFO is competitive, seven algorithms
including MRFO, Honey Badger Algorithm (HBA) [45],
GWO, PSO, Whale Optimization Algorithm (WOA) [46],
Learning Based Optimization (TLBO) [47], and Flower
Pollution Algorithm (FPA) [48] are compared. (e new
cluster intelligence algorithm was proposed by HBA in 2021,
while other algorithms are classical ones that have been
extensively studied. (e number of iterations and pop-
ulation of each algorithm are 500 and 100. In HBA, O� 6,
C� 2; In FPA, the selection probability p� 0.8. B1 and b2 in
IMRFO are 0.2 and 0.8, respectively. (e experimental
environment is Windows 10 64 bit; the software is mat-
lab2019b; the memory is 16GB; the processor is Intel(R)
Core (TM) i5-10200H CPU @ 2.40GHz. (e average, op-
timal value, and standard deviation of the results of each
algorithm for 30 runs are calculated. If IMRFO is the optimal
value, the font is bolded. (e optimization results of each
algorithm are calculated as shown in Table 2-3.

On the one hand, from Table 2 and Table 3, we can see
that IMRFO has obvious advantages in searching ability, and
the results are better than other algorithms in each function.
(e increase of dimension does not reduce the searching
ability of IMRFO. On the other hand, among these func-
tions, F1, F6, F8-10, F12, MRFO itself has a good optimi-
zation effect and can find the theoretical optimal value,
IMRFO also has the same optimization effect, so it can be
seen that IMRFO does not weaken the original algorithm’s
optimization ability. Overall, IMRFO has been effectively
improved in stability and accuracy. It can be seen that the
introduction of multiple strategies improves the algorithm’s
optimization ability and reduces the probability of entering a
local optimum.

5.2. Statistical Test. To verify whether IMRFO and the other
seven algorithms have significant differences in global op-
timization, the 30-dimension results of each algorithm are
tested. (e Wilcoxon rank-sum test is used to find the
differences between the two algorithms. Assume H0 :(e
two algorithms have the same performance. H1 :(ere is an
obvious difference between the two algorithms. Use the P-
value of the test results to measure the differences between
the two algorithms. When P< 0.05, reject H0. It shows that
there is a significant difference between the two algorithms.
When P> 0.05, H0 is accepted, indicating that the two al-
gorithms have the same global optimization performance.
To clearly see the differences between these algorithms, we
utilize N/A to represent the values of P> 0.05. (eWilcoxon
test results are shown in Table 4. At the same time, in order
to better show the comprehensive optimization ability of
IMRFO in the whole test function, the average and variance
of each algorithm are Friedman test [49], and the final
ranking is calculated to measure the universality of the

algorithm in the 12 test functions. (e test results are shown
in Table 5.

From Table 4, it can be seen that IMRFO differs sig-
nificantly from other algorithms. In some functions, MRFO
itself has better searching ability, so the difference is not
obvious. From Table 5, IMRFO ranks best in the search
results of each function, which also indicates that it has a
good universality.

5.3. Comparison with Variants of the Algorithm. To further
show the effectiveness and innovation of IMRFO, this paper
compares IMRFO with multistrategy serial cuckoo search
algorithm (MSSCS) [50], firefly algorithm with courtship
learning (FACL) [51], self-adaptive cuckoo search (SACS)
[52], and CSsin [53] proposed in recent years. (ese four
algorithms are variants of classical algorithms and have been
validated in the CEC test set. (e specific parameters of each
algorithm are set as follows: In MSCS algorithm, α� 0.01,
β� 1.5, Pa � 0.25, C� 0.2, PAmax � 0.35, PAmin � 0.25; in
CSsin algorithm, Pmax � 0.75, Pmax � 0.25, freq� 0.5; in
FACL, α� 0.01, βmin � 0.2, β� 1, c � 1. (e number of
populations and the number of iterations for each algorithm
are shown above. Similarly, when IMRFO is the optimal
value, font bolding will be applied. (e results of each al-
gorithm are shown in Table 6.

From Table 6, it is clear that IMRFO is the best value in
F1-4, F6, F9-12, which shows that IMRFO is better than
these algorithms in the optimization of these functions.
Secondly, the variants of CS have better optimization results,
especially in F5 and F7, which have higher accuracy. FACL,
as the worst one, has poor optimization results but good
stability. Generally speaking, IMRFO has some advantages
in function optimization, which verifies the effectiveness and
innovation of the algorithm.

5.4. Convergence Analysis. In order to clearly see the opti-
mization and convergence effect of each algorithm in each
function, the average convergence diagram of each algo-
rithm is given as shown in Figure 4.

From Figure 4, it can be seen that IMRFO has a good
convergence effect and can find the most accurate solution
quickly, especially in the functions of F1-4, F6, F11. It can be
seen that the flexible search mechanism enables the algo-
rithm to find the best solution quickly in the optimization
process.

5.5. Ablation Experiment. In order to verify the validity and
feasibility of the three combinations of strategies, the
combinations of strategies are experimented with to find the
better one. In this paper, the algorithm of combining Lévy
flight with GWL is recorded as MRFO-I, the algorithm of
combining Lévy flight with PSO learning thought strategy is
recorded as MRFO-II, while the algorithm of combining
PSO thought with GWL is recorded as MRFO-III. Besides,
the algorithm using Lévy flight alone is recorded as MRFO-
IV, the algorithm using GWL alone as MRFO-V, and the
algorithm utilizing PSO alone as MRFO-VI. (e
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Table 2: Performance comparison table of each algorithm

F Algorithm Best Mean Std

F1(x)

IMRFO 0 0 0
MRFO 0 0 0
HBA 9.3799E− 166 1.1587E− 160 4.2983E− 160
WOA 3.1181E− 104 1.0841E− 95 4.5034E− 95
TLBO 4.0530E− 86 2.9876E− 85 2.1878E− 85
FPA 3.4196E+ 04 5.6323E+ 04 9.3090E+ 03
GWO 2.97266E− 42 9.97975E− 41 2.31134E− 40
PSO 1.35628E− 12 7.30343E− 11 1.53846E− 10

F2(x)

IMRFO 0 4.8161E− 277 0
MRFO 4.2592E− 237 1.5644E− 229 0
HBA 1.0045E− 87 3.0642E− 85 8.9871E− 85
WOA 5.1550E− 63 8.1673E− 58 2.9729E− 57
TLBO 3.0778E− 43 1.2493E− 42 7.1358E− 43
FPA 4.4336E+ 07 7.9783E+ 10 1.3371E+ 11
GWO 1.00188E− 24 5.16621E− 24 3.79647E− 24
PSO 1.9394E− 06 1.2453E− 04 3.7943E− 04

F3(X)

IMRFO 0 0 0
MRFO 0 4.2858E− 192 0
HBA 7.5465E− 129 1.8442E− 117 6.9103E− 117
WOA 4.7217E+ 03 1.4248E+ 04 6.9878E+ 03
TLBO 6.0458E− 17 1.7598E− 15 1.8686E− 15
FPA 6.4669E+ 04 9.4629E+ 04 1.9121E+ 04
GWO 1.2723E− 15 1.6522E− 11 5.6380E− 11
PSO 2.4597 6.8764 4.6664

F4(X)

IMRFO 0 3.6613E− 283 0
MRFO 1.8994E− 233 1.2937E− 223 0
HBA 6.4810E− 72 3.6559E− 68 8.7750E− 68
WOA 1.3789E− 07 2.9967E+ 01 3.0998E+ 01
TLBO 7.54383E− 35 2.2303E− 34 1.1471E− 34
FPA 7.5982E+ 01 8.3319E+ 01 3.0315E+ 00
GWO 1.0249E− 11 1.3528E− 10 1.3630E− 10
PSO 1.0009E+ 01 1.0221E+ 02 5.1654E+ 01

F5(X)

IMRFO 1.8761E+ 01 1.9089E+ 01 4.2393E− 01
MRFO 1.9091E+ 01 2.0074E+ 01 3.9236E− 01
HBA 1.9310E+ 01 2.1199E+ 01 7.6666E− 01
WOA 2.6313E+ 01 2.6797E+ 01 2.0942E− 01
TLBO 1.6702E+ 01 1.8846E+ 01 1.0315
FPA 1.0583E+ 08 1.7478E+ 08 3.8136E+ 07
GWO 4.5186E+ 01 4.6672E+ 01 7.8488E− 01
PSO 89.4507 234.8606 104.6002

F6(X)

IMRFO 1.4166E− 06 2.9500E− 05 2.0356E− 05
MRFO 3.1973E− 06 3.8448E− 05 4.0550E− 05
HBA 1.6931E− 05 1.1151E− 04 8.9566E− 05
WOA 3.9351E− 05 9.5517E− 04 9.4421E− 04
TLBO 4.4041E− 04 7.9732E− 04 2.1545E− 04
FPA 5.1790E+ 01 9.3728E+ 01 1.9183E+ 01
GWO 1.8171E− 04 5.6482E− 04 3.1680E− 04
PSO 7.1930E− 03 1.8163E− 02 7.2361E− 03

F7(X)

IMRFO −1.0536E+ 04 −1.0050E+ 04 4.2525E+ 02
MRFO −9.6874E+ 03 −9.0741E+ 03 4.3594E+ 02
HBA −1.0990E+ 04 −9.4427E+ 03 9.4018E+ 02
WOA −12569.4699 −11724.03485 1302.326078
TLBO −9.2643E+ 03 −7.3757E+ 03 1.1529E+ 03
FPA −4.0064E+ 03 −2.9596E+ 03 3.8588E+ 02
GWO −8.2622E+ 03 −6.3621E+ 03 7.0903E+ 02
PSO −8.3241E+ 03 −6.8450E+ 03 7.5268E+ 02
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Table 2: Continued.

F Algorithm Best Mean Std

F8(X)

IMRFO 0 0 0
MRFO 0 0 0
HBA 0 0 0
WOA 0 1.8948E− 15 1.0378E− 14
TLBO 0 6.3284 4.7427
FPA 3.3516E+ 02 3.9820E+ 02 2.9755E+ 01
GWO 0 4.7528E− 01 1.4588
PSO 0 2.0630 1.3861

F9(X)

IMRFO 8.8818E− 16 8.8818E− 16 0
MRFO 8.8818E− 16 8.8818E− 16 0
HBA 8.8818E− 16 8.8818E− 16 0
WOA 8.8818E− 16 4.0856E− 15 2.6960E− 15
TLBO 4.4409E− 15 6.3357E− 15 0
FPA 1.9290E+ 01 2.0337E+ 01 2.7610E− 01
GWO 1.8652E− 14 2.7652E− 14 3.8165E− 15
PSO 1.7249E− 06 1.9663E− 01 4.5356E− 01

F10(X)

IMRFO 0 0 0
MRFO 0 0 0
HBA 0 0 0
WOA 0 1.9723E− 03 3.3266E− 03
TLBO 0 0 0
FPA 2.7736E− 01 1.2829E+ 00 6.1301E− 01
GWO 0 2.4654E− 03 3.5462E− 03
PSO 0 1.9723E− 03 3.3266E− 03

F11(X)

IMRFO 7.3400E− 20 1.2392E− 18 1.2894E− 18
MRFO 4.04531E− 06 1.53518E− 05 8.77191E− 06
HBA 3.8903E− 10 6.7898E− 09 1.1908E− 08
WOA 2.7893E− 03 4.9054E− 03 1.5734E− 03
TLBO 5.7527E− 05 2.2424E− 03 5.7778E− 03
FPA 5.1790E+ 07 3.7356E+ 08 1.3609E+ 08
GWO 1.4152E− 06 1.4681E− 02 9.2775E− 03
PSO 6.4838E− 14 8.6436E− 02 2.5276E− 01

F12(X)

IMRFO 9.9800E− 01 9.9800E− 01 0
MRFO 9.9800E− 01 9.9800E− 01 0
HBA 9.9800E− 01 9.9800E− 01 0
WOA 9.9800E− 01 1.2626 6.8599E− 01
TLBO 9.9800E− 01 9.9800E− 01 0
FPA 1.9995 1.0262E+ 01 7.6364
GWO 9.9800E− 01 1.7255E+ 00 9.7247E− 01
PSO 9.9800E− 01 1.1305E+ 00 3.4368E− 01

(e optimal value is shown in bold.

Table 3: Table of results for each algorithm (100 DIMENSIONS).

F Algorithm Best Mean Std

F1(x)

IMRFO 0 0 0
MRFO 0 0 0
HBA 8.9040E-147 4.6592E-141 1.2550E-140
WOA 1.0469E-102 7.2231E-93 2.5499E-92
TLBO 1.6114E-75 1.6114E-75 1.1585E-75
FPA 1.3848 E+05 2.2811 E+05 4.4746 E+04
GWO 5.0821E-18 2.6308E-17 2.1090E-17
PSO 1.0669 1.2459 E+01 3.0029 E+01

F2(x)

IMRFO 2.0908E-305 4.0935E-281 0
MRFO 8.2591E-234 8.7997E-228 0
HBA 3.2693E-78 1.4848E-75 2.1169E-75
WOA 3.97136E-62 8.1673E-58 4.04975E-55
TLBO 1.58996E-38 1.11006E-55 1.64669E-38
FPA 2.5777 E+27 4.8007 E+45 1.3669 E+46
GWO 1.1188E-23 1.0071E-22 8.1329E-23
PSO 1.6825E-06 4.0865E-05 1.3518E-04
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Table 3: Continued.

F Algorithm Best Mean Std

F3(X)

IMRFO 0 0 0
MRFO 0 4.2858E-192 0
HBA 5.8574E-106 6.5344E-94 3.2931E-93
WOA 4.5880 E+05 6.7389 E+05 1.1901E+05
TLBO 5.7047E-06 1.4581E-04 1.5072E-04
FPA 5.9828 E+05 9.8255 E+05 2.2421 E+05
GWO 4.3996E-01 1.1814 E+01 1.3585 E+01
PSO 4.1855 E+03 6.8320 E+03 7.6320 E+03

F4(X)

IMRFO 2.0908E-305 4.0728E-281 0
MRFO 1.0891E-224 6.0212E-219 0
HBA 4.1580E-49 6.4459E-47 1.2824E-46
WOA 9.9712E-04 7.4068 E+01 2.9309 E+01
TLBO 2.64171E-30 4.63468E-30 1.35657E-30
FPA 8.7604 E+01 9.3681 E+01 2.0880
GWO 2.0983E-03 5.2094E-02 8.6554E-02
PSO 7.3783 9.5754 1.2668

F5(X)

IMRFO 9.0554 E+01 9.1195 E+01 7.3432E-01
MRFO 9.0823 E+01 9.2361 E+01 6.6140E-01
HBA 9.1619 E+01 9.4762 E+01 1.8652 E+00
WOA 9.6679 E+01 9.7258 E+01 3.0684E-01
TLBO 9.1198 E+01 9.3064 E+01 9.5488E-01
FPA 4.0625 E+08 9.3161 E+08 2.3879 E+08
GWO 9.5679 E+01 9.6973 E+01 9.2081E-01
PSO 6.5109 E+02 3.2217 E+03 6.7489 E+03

F6(X)

IMRFO 1.4328E-06 6.6842E-05 4.9030E-05
MRFO 2.0781E-06 4.9605E-05 4.3316E-05
HBA 2.3868E-05 1.4383E-04 1.2534E-04
WOA 8.5089E-06 1.3208E-03 1.3226E-03
TLBO 5.1751E-04 1.1234E-03 3.2954E-04
FPA 6.1163 E+02 1.4259 E+03 3.5171 E+02
GWO 9.4824E-04 2.6521E-03 1.1372E-03
PSO 4.9985E-01 1.1220 E+00 3.6320E-01

F7(X)

IMRFO -2.92 E+04 -2.57 E+04 1.67 E+03
MRFO -2.7791 E+04 -2.5142 E+04 1.1769 E+03
HBA -3.2530 E+04 -2.6092 E+04 3.5550 E+03
WOA -4.1898 E+04 -3.9015 E+04 3.7697 E+03
TLBO -2.7940 E+04 -1.6598 E+04 5.1640 E+03
FPA -6.5597 E+03 -5.3592 E+03 6.0949 E+02
GWO -2.2404 E+04 -1.6607 E+04 2.4372 E+03
PSO -2.3436 E+04 -2.0057 E+04 2.2771 E+03

F8(X)

IMRFO 0 0 0
MRFO 0 0 0
HBA 0 0 0
WOA 0 3.7896E-15 2.0756E-14
TLBO 0 6.3284 4.7427
FPA 1.3434 E+03 1.5311 E+03 8.6281 E+01
GWO 0 1.3971 2.2329
PSO 2.8854 E+01 4.8456 E+01 1.1153 E+01

F9(X)

IMRFO 8.8818E-16 8.8818E-16 0
MRFO 8.8818E-16 8.8818E-16 0
HBA 8.8818E-16 8.8818E-16 0
WOA 8.8818E-16 4.3225E-15 2.8731E-15
TLBO 7.9936E-15 7.9936E-15 0
FPA 1.9841 E+01 2.0520 E+01 3.3562E-01
GWO 2.2204E-14 3.0257E-14 3.7242E-15
PSO 1.3320E-06 1.4424E-01 4.4254E-01

Computational Intelligence and Neuroscience 11



experimental parameters are consistent with those above.
(e test function dimension is 30. If IMRFO is the optimal
value, the font is bolded. (e experimental results are shown
in Table 7.

As can be seen from Table 7, IMRFO is the best per-
former of all variants, and the criteria on each function are
the best. IMRFO search accuracy is better than other al-
gorithms and the difference is significant especially in F2, F4,
F11.(erefore, it can be seen that the integration of multiple
strategies is important, and the validity and feasibility of
IMRFO are verified.

5.6. Time Complexity Analysis. Time complexity is an im-
portant measure of an algorithm. In order to show an ef-
fective improvement, it is necessary to balance the
searchability and time complexity of the algorithm.(e basic
MRFO consists of only three phases, chain feeding, spiral
feeding, and empty feeding, where chain feeding and spiral
feeding are in the same cycle. Set the population number to
N and the maximum number of iterations to T. (e di-
mension is D, so the time complexity of MRFO can be
summarized as follows. Macroscopically, the time com-
plexity of swarm intelligence algorithms is the product of

Table 3: Continued.

F Algorithm Best Mean Std

F10(X)

IMRFO 0 0 0
MRFO 0 0 0
HBA 0 0 0
WOA 0 0 0
TLBO 0 0 0
FPA 1.3815 E+03 2.0376 E+03 3.4470 E+02
GWO 0 1.8958E-03 3.1773E-03
PSO 0 1.3192E-03 2.8042E-03

F11(X)

IMRFO 2.8193E-06 6.4940E-06 3.2213E-06
MRFO 4.6460E-06 1.09637E-05 6.3630E-06
HBA 1.9642E-02 3.5856E-02 1.0354E-02
WOA 1.8029E-03 7.0382E-03 9.1277E-03
TLBO 7.3698E-05 2.3727E-03 5.8937E-03
FPA 7.4824 E+08 2.1393 E+09 7.0466 E+08
GWO 2.1287E-06 1.5932E-02 9.1126E-03
PSO 2.3297E-13 8.2984E-02 1.7745E-01

F12(X)

IMRFO 9.9800E-01 9.9800E-01 0
MRFO 9.9800E-01 9.9800E-01 0
HBA 9.9800E-01 9.9800E-01 0
WOA 9.9800E-01 1.2626 6.8599E-01
TLBO 9.9800E-01 9.9800E-01 0
FPA 1.9995 1.0262 E+01 7.6364
GWO 9.9800E-01 1.7255 E+00 9.7247E-01
PSO 9.9800E-01 1.1305 E+00 3.4368E-01

Bold font is to clearly see the advantages of the algorithm. (e best indicators of IMRFO have been bold in this paper.

Table 4: Wilcoxon rank-sum test p-value.

F MRFO FPA GWO HBA PSO TLBO WOA
F1 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F2 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F3 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F5 1.46E-09 1.79E-11 1.79E-11 4.94E-11 3.53E-10 N/A 1.79E-11
F6 N/A 2.91E-11 2.91E-11 5.07E-07 2.91E-11 2.91E-11 2.29E-10
F7 7.61E-09 1.44E-11 1.44E-11 3.31E-03 1.44E-11 1.97E-11 7.40E-07
F8 N/A 1.21E-12 8.15E-02 N/A 4.24E-12 1.66E-11 3.34E-01
F9 N/A 1.21E-12 6.59E-13 N/A 1.21E-12 4.63E-13 1.02E-07
F10 N/A 1.21E-12 6.62E-04 N/A 1.35E-03 N/A 2.79E-03
F11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F12 5.46E-03 1.14E-11 1.14E-11 4.95E-10 6.79E-02 2.50E-05 1.14E-11

Table 5: Friedman test ranking table.

Algorithms IMRFO MRFO HBA WOA TLBO FPA GWO PSO
Rank 2.0208 2.2708 2.8333 5.0000 4.4583 7.5417 5.4167 6.4583
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Table 6: Comparison with variants of the algorithm

F Algorithm Best Mean Std

F1(x)

IMRFO 0 0 0
FACL 2.6020E+ 02 2.6020E+ 02 4.5704E− 13
MSSCS 2.6586E− 16 1.2320E− 14 2.2109E− 14
SACS 5.8993E− 17 2.1975E− 15 2.2919E− 15
CSsin 8.1279E− 17 1.8682E− 15 2.2000E− 15

F2(x)

IMRFO 0 4.8161E− 277 0
FACL 1.3615E+ 01 1.3615E+ 01 1.7853E− 15
MSSCS 2.4907E− 09 1.0918E− 08 9.6029E− 09
SACS 8.1604E− 10 3.6463E− 09 2.3128E− 09
CSsin 8.7299E− 10 3.3430E− 09 1.7651E− 09

F3(X)

IMRFO 0 0 0
FACL 2.3244E+ 03 2.3244E+ 03 2.7422E− 12
MSSCS 2.1933E− 02 6.6588E− 01 1.2328E+ 00
SACS 2.0617E− 13 4.2875E− 10 7.7897E− 10
CSsin 3.4984E− 13 3.5258E− 09 1.8741E− 08

F4(X)

IMRFO 0 3.6613E− 283 0
FACL 1.5622E+ 01 1.5622E+ 01 1.4282E− 14
MSSCS 9.5018E− 05 2.8057E− 03 7.0418E− 03
SACS 2.5496E− 15 2.8163E− 12 8.9570E− 12
CSsin 1.1423E− 15 1.3641E− 12 4.9902E− 12

F5(X)

IMRFO 1.8761E+ 01 1.9089E+ 01 4.2393E− 01
FACL 6.2978E+ 04 6.2978E+ 04 7.3126E− 11
MSSCS 2.1186E+ 01 2.6991E+ 01 1.5287E+ 01
SACS 9.5265E− 03 1.6347E+ 01 1.0434E+ 01
CSsin 3.1439E+ 00 1.4000E+ 01 4.5249E+ 00

F6(X)

IMRFO 1.4166E− 06 2.9500E− 05 2.0356E− 05
FACL 4.9638E− 01 2.6540E+ 00 3.6836E+ 00
MSSCS 1.0931E− 03 3.7296E− 03 1.7917E− 03
SACS 2.7015E− 04 1.2413E− 03 6.5230E− 04
CSsin 2.5773E− 04 1.2047E− 03 6.2553E− 04

F7(X)

IMRFO −1.0536E+ 04 −1.0050E+ 04 4.2525E+ 02
FACL −3.2588E+ 03 −3.2588E+ 03 3.6563E− 12
MSSCS −1.2409E+ 04 −1.2023E+ 04 1.7642E+ 02
SACS −1.2337E+ 04 −1.2040E+ 04 1.6571E+ 02
CSsin −1.2197E+ 04 −1.1773E+ 04 2.2010E+ 02

F8(X)

IMRFO 0 0 0
FACL 1.3469E+ 02 1.3469E+ 02 1.9995E− 13
MSSCS 1.3682E+ 02 1.3682E+ 02 2.2852E− 13
SACS 1.3558E+ 01 1.9318E+ 01 3.2639E+ 00
CSsin 1.3082E+ 01 1.7173E+ 01 2.4068E+ 00

F9(X)

IMRFO 8.8818E− 16 8.8818E− 16 0
FACL 9.5803E+ 00 9.5803E+ 00 1.4282E− 14
MSSCS 7.8366E− 09 3.3808E− 08 2.3225E− 08
SACS 6.6614E− 09 3.5846E− 08 2.6071E− 08
CSsin 9.4992E− 09 4.9013E− 08 3.5110E− 08

F10(X)

IMRFO 0 0 0
FACL 1.6979E+ 01 1.6979E+ 01 2.4994E− 14
MSSCS 6.6613E− 16 8.2473E− 04 4.4988E− 03
SACS 1.6653E− 15 3.2272E− 03 9.0416E− 03
CSsin 6.6613E− 16 1.8055E− 03 8.5946E− 03

F11(X)

IMRFO 7.3400E− 20 1.2392E− 18 1.2894E− 18
FACL 8.7100E+ 00 8.7100E+ 00 1.4282E− 14
MSSCS 1.5139E− 07 5.4848E− 07 3.2760E− 07
SACS 2.2637E− 07 4.8725E− 07 3.3696E− 07
CSsin 1.7143E− 07 5.0219E− 07 3.9414E− 07

F12(X)

IMRFO 9.9800E− 01 9.9800E− 01 0
FACL 1.9920E+ 00 1.9920E+ 00 4.4633E− 15
MSSCS — — —
SACS 9.9800E− 01 9.9800E− 01 0
CSsin 9.9800E− 01 9.9800E− 01 0

(e optimal value is shown in bold.
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Figure 4: Continued.
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Figure 4: Average convergence of each algorithm.
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Table 7: Test table for each combination algorithm.

F Algorithm Best Mean Std

F1(x)

IMRFO 0 0 0
MRFO-I 0 0 0
MRFO-II 0 0 0
MRFO-III 0 0 0
MRFO-IV 0 0 0
MRFO-V 0 0 0
MRFO-VI 0 0 0

F2(x)

IMRFO 0 4.8161E-277 0
MRFO-I 2.2366E-239 2.3660E-230 0
MRFO-II 1.4788E-239 3.6180E-231 0
MRFO-III 6.7519E-240 2.1114E-231 0
MRFO-IV 4.9710E-237 1.7202E-229 0
MRFO-V 3.4101E-236 1.0691E-229 0
MRFO-VI 6.6058E-239 8.1070E-230 0

F3(X)

IMRFO 0 0 0
MRFO-I 0 0 0
MRFO-II 0 0 0
MRFO-III 0 0 0
MRFO-IV 0 0 0
MRFO-V 0 0 0
MRFO-VI 0 0 0

F4(X)

IMRFO 0 3.6613E-283 0
MRFO-I 7.1957E-231 9.1743E-224 0
MRFO-II 5.5959E-232 2.5385E-224 0
MRFO-III 2.2845E-232 2.3915E-224 0
MRFO-IV 1.7079E-231 6.1960E-224 0
MRFO-V 3.1285E-233 3.7719E-225 2.0880
MRFO-VI 3.3266E-233 2.8006E-224 8.6554E-02

F5(X)

IMRFO 1.8761 E+01 1.9089 E+01 4.2393E-01
MRFO-I 1.9160 E+01 2.0228 E+01 4.7486E-01
MRFO-II 1.9205 E+01 1.9904 E+01 4.1531E-01
MRFO-III 1.9050 E+01 2.0040 E+01 4.5484E-01
MRFO-IV 1.9054 E+01 1.9923 E+01 4.8479E-01
MRFO-V 1.8959 E+01 2.0027 E+01 5.1658E-01
MRFO-VI 1.8883 E+01 1.9994 E+01 6.7667E-01

F6(X)

IMRFO 1.4166E-06 2.9500E-05 2.0356E-05
MRFO-I 3.3254E-06 4.0901E-05 2.9878E-05
MRFO-II 1.7086E-06 4.2369E-05 3.8592E-05
MRFO-III 2.9884E-06 4.3133E-05 4.4862E-05
MRFO-IV 5.3342E-06 5.1792E-05 5.3359E-05
MRFO-V 8.3930E-06 6.0626E-05 4.2128E-05
MRFO-VI 4.8785E-06 5.3014E-05 4.7227E-05

F7(X)

IMRFO -1.0536 E+04 -1.0050 E+04 4.2525 E+02
MRFO-I -9.7467 E+03 -8.7240 E+03 6.4405 E+02
MRFO-II -9.9243 E+03 -8.7951 E+03 6.3557 E+02
MRFO-III -9.8848 E+03 -8.8964 E+03 5.5148 E+02
MRFO-IV -1.0102 E+04 -8.7470 E+03 6.3365 E+02
MRFO-V -1.0359 E+04 -8.9240 E+03 7.0323 E+02
MRFO-VI -1.0082 E+04 -9.0438 E+03 5.6962 E+02

F8(X)

IMRFO 0 0 0
MRFO-I 0 0 0
MRFO-II 0 0 0
MRFO-III 0 0 0
MRFO-IV 0 0 0
MRFO-V 0 0 0
MRFO-VI 0 0 0

16 Computational Intelligence and Neuroscience



population number, iteration number, and dimension.
(erefore, the time complexity of IMRFO is O (TND), just
like other algorithms.

Microscopically, MRFO can be calculated as follows:

O(IMRFO) � O(T(O(cyclone foraging + chain foraging)

+ O(somersault foraging)))

� O(T(ND + ND)) � O(TND).

(11)

Set the calculation time of introducing RWL to be t1, the
calculation time of introducing Lévy flight to be t2, the
calculation time of using two learning factors to be t3, and
the other calculations are ignored.

IMRFO can be summarized as follows:

O(MRFO) � O T O(cyclone foraging + chain foraging) + O(t1) + O(somersault foraging) + O t2( 􏼁 + O t3( 􏼁( 􏼁( 􏼁

� O(TND).
(12)

(erefore, it can be seen that the time complexity of
IMRFO has not changed fundamentally. A small increase in
the number of iterations can be ignored. (ese increases will
be of great significance if the optimization capability of the
algorithm is effectively improved.

6. Image Segmentation Experiments

At present, image processing has been applied in many
fields, and the image on land has been well developed, but
it still has research value in underwater images. So in
order to show the research value, eight underwater images

are selected as test images. From the literature [54], select
PSO, DPSO, sparrow search algorithm (SSA) [55],
Modified sparrow search algorithm (MSSA) [56], ABC,
MRFO, WOA, TLBO, FPA, IMRFO 9 algorithms optimize
K-means algorithm and traditional K-means algorithm
for image segmentation. MSSA is a newly proposed
K-means based algorithm, and other algorithms have been
successfully applied to image segmentation problems in
recent years. Because the K-means clustering algorithm
has a strong dependence on K values, improper selection
of K values will have a great impact on the results, and
K-means clustering algorithm has a strong dependence

Table 7: Continued.

F Algorithm Best Mean Std

F9(X)

IMRFO 8.8818E-16 8.8818E-16 0
MRFO-I 8.8818E-16 8.8818E-16 0
MRFO-II 8.8818E-16 8.8818E-16 0
MRFO-III 8.8818E-16 8.8818E-16 0
MRFO-IV 8.8818E-16 8.8818E-16 0
MRFO-V 8.8818E-16 8.8818E-16 0
MRFO-VI 8.8818E-16 8.8818E-16 0

F10(X)

IMRFO 0 0 0
MRFO-I 0 0 0
MRFO-II 0 0 0
MRFO-III 0 0 0
MRFO-IV 0 0 0
MRFO-V 0 0 0
MRFO-VI 0 0 0

F11(X)

IMRFO 7.3400E-20 1.2392E-18 1.2894E-18
MRFO-I 1.9606E-19 1.5295E-18 1.7575E-18
MRFO-II 1.8111E-19 1.4964E-18 1.1884E-18
MRFO-III 1.2951E-19 2.0136E-18 2.1218E-18
MRFO-IV 3.8758E-19 2.7853E-18 4.2987E-18
MRFO-V 1.1870E-19 1.1469E-18 1.0703E-18
MRFO-VI 9.2691E-20 1.8700E-18 2.1327E-18

F12(X)

IMRFO 9.9800E-01 9.9800E-01 0
MRFO-I 9.9800E-01 9.9800E-01 0
MRFO-II 9.9800E-01 9.9800E-01 0
MRFO-III 9.9800E-01 9.9800E-01 0
MRFO-IV 9.9800E-01 9.9800E-01 0
MRFO-V 9.9800E-01 9.9800E-01 0
MRFO-VI 9.9800E-01 9.9800E-01 0

Bold font is to clearly see the advantages of the algorithm.
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on K values. Set the value of k to 3 to avoid interference
from unrelated factors. (e general parameters of the
algorithm are population size of 30 and the maximum
number of iterations of 100. Each algorithm divides the
image as shown in Figure 5 and Figure 6. (e first line in
Figure 5 and Figure 6 represents the original image, and
each subsequent line represents the segmentation effect of
each algorithm.

It is impossible to see the difference between each al-
gorithm in image segmentation by human eyes. (erefore,
three commonly used image segmentation metrics, PSNR,
SSIM, and FSIM, are selected to measure the quality of each
algorithm.

Peak Signal-to-Noise Ratio (PSNR) is mainly used to
measure the difference between the segmented image and
the original image. (e formula is as follows [57]:

PSNR � 20.log10
255

RMSE
􏼒 􏼓,

RMSE �

������������������������

􏽐
M
i�1􏽐

Q
j�1(I(i, j) − Seg(i, j))

2

M × Q

􏽳

.

(13)

In formula (12) and (13), RMSE represents the root
mean square error of the pixels;M×Q represents the size of
the image; I(i, j) represents the pixel gray value of the
original image; Seg(i, j) represents the pixel gray value of
the segmented image. (e larger the PSNR value, the better
the segmented image quality. Generally speaking, PSNR
higher than 40 dB indicates excellent image quality (indi-
cating that it is very close to the original image). At
30–40db, it usually indicates that the image quality is good
(indicating that the distortion is perceptible but
acceptable).

Structural Similarity (SSIM) is used to measure the
similarity between the original image and the segmented
image. (e larger the SSIM, the better the segmented result.
SSIM is defined as follows [58]:

SSIM �
2μIμseg + c1􏼐 􏼑 2σI,seg + c2􏼐 􏼑

μ2I + μ2seg + c1􏼐 􏼑 σ2I + σ2seg + c2􏼐 􏼑
. (14)

In formula (14), μI and μseg represent the average value of
the original image and the segmented image; σI and σseg
represent the standard deviation of the original image and
the segmented image, respectively.; σI,seg represents the
covariance between the original image and the segmented
image; c1, c2 are constantly used to ensure stability. SSIM
value range [0,1]. (e larger the value, the smaller the image
distortion.

Feature similarity index mersure (FSIM) is a measure of
the characteristic similarity between the original image and
the quality of the segmentation, used to evaluate local
structure and provide contrast information. (e value range
of FSIM is [0,1], and the closer the value is to 1, the better the
segmentation effect. FSIM is defined as follows [59]:

FSIM �
􏽐l∈ΩSL(X)PCm(X)

􏽐l∈ΩPCm(X)
,

SL(X) � SPC(X)SG(X),

SPC(X) �
2PC1(X)PC2(X) + T1

PC
2
1(X)PC

2
2(X) + T1

,

PC(X) �
E(X)

ε + 􏽐mAn(X)( 􏼁
.

G �

��������

G
2
x + G

2
y,

􏽱

SG(X) �
2G1(X)G2(X) + T2

G
2
1(X)G

2
2(X) + T2

,

(15)

In the above formula, Ω is all the pixel regions of the
original image; SL(X) is the similarity score; PCm(X) is the
phase consistency measure; T1 and T2 are constants; G is the
gradient descent; E(x) is the response vector size at position
X and the scale is n; ε is a very small value; An(X) is the local
size at scale n.

Run each algorithm 10 times, and the average and av-
erage running time of the partitioned metrics are shown in
Table 8.

Simply from the naked eye, the image after IMRFO
segmentation in Figures 5 and Figure 6 is clearer. Some
algorithms have a rough segmentation effect and have
appeared a blurry phenomenon. From Table 7, it can be
seen that the segmentation index of IMRFO has a greater
advantage, especially in test01 and test03-08, where more
than two indexes are optimal. For example, the FSIM index
in test07 reaches 0.97, SSIM in test08 reaches 0.87, which
has a significant advantage over other algorithms. When
the performance indicator is not optimal, IMRFO is still
close to the optimal value. For example, in test01, the SSIM
index of WOA is 0.7488, while that of IMRFO is 0.7479,
which is close to the optimal value. In test06, the PSNR of
ABC was 43.3715, and that of IMRFO was 43.1626.
(erefore, both subjective visual effect and measurement
result of IMRFO is better than other algorithms, which can
prove a good segmentation effect. It also indirectly proves
the good search performance of IMRFO, solves the
problem that MRFO is easy to fall into local optimal so-
lution and K-means has the disadvantage of being sensitive
to the initial clustering center, which results in an excellent
initial clustering center and further improves the image
segmentation quality. On the other hand, the running time
of K-means segmentation is the least, but the quality is the
worst. (e operation of other algorithms is large and the
effect is obvious. (e IMRFO does have a time disad-
vantage, to be expected, as it takes more time to accurately
scan the solution in space.
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Figure 5: Continued.
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7. Summary of Results

MRFO relies on group behavior to find food, so it lacks
flexibility and is prone to fall into local optimum. In the
existing work, most scholars can not solve such problems
well. In order to improve the searching ability of MRFO, an
improved algorithm for bats is presented, which uses Lévy
flight, random walk learning, and learning factors.

(e current experimental work is summarized as
follows:

(1) Comparing IMRFO with some basic algorithms on
12 standard test functions shows that the algorithm
has certain advantages.

(2) Two statistical tests are used to verify the universality
of IMRFO and show a good search ability.

(3) (e convergence of each algorithm in each function
is given, and the result shows that IMRFO has a good
convergence rate.

(4) To further verify the performance of the algorithm,
IMRFO is compared with the recently proposed
variants of the algorithm, and the results show that
IMRFO has an obvious advantage in most functions.

(5) In order to verify the validity and value of the three
combinations of strategies, ablation experiments
were carried out. (e results show that IMRFO is
better than other combinations of strategies, high-
lighting the practical value of IMRFO.

(6) Eight underwater images were used to verify the
effect of IMRFO optimized K-means image

SSA

TLBO

WOA

DPSO

MSSA

IMRFO

Test 01 Test 02 Test 03 Test 04

(b)

Figure 5: Segmentation effect of test 01–4.
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Figure 6: Continued.
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Figure 6: Segmentation effect of test 05–8.

Table 8: Segmentation effect tables for each algorithm.

Image Index K-means PSO MRFO DPSO MSSA IMRFO

Test 01

PSNR 8.0602 42.9051 42.9934 42.8040 43.4789 44.4989
SSIM 0.0525 0.7354 0.7412 0.7370 0.7671 0.7479
FSIM 0.5556 0.9478 0.9476 0.9571 0.9467 0.9579

Ave time 2.5886 39.2606 76.7789 38.4986 50.6846 76.3475

Test 02

PSNR 6.4532 44.0008 43.3155 44.0595 43.9037 43.7004
SSIM 0.0306 0.7975 0.7788 0.8027 0.7877 0.7970
FSIM 0.4934 0.9464 0.9473 0.9410 0.9508 0.9601

Ave time 5.9745 43.9744 78.42064 38.7315 50.7706 74.5214

Test 03

PSNR 6.6314 43.1602 43.3925 43.3760 43.2782 43.7128
SSIM 0.0273 0.7615 0.7770 0.7655 0.7678 0.7894
FSIM 0.4249 0.9400 0.9470 0.9424 0.9506 0.9430

Ave time 2.4941 42.6951 75.7196 38.5346 50.7550 74.7570
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segmentation. (e results show that the IMRFO
optimized image segmentation quality is good and
has a rational segmentation index inmultiple images.

In summary, several experiments have demonstrated
that IMRFO is a challenging new variant of the algorithm.
IMRFO has shown good results in several test functions and

Table 8: Continued.

Image Index K-means PSO MRFO DPSO MSSA IMRFO

Test 04

PSNR 7.6085 43.0707 42.7419 43.2700 42.6999 43.1534
SSIM 0.0461 0.7559 0.7396 0.7651 0.7380 0.7808
FSIM 0.4920 0.9351 0.9435 0.9334 0.9397 0.9466

Ave time 5.8564 41.2824 77.9430 38.4732 52.1376 75.2728

Test 05

PSNR 7.7941 43.1295 42.9913 43.2999 42.6999 43.5453
SSIM 0.0187 0.7542 0.7503 0.7637 0.7380 0.7726
FSIM 0.4011 0.9551 0.9566 0.9596 0.9397 0.9634

Ave time 2.2253 37.4426 73.5829 37.6144 48.2604 73.7482

Test 06

PSNR 9.6892 42.9705 42.7052 43.539 42.8316 43.1626
SSIM 0.0393 0.7375 0.7309 0.7385 0.7338 0.7517
FSIM 0.5301 0.9501 0.9567 0.9480 0.9474 0.9604

Ave time 1.2299 37.5475 72.6558 39.0477 48.7618 74.5432

Test 07

PSNR 7.82 42.7995 42.8791 72.8223 42.7924 43.0107
SSIM 0.1071 0.7357 0.7399 0.7377 0.7414 0.7409
FSIM 0.4460 0.9625 0.9584 0.9667 0.9558 0.9734

Ave time 2.3464 39.1573 74.3283 38.1076 49.2879 74.5704

Test 08

PSNR 8.2165 44.1114 43.5191 44.5560 42.8239 46.4141
SSIM 0.0210 0.7681 0.7417 0.7835 0.7185 0.8710
FSIM 0.6614 0.8259 0.8130 0.8064 0.8444 0.8340

Ave time 1.2530 38.8315 74.7158 38.2203 48.7720 75.4689
F index WOA ABC TLBO FPA SSA IMRFO

Test 01

PSNR 43.1176 43.1018 42.8136 43.0370 43.4300 44.4989
SSIM 0.7488 0.7473 0.7341 0.7407 0.7545 0.7479
FSIM 0.9476 0.9441 0.9438 0.9441 0.9466 0.9579

ave time 38.3036 39.4908 74.8217 40.1402 39.1653 76.3475

Test 02

PSNR 44.1919 43.5238 43.4408 42.9663 43.4401 43.7004
SSIM 0.8006 0.7836 0.7852 0.7622 0.7808 0.7970
FSIM 0.9482 0.9585 0.9557 0.9487 0.9531 0.9601

ave time 38.8852 40.4172 75.3121 39.2922 42.0149 74.5214

Test 03

PSNR 43.4085 43.4408 43.0703 43.2635 43.3470 43.7128
SSIM 0.7746 0.7790 0.7641 0.7731 0.7738 0.7894
FSIM 0.9422 0.9453 0.9452 0.9442 0.9503 0.9430

ave time 38.7937 42.8378 75.0803 41.8402 40.2512 74.7570

Test 04

PSNR 43.3877 43.2727 43.2877 42.7467 42.4343 43.1534
SSIM 0.7600 0.7622 0.7630 0.7410 0.7256 0.7808
FSIM 0.9426 0.9402 0.9403 0.9400 0.9380 0.9466

ave time 39.2289 40.4403 74.4058 39.5984 39.0673 75.2728

Test 05

PSNR 42.9238 42.9262 42.9594 42.8405 42.9593 43.5453
SSIM 0.7518 0.7514 0.7497 0.7480 0.7497 0.7726
FSIM 0.9607 0.9605 0.9568 0.9586 0.9568 0.9634

ave time 39.0783 38.9743 74.9810 38.6717 40.5572 73.7482

Test 06

PSNR 42.9003 43.3715 42.5365 42.5136 43.1584 43.1626
SSIM 0.7356 0.7501 0.7107 0.7147 10.7503 0.7517
FSIM 0.9396 0.9503 0.9444 0.9442 0.9511 0.9604

ave time 37.5257 38.4848 76.3897 38.1784 37.8186 74.5432

Test 07

PSNR 42.8455 42.8353 42.8986 42.8399 42.8093 43.0107
SSIM 0.7410 0.7386 0.7409 0.7450 0.7397 0.7409
FSIM 0.9426 0.9551 0.9566 0.9367 0.9491 0.9734

ave time 38.7532 39.6091 74.4956 38.6593 38.118674 74.5704

Test 08

PSNR 44.0623 45.5442 43.2560 45.3984 43.7115 46.4141
SSIM 0.7663 0.8221 0.7315 0.8182 0.7545 0.8710
FSIM 0.8381 0.8398 0.8196 0.8263 0.8316 0.8340

ave time 39.3148 39.1180 76.6363 39.1871 38.8752 75.4689
(e bold font here is to see the advantages and disadvantages of IMRFO. Although IMRFO has good performance, it has no advantage in time.
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image segmentation, but the optimization results in some
functions and images need to be improved. More work is
waiting to improve its optimization capability.

8. Conclusion and Future Works

In order to improve the shortcomings of K-means image
segmentation and its vulnerability to local optimization, this
paper presents a K-means image segmentation method
based on IMRFO. IMRFO uses Lévy flight to improve the
individual searchability, proposes random walk learning to
prevent the premature phenomenon of the algorithm, and
finally uses learning factor to improve the convergence
accuracy of the algorithm so as to improve the search of the
algorithm. (e validity and feasibility of IMRFO are verified
by 12 test functions, and through 8 underwater image data
sets, it can be seen that IMRFO has a good segmentation
effect and is superior to other algorithms proposed in recent
years under several indicators.

Although IMRFO has good segmentation advantages in
eight images, it does not achieve the best three criteria for all
images. From the experimental point of view, IMRFO is only
the best in test 05, while the other test pictures are basically
the two best. On the other hand, the running time of each
algorithm is too large, and the accuracy is at the expense of
time. In the future, we will improve the image quality from
the following three aspects.

(1) Comprehensively improve the three performance
indicators, making the three indicators the best

(2) Balance the time and the search ability of the al-
gorithm to get the best performance in an effective
time

(3) It can be used in agricultural, aerospace, medical, and
other scenarios so that the algorithm can play a
suitable role in different environments
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