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Institut Curie, PSL Research University, Paris 75005, France and 13Institut Cochin, INSERM U1016, CNRS UMR
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Abstract

Motivation: In cancer, clonal evolution is assessed based on information coming from single

nucleotide variants and copy number alterations. Nonetheless, existing methods often fail to accu-

rately combine information from both sources to truthfully reconstruct clonal populations in a

given tumor sample or in a set of tumor samples coming from the same patient. Moreover, previ-

ously published methods detect clones from a single set of variants. As a result, compromises

have to be done between stringent variant filtering [reducing dispersion in variant allele frequency

estimates (VAFs)] and using all biologically relevant variants.

Results: We present a framework for defining cancer clones using most reliable variants of high

depth of coverage and assigning functional mutations to the detected clones. The key element

of our framework is QuantumClone, a method for variant clustering into clones based on VAFs,

genotypes of corresponding regions and information about tumor purity. We validated

QuantumClone and our framework on simulated data. We then applied our framework to whole
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genome sequencing data for 19 neuroblastoma trios each including constitutional, diagnosis and

relapse samples. We confirmed an enrichment of damaging variants within such pathways as

MAPK (mitogen-activated protein kinases), neuritogenesis, epithelial-mesenchymal transition, cell

survival and DNA repair. Most pathways had more damaging variants in the expanding clones

compared to shrinking ones, which can be explained by the increased total number of variants

between these two populations. Functional mutational rate varied for ancestral clones and clones

shrinking or expanding upon treatment, suggesting changes in clone selection mechanisms at dif-

ferent time points of tumor evolution.

Availability and implementation: Source code and binaries of the QuantumClone R package are

freely available for download at https://CRAN.R-project.org/package¼QuantumClone.

Contact: gudrun.schleiermacher@curie.fr or valentina.boeva@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The principal cause of cancer is believed to be the accumulation of

somatic variants and structural variations (SVs) in the genome.

Recently, many efforts have focused on the identification of driver

mutations; nonetheless, passenger variants, although they are not

directly linked to the disease, may provide additional evidence from

which to infer the phylogeny of a tumor and so help uncover the

basis for its proliferative activity (Marusyk et al., 2014). Indeed high

confidence passenger set of variants shared by a clonal population

should be observed at the same cellular prevalence at any given

point in time, allowing statistical models to cluster variants together

and define a clone.

To understand the role that driver mutations play in clonal

expansion and cancer progression, it is essential to accurately recon-

struct the clonal structure and assign functional variants to it. We

define a clone as a cell population that harbors a unique pattern of

mutations and SVs. Such clones are related to each other and share a

common ancestor. A hierarchical phylogenetic tree, which repre-

sents the ancestry of clones, can be constructed to reflect the order

of appearance of new sets of mutations defining each clone. Each

such set of mutations is expected to contain at least one driver muta-

tion or SV giving a selective advantage to the clone compared to its

ancestry. A clone can thus have a different behavior from its ances-

tral clone when facing the same stimuli. With accumulation of driver

mutations, clones are likely to gain hallmarks of cancer such as

evading growth suppressors and activating invasion and metastasis

(Hanahan and Weinberg, 2011).

High-throughput sequencing of bulk tumor tissues has allowed

uncovering genetic differences at the clonal level in primary and

relapse/metastatic tumors. Modern computational methods provide

ways to reconstruct the structure of the phylogenetic tree from var-

iant allele frequencies (VAFs) in sequenced reads, where VAF is a

proportion of reads supporting each given variant among all reads

spanning the position of interest (Fischer et al., 2014; Jiao et al.,

2014; Kepler, 2013; Malikic et al., 2015; Miller et al., 2014; Qiao

et al., 2014; Schwarz et al., 2014). However, existing methods for

clonal reconstruction often neglect information about the genotype

of each position, which refers to the paternal or maternal inheritance

of a locus and the number of copies of each allele. Accounting for

the genotype information is especially crucial in the case of hyper-

diploid cancers and cancers with highly rearranged genomes, as the

cellular prevalence—measured as the proportion of cancer cells car-

rying a variant—is linked to VAF through such parameters as copy

number of the locus and the number of chromosome bearing the

mutation. Computationally, we can detect different clones based on

the clustering of VAF values (Miller et al., 2014; Roth et al., 2014;

Qiao et al., 2014). However, identifying the correct hierarchical tree

is a complex task, and this problem often does not have a unique

solution. Therefore, in this paper, clones and variant clusters are

considered as synonyms.

Here, we show that by combining the genotype and VAF informa-

tion it is possible to correctly cluster variants and assign them to spe-

cific clones, thus reconstructing the clonal architecture of an

individual cancer. This may be done with our novel method,

QuantumClone, designed to reconstruct clones based on both VAF

and genotype information; so we call it ‘genotype-aware’. We demon-

strate that our algorithm accurately clusters variants on simulated

data, even when cancer is hyper-diploid or contaminated by normal

cells. We also propose a general framework based on QuantumClone

to detect driver mutations of clonal evolution. This general approach

is applied to 19 neuroblastoma cases; each case includes whole

genome sequencing (WGS) data from a sample at diagnosis and

relapse. We show that mutations possibly affecting the expression

level or the structure of the protein (here called damaging or deleteri-

ous) in neuroblastoma accumulate at relapse in specific pathways

such as cell motility [e.g. cell-matrix adhesion and regulation of

epithelial-mesenchymal transition (EMT)] and cell survival (e.g. PI3K/

AKT/mTOR, MAPK or noncanonical Wnt pathways).

2 Materials and methods

2.1 Clonal reconstruction
In this section, we describe QuantumClone, a method we have devel-

oped for the clonal reconstruction of a tumor. QuantumClone per-

forms clustering of cellular prevalence values bh of variants defined by:

bh ¼ VAF�
NCh þNChNorm

� 1�P
P

NC
; (1)

where NCh is the number of copies of the corresponding locus in

cancer cells, NChNorm
is the number of copies of the corresponding

locus in normal cells (NChNorm
¼ 2 for autosomes), NC is the (a priori

unknown) number of chromosomal copies bearing the variant and P

is the tumor purity. Each VAF value thus corresponds to several pos-

sible values of cellular prevalence; each solution is associated with a

value of NC. In order to address the problem of non-uniqueness of a

solution, we use an expectation-maximization (EM) algorithm based

on the probability to observe a specific number of reads confirming

a mutation given the number of reads overlapping the position, the

contamination and the cellularity of a clone. In more detail, we

attribute to each possibility a probability PðajhÞ to observe a reads
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supporting the variant given that the latter belongs to a clone of cel-

lular prevalence h, based on a binomial distribution:

a � B n ¼ d; p ¼ h� NC

NCh þNChNorm
� 1�P

P

 !
; (2)

where d is the depth of coverage of the variant. In the following

equation, we note m for variant, k is the cluster, s is the sample and

pm is the possibility for variant m in an hyperdiploid loci. We can

then write the log likelihood function to maximize:

L ¼
X

m

X
k

X
s

X
pm

xm;p � tm;k � log ðPm;s;pðam;s;pjhk;sÞÞ; (3)

where xi;p are weights of the possibility computed for a correspond-

ing genotype xAyB (major allele A is present x times and the minor

allele B is present y times): X
p

xm;p ¼ 1:

By adding weights that, for each variant, sum up to one, we

include in our model the fact that variants in low copy number

regions bear more information than those in hyper diploid regions.

Each variant is then attributed to its most likely possibility, which is

the possibility with highest probability to belong to a clone.

The number of clones is determined by minimization of the

Bayesian information criterion. Priors can be provided by the user,

randomly generated, determined by the k-medoids clustering on

mutations in A and AB sites when the latter contain enough muta-

tions, or using a hierarchical clustering based on the probability of

two variants to belong to the same distribution (default).

2.2 Datasets
2.2.1 Simulated datasets

In silico validation data were generated using the QuantumCat

method from package QuantumClone. For the validation of the

QuantumClone method, we generated a phylogenetic tree for each

simulated tumor, which was used to compute observed alternative

allele read count given the cell fraction of the clone, the ploidy, and

the depth of coverage at this position.The following parameters var-

ied within realistic ranges: depth of sequencing (100� to 1000�),

fraction of contamination by normal cells (from 0% to 70%), num-

ber of variants used for the clonal reconstruction (from 50 to 200),

number of tumor samples used for each patient (from 1 to 5) and

number of distinct clones per cancer type (from 2 to 10) (Fig. 1).

For the pipeline validation, we simulated variants coming from six

clones observed in two samples per patient, with a purity of 70% for

the first sample and 60% for the second. We create 150 variants that

pass stringent filters, and an additional 150 variants passing tolerant

filters but not stringent filters. All variants passing stringent filters were

simulated in diploid regions, with a depth of coverage higher than

50�, whereas mutations passing permissive filters were located either

in AB regions with a coverage between 30� and 50� (approximately

1/4 of permissive variants), or in AAB regions with coverage � 30�
(approximately 1/2 of permissive variants), or in AABB regions with

coverage � 50�. We then attributed the ‘driver’ characteristic to 100

variants, by sampling without replacement with probability 10/11 to

be selected from the variants passing permissive filters.

2.2.2 Neuroblastoma WGS data

We used WGS data for 19 neuroblastoma trios each including

constitutional, diagnosis and relapse samples. Data for 15 patients

were taken and reanalyzed from the previous study (Eleveld et al.,

2015). Additional four were profiled with illumina paired-end

sequencing. In total, we had DNA from 11 cases sequenced using

Illumina HiSeq2500 to an average depth of coverage of 80�by

Beijing Genomics Institute or the Centre National de Génotypage

(CNG) and 8 cases sequenced by Complete Genomics with

an average read depth of coverage of 50� (unpublished data,

Supplementary Table S1).

2.3 Variant calling and filtering in neuroblastoma WGS

data
Mutations were called using Varscan2 (Koboldt et al., 2013). Two

sets of variants were created for each patient using tolerant and strin-

gent filtering options. The ‘high confidence’ set of variants obtained

using stringent filters was further used for clonal reconstruction, while

the set of variants obtained with tolerant filters was used for inference

of recurrently altered pathways. The total list of somatic variants used

for clonal reconstruction in 19 neuroblastoma patients is provided at

http://xfer.curie.fr/get/VZs7XCMTvGx/VCF.tar.gz

2.4 Pipeline comparison
The ‘classical’ pipeline used all 300 simulated variants as input for the

clonal reconstruction, using direct clustering by QuantumClone. The

‘selective’ pipeline used the 150 variants passing stringent filters and

all variants qualified as drivers from the permissive filters as input for

direct clustering. The ‘two-step’ pipeline first used the 150 stringent

variants as input for direct clustering and then attributed the variants

qualified as drivers a posteriori to the clusters, using the characteristics

of the clones found by the initial QuantumClone clustering of high

confidence variants. All three pipelines searched for two to ten clones,

running with two different initializations, on four threads.

Evaluation of the L2 error and normalized mutual information

(NMI) was made using only variants from the stringent and driver

groups. The displayed computational time takes into account data

processing, clustering and when necessary a posteriori attribution to

the clonal structure.

3 Results

We extensively validated QuantumClone on simulated data, where

we compared it with recently published methods (Deshwar et al.,

2015; Miller et al., 2014; Roth et al., 2014). We complemented

QuantumClone with a robust framework for the functional assess-

ment of mutations based on signaling pathway analysis combined

with the assignment of functional variants to the reconstructed clones.

We then applied the framework to neuroblastoma WGS data.

3.1 Assessment of clonal reconstruction accuracy of

QuantumClone on in silico data
3.1.1 Accuracy on diploid cancers

Using in silico data, we compared the performance of

QuantumClone, sciClone (Miller et al., 2014), pyClone (Roth et al.,

2014) and phyloWGS (Deshwar et al., 2015) in inferring the clonal

structure of a set of tumors derived from the same patient. sciClone is

based on variational Bayesian Mixture Models, while pyClone relies

on a hierarchical Bayes statistical model. Similarly to QuantumClone,

pyClone leverages copy number information to better infer clonal

architecture. phyloWGS adds to the reconstruction a phylogenetic

tree constraint and allows for the use of copy number information.

For each set of parameters, we performed and analyzed 50 inde-

pendent simulation experiments (Section 2). The accuracy of clonal

reconstruction was assessed by evaluating the NMI (Manning et al.,
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2008) and the average error in distance between the estimated cellu-

larity of a clone and its theoretic value. Perfect variant clustering

would result in a L2 (or Euclidean distance) mean error of 0, and a

NMI value of 1, which would correspond to an identification of the

exact number of clones and correct assignment of all the variants of

a clone to the same cluster.

Our analysis showed that QuantumClone is equivalent to or better

than the best published algorithm in clustering quality (Fig. 1A) for

diploid genomes. In terms of NMI QuantumClone showed similar

performances compared to pyClone. However, QuantumClone

generally outcompeted sciClone (P-value < 2:2� 10�16) and

phyloWGS (P-value ¼ 6:2� 10�7) for NMI. On average,

QuantumClone decreased the L2 mean error by 39% compared to

sciClone, 22% compared to pyClone and 25% compared to

phyloWGS, significantly improving predictions compared to both

methods (P-value ¼ 4:7� 10�14). At high values of sequencing depth,

all methods accurately estimated prevalence of variants (Fig. 1B, L2

mean error<0.059 at 1000� for all methods). However, a sequenc-

ing depth of 100�, which is the depth of sequencing currently used

for the majority of WES and WGS experiments, QuantumClone

A B C

Fig. 1. Comparison of QuantumClone to existing methods. (A) NMI is used to assess the quality of variant clustering on simulated data, with a single parameter

varying in each test. This measure evaluates correct assignment of two variants to the same cluster. (B) L2 average error is used to assess the error for each clus-

tered variants between its simulated position and its reconstructed position. (C) Computational time necessary to complete the clustering with each algorithm.

Default parameters: two tumor samples without contamination sequenced at 100�; 6 clones; 100 mutations used for clustering

Framework for clonal reconstruction in cancer 1811



consistently gave better predictions than pyClone (P-value

¼ 1:0� 10�4), phyloWGS (P-value ¼ 6:6� 10�3) and sciClone (P-

value ¼ 4:9� 10�9). In addition, compared to the other methods,

QuantumClone took the best advantage of data when multiple sam-

ples were provided for the analysis (P-value ¼ 4:5� 10�10, P-value ¼
6:7� 10�15 and < 2:2� 10�16 for phyloWGS, pyClone and

sciClone, respectively, for simulated tumors with five samples).

Also, the average computational time was significantly decreased

using QuantumClone compared to sciClone (median 35-fold

improvement), phyloWGS (median 95-fold improvement) or

pyClone (median 45-fold improvement, Fig. 1C).

3.1.2 Accuracy in hyper-diploid cancers or cancers with highly rear-

ranged genomes

In order to validate QuantumClone on rearranged or hyper-diploid

genomes, we simulated variants in loci of genotype AB, AAB, AABB

and in a nearly diploid genome, where all possible genotypes can be

observed (Fig. 2). In addition to QuantumClone, we tested the per-

formance of pyClone (Section 2). We excluded sciClone from this

experiment as it cannot use variants from non-diploid regions, and

phyloWGS as in addition to somatic variant read counts it required

to generate a complex input dataset: read coverage on single nucleo-

tide polymorphisms along the genome.

In all types of regions, QuantumClone and pyClone performed

equally in terms of NMI (Fig. 2A), but QuantumClone outper-

formed pyClone in terms of mean L2 error with an improvement of

31% (Fig. 2B, P-value ¼ 5:7� 10�11). In addition, QuantumClone

without parallelization was faster than pyClone in three out of four

settings (from 6.3-fold slower to 61.5 faster; 15.6 times faster on

average), while the distributed algorithm outcompeted pyClone in

all settings (average computational time decreased by a 43-fold com-

pared to pyClone, Fig. 2C).

In addition, in the majority of cases QuantumClone correctly

assumed the exact number of copies of a variant in polyploid regions

(average accuracy¼68.9%, P-value < 2:2� 10�16, Supplementary

Fig. S1).

3.2 Creating a robust framework for clonal assignment

of functional mutations
We proposed a novel strategy of reconstruction of the clonal archi-

tecture in cancer. Our method combines the identification of clones,

using high confidence variants, with the attribution of functional

variants (potential drivers) to identified clones (Fig. 3). The

approach is based on the different usage of ‘functional’ variants

which can potentially affect cell phenotype and ‘high fidelity’ var-

iants that are used to define clones. High fidelity variants can be

either drivers or passengers; however, they should have high depth

of coverage (> 50� in our implementation), have no strand bias and

should not coincide with annotated single-nucleotide polymor-

phisms (SNPs). As we showed in the simulation studies (Fig. 1), 50

high fidelity variants are sufficient for an accurate clonal reconstruc-

tion (Section 2).

High fidelity variants, because they have a lower dispersion of

observed VAF compared with other variants, are applied to define

clones, i.e. high fidelity variants serve as input to QuantumClone or

to an alternative method. Functional mutations are defined here as

variants that can possibly alter protein function as predicted by com-

monly used annotation tools (Adzhubei et al., 2013; Khurana et al.,

2013; Ng and Henikoff, 2003) and that can affect either genes

reported in the Cancer Census List (Futreal et al., 2004) or genes

from gene modules/signaling pathways that are enriched in deleteri-

ous variants (Section 2). At the last step of our framework, func-

tional variants are mapped to the clonal structure inferred from high

fidelity variants based on the likelihood values.

Here, we demonstrated that having the proposed two-step

approach allows for a better reconstruction of the tumor, as well as

an important decrease in computational time (Fig. 3D). To test our

pipeline, we compared it to two common pipelines: the first one,

termed ‘classic’, uses all variants as input for the clustering. The sec-

ond one, called ‘selective’, only uses variants passing the stringent

filters and informative variants as input for the clustering. The third

pipeline, termed ‘two-step’, uses a posteriori attribution of the puta-

tive drivers to the clones found using only variants passing stringent

A B C

Fig. 2. Quality of clonal reconstruction for mutations located in regions of

altered copy number. (A) NMI shows equivalent performances of pyClone

and QuantumClone in diploid, triploid and tetraploid tumors, or nearly diploid

(ND) tumors, whereas the average L2 error (B) shows significantly better per-

formance of QuantumClone. (C) Parallel computing implemented in

QuantumClone allows it to significantly decrease computational time and

makes QuantumClone remarkably faster than pyClone

A

B C D

Fig. 3. Assessment of the pipeline. (A) Overview of the general clonal recon-

struction workflow: steps 1–3. (1) Variants are filtered to remove false positive

calls; stringent filters are used to produce mutations that are further

employed for clonal reconstruction (step 2), tolerant filters are used to detect

functional mutations. (2) Variants that pass stringent filters and have geno-

type information assigned to the corresponding genomic loci are used as

input to QuantumClone to reconstruct clonal populations. (3) Finally, possibly

damaging mutations belonging to frequently altered pathways are mapped

to the reconstructed clones. Quality of reconstruction. The pipeline aforemen-

tioned (two step), or a clustering using all variants called (classic) or a pipe-

line using only variants of biological interest and variants of high quality

(selective) are assessed in terms of NMI (B), average L2 error (C) or computa-

tional time (D). The pipelines are evaluated on 20 simulations (Section 2)

1812 P.Deveau et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty016#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty016#supplementary-data


filters. While all three pipelines had similar outcomes when we com-

pared the quality of reconstruction using NMI (Fig. 3B), the selec-

tive and two step pipelines fared significantly better than the

classical pipeline (p-value < 8� 10�6, Fig. 3C). In addition, the

two-step analysis resulted in an average 4.9-fold decrease in compu-

tational time compared to the classical pipeline and an average 2.7-

fold decrease compared to the selective pipeline (Fig. 3D).

Furthermore, separating both steps eases iterative improvement of

the clonal reconstruction. Once achieved, this reconstruction can be

reused to answer questions about the evolution of different path-

ways separately, while previous pipelines required re-running the

whole reconstruction with the new set of data.

3.3 Application of the QuantumClone-based framework:

characterization of neuroblastoma clonal evolution

from diagnosis to relapse
We applied our framework to investigate the clonal composition of

neuroblastoma primary and relapse tumors and to study their clonal

evolution. In order to remove false positive variant calls, we used a

set of stringent filters (Fig. 3, Section 2) as the initial number of var-

iants in the Varscan2 output was highly dependent on the sequenc-

ing technology and platform (Supplementary Fig. S2). Of note,

variants called as germline in any of the tumor samples have been

removed to focus on the somatic variants only. Indeed, if kept,

germline variants will be assigned to the ancestral clone and will not

provide additional value in clonal reconstruction.

3.3.1 Clonal reconstruction

We applied QuantumClone on high fidelity variants we defined

using stringent filters (Fig. 3A, Section 2). Across our cohort, we did

not observe a significant association between the predicted number

of clones and the number of mutations per patient (Spearman’s

q ¼ �0:05, P-value¼0.84). In addition, the number of clones at

relapse was similar to that at diagnosis, even despite the fact that the

relapse samples had about twice as many mutations as the diagnosis

samples (number of mutation clusters varied from one to four with a

median of three for both time points). In 79% of reconstructed clo-

nal structures (15 out of 19 patients, we identified mutations coming

from the ancestral clone (Fig. 4A), i.e. the clone that gave rise to all

cells in both diagnosis and relapse samples.

3.3.2 Annotation of functional mutations in each sample based on

the global pathway enrichment analysis

In our framework, we assumed that functional mutations (i.e. puta-

tive drivers) in a given cancer type should target-specific signaling

pathways or pathway modules (Fig. 3, Step 2). We attributed anno-

tated deleterious variants obtained with tolerant filters (Fig. 3,

Section 2) to the ACSN maps and detected recurrently altered gene

modules using the ACSNmineR package (Deveau et al., 2016).

Overall, six general gene maps (apoptosis, cell cycle, DNA repair,

EMT/cell motility, cell survival and neuritogenesis) and their 53

gene modules were found to be enriched in mutations

(Supplementary Table S2). The enrichment of pathways in ACSN

was corroborated by enrichment of similar pathways from two

other methods (Huang et al., 2009 a, b; Mi et al., 2010; Thomas

et al., 2003) (Supplementary Tables S3 and S4). In further analysis,

deleterious mutations were annotated as functional when corre-

sponding genes were included in the enriched pathways, or when

such genes belonged to the Cancer Census list. The resulting number

of functional mutations per patient varied from 2 to 147, with a

median of 51.

At this step, the cell survival map registered the highest enrich-

ment in putative drivers, and among its modules, the highest enrich-

ment in putative driver mutations was observed for the non-

canonical Wnt pathway (q-value � 10�88). We also detected signifi-

cant enrichment in functional mutations of the Wnt canonical and

the MAPK pathways (q-value � 10�51 and � 10�54, respectively),

and of the PI3K/AKT/mTOR and Hedgehog gene modules (q-value

� 10�75 and � 10�43, respectively). Genes coding for the EMT

regulators were also significantly affected by the deleterious muta-

tions in our cohort of relapsed neuroblastoma patients (q-value

� 10�126).

3.3.3 Assignment of functional mutations to the identified clonal

structure

Using the results of the mapping of functional mutations on the clo-

nal structure detected for each patient by QuantumClone (Fig. 3A,

Step 3), we annotated mutations as (i) those belonging to expanding

A

B

Fig. 4. Annotation of clones in neuroblastoma and pathway enrichment anal-

ysis. (A) Illustration with data from patient NB1361 of the rules for assignment

of variants to (i) the ancestral clone (cellular prevalence of the mutation clus-

ter exceeds 70% both at diagnosis and relapse), (ii) clones expanding after

the treatment (cellular prevalence of the mutation cluster increases at least

two-fold at relapse) and (iii) shrinking clones (cellular prevalence of such

mutation clusters decreases at least two-fold). Here, evaluated cellular preva-

lence values higher than 1 were set to 1. (B) Evolution of the total number of

functional variants for enriched maps and modules, across all 19 patients.

The majority of modules show an increase in the number of functional var-

iants between the two time points
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clones—corresponding to a two-fold cellular prevalence increase

between diagnosis and relapse, (ii) those belonging to shrinking

clones—cellular prevalence halved between diagnosis and relapse

and (iii) those belonging to ancestral clones—cellular prevalence

higher than 70% in both samples (Fig. 4A). Overall, 34.4%, 30%

and 8.5% of all functional mutations fell in these three categories.

3.3.4 Analysis of pathways enriched in functional mutations in

shrinking and expanding clones

Assignment of mutations to clones shrinking or expanding after the

treatment resulted in the identification of 331 and 380 possible

driver mutations in these clone types, respectively. Expanding clones

had more deleterious mutations targeting genes from all six general

maps (apoptosis, cell cycle, DNA repair, EMT/cell motility, cell sur-

vival and neuritogenesis) than the shrinking clones (Fig. 4B).

Similarly, in these expanding clones, most of the corresponding gene

modules (e.g. MAPK, Wnt canonical or PI3K/AKT/mTOR) were

also more frequently targeted. An extreme example of this behavior

can be given with the neuritogenesis substrates module, the RB path-

way or the E2F1 pathway in which genes are only found mutated in

the expanding clones. The increase in functional variants can partly

be explained by the observed doubling of variants at relapse com-

pared to diagnosis. We define l the functional mutation rate in a

module as the number of functional variants per high fidelity var-

iants of the patient by number of genes in a module. The functional

mutation rate across modules was significantly different between the

three classes of clones according to the z-score computed as sug-

gested by Paternoster et al. (1998) and described in Section 2

(Fig. 5A, P-value < 2:2� 10�16 between ancestral and shrinking,

P-value ¼ 5:84� 10�2 between ancestral and expanding and P-

value < 2:2� 10�16 between expanding and shrinking). This func-

tional mutation rate has been previously linked to the fitness of a

clone (McFarland et al., 2013), and it is interesting to notice that the

functional mutation rate is lower in the ancestral clone (l ¼ 5:282

functional variations per 1000 variants per 1000 genes in module,

standard error s:e ¼ 0:156) and expanding clones (l ¼ 5:77;

s:e: ¼ 0:146) than in the shrinking clones (l ¼ 12:96; s:e: ¼ 0:522).

The difference in functional mutation rate suggests different selec-

tion mechanisms.

4 Discussion

Here, we have proposed a pathway-based framework to detect func-

tional mutations in cancer samples and associate the mutations to

their corresponding clonal structure. The central part of our frame-

work is represented by the QuantumClone method, which allows

reconstruction of clonal populations based on both variant allele fre-

quencies and genotype information. QuantumClone showed stable

results on simulated data, significantly outperforming other methods

in difficult settings such as highly contaminated samples, heteroge-

neous tumors and relatively low depth of sequencing coverage. We

showed that with the average depth of sequencing of 100�, and

with only two biopsies per patient we can reliably reconstruct up to

10 simulated variant clusters corresponding to subclones. To get

more fine-grained information about the subclonal structure, we

recommend increasing the depth of coverage and, more importantly,

the number of biopsies per patient.

The central idea of our analysis framework is to use high fidelity

variants to reconstruct the clonal structure of tumor samples; then,

map low coverage functional mutations (with high variance in

VAFs) onto the inferred clonal structure. Also, we suggest limiting

the set of functional mutations to those in genes known to be associ-

ated with cancer (e.g. Cancer Census genes) or to those in genes

from gene modules/pathways that are frequently disrupted in a given

cancer type (Fig. 3). Of note, applying a filter on sequencing depth

to determine ‘high fidelity’ variants will not remove low frequency

variants corresponding to rare subclones, as the number of reads

covering a genomic position and the percentage of reads supporting

a variant are statistically independent.

Here, we propose to assign all deleterious variants from gene sets

and pathways that are frequently targeted by mutations in a given

cancer type to ‘functional’ variants. Of note, many of these genes

may never have been associated with oncogenesis previously.

Moreover, any variant of a user’s choice can be mapped to the

inferred clonal structure using the function ‘Probability.to.belong.

to.clone’ of the QuantumClone package.

We applied the proposed analysis framework to decipher clonal

structure in neuroblastoma and assign to clones possible driver

mutations. In neuroblastoma, until recently no biopsies were per-

formed in case of high risk relapse due to absence of curative

Fig. 5. Ancestral, shrinking and expanding clones exhibit different mutation

patterns in neuroblastoma relapse tumors. (A) Functional mutation rate is

higher in shrinking and expanding clones compared to the ancestral ones.

We define the functional mutation rate as a ratio of the number of functional

mutations to the number of high fidelity variants. For a given gene module

the number of functional mutations in each patient is supposed to linearly

depend on the product of the module size and the total number of detected

variants. Therefore, we used the product of the module size and number of

high fidelity variants as a covariate in a linear regression model evaluating

functional mutation rate for neuroblastoma tumors. The rate was defined as

the slope of the linear regression. (B) Given the differences in functional

mutation rates observed in neuroblastoma relapse tumors we propose the

following model for clonal selection in this type of cancer: (1) Clones with

high functional mutation rate (red) disappear after the chemotherapy; lower

mutational burden provides an advantage in escape from treatment; (2) lower

values for functional mutation rate in clones expanding at relapse (blue) com-

pared to the shrinking clones (red) is due to a lower frequency of functional

mutations before treatment, followed by a gradual accumulation of functional

mutations at relapse. From top to bottom: the number of variants in the clone,

number of functional variants in the clone, and population size in the tumor

1814 P.Deveau et al.



therapeutic options. More recently, relapse-specific biopsies have

been advocated within precision medicine programs to orient

patients to (early) clinical trials based on tumor molecular profiles.

Often, the most readily accessible tumor sites are biopsied, which

may correspond to either the primary tumor or a metastatic site.

Our analysis of neuroblastoma diagnosis/relapse samples identi-

fied genes associated with DNA repair, cell motility, apoptosis and

survival to be enriched in functional mutations. For relapsed neuro-

blastoma samples, we recovered the previously reported enrichment

of mutations in the MAPK signaling pathway (Eleveld et al., 2015),

while complementing this knowledge with discovery of accumula-

tion of functional mutations at the relapse in such functional gene

modules as PI3K/AKT/mTOR, Wnt, Hedgehog signaling and mod-

ules consisting of genes responsible for cell-matrix adhesion and

EMT.

Previous studies have shown that the number of variants was

linked to the number of divisions a cell undergoes (Tomasetti and

Vogelstein, 2015). The observed doubling of variants between diag-

nosis and relapse in neuroblastoma samples suggests that cells have

undergone many divisions between diagnosis and relapse and, possi-

bly, DNA repair pathways have been affected.

In addition, the functional mutation rate was significantly lower

in the ancestral populations compared to the clones expanding or

shrinking at relapse. Chen et al. (2015) have shown that wild-type

cells have more adaptive capabilities than mutants, even though a

mutant can appear fitter than the wild-type lineage in a specific cul-

ture condition. Applied to our results, their finding could suggest

that a clone with a low level of functional variants would be more

likely to adapt to environment changes during and after treatment.

After this selection round and once the tumor environment has

returned to physiological state, another set of functional variants

would appear, giving selective advantage to the expanding clone.

A direct consequence of this assumption is that the functional

mutation rate should be lower at relapse compared to diagnosis, as a

period of low functional mutation rate before treatment would be

followed by a period of higher functional mutation rate during dis-

ease progression (Fig. 5B). This consequence is in line with the 29%

functional mutation rate decrease observed between expanding and

shrinking clones.

The proposed framework can be applied in the future to any

type of cancer. The pre-requirements are sufficient number of candi-

date mutations (at least 50 mutations per sample) and a minimal

read depth of coverage of 50�. These requirements are usually met

by WGS or whole exome sequencing datasets. Our simulation

results show that increasing the number of mutations used for clonal

reconstruction above 50 does not improve significantly the clonal

reconstruction accuracy provided that mutations specific for every

clone are present in the input. We highlight however that our simu-

lated data were generated for six subclones only. Inferring a more

complex clonal structure may require a higher number of input

variants.

Our framework will be extremely useful in settings when tumor

samples have been sequenced with a limited read depth—from

100� to 200�—and when the contamination level by normal cells is

non-negligible, i.e. 10–70%. Our method also runs much faster than

previously published methods. A limited number of very high confi-

dence variants can be used to reconstruct the clonal structure; then,

in a matter of seconds, all other variants of interest can be mapped

to this structure (Fig. 3D).

Study of the clonal evolution and its processes can be highly rele-

vant for drug design. We have described a framework and an

algorithm that performs better on in silico data than previously pub-

lished methods, which should allow for a better analysis of existing

datasets. In addition, we showed that the same processes are at play

throughout the disease course in our neuroblastoma cohort, target-

ing similar pathways in diagnosis and relapse.
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