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Summary
Background A comparison of pneumonias due to SARS-CoV-2 and influenza, in terms of clinical course and predic-
tors of outcomes, might inform prognosis and resource management. We aimed to compare clinical course and out-
come predictors in SARS-CoV-2 and influenza pneumonia using multi-state modelling and supervised machine
learning on clinical data among hospitalised patients.

Methods This multicenter retrospective cohort study of patients hospitalised with SARS-CoV-2 (March-December
2020) or influenza (Jan 2015-March 2020) pneumonia had the composite of hospital mortality and hospice dis-
charge as the primary outcome. Multi-state models compared differences in oxygenation/ventilatory utilisation
between pneumonias longitudinally throughout hospitalisation. Differences in predictors of outcome were modelled
using supervised machine learning classifiers.

Findings Among 2,529 hospitalisations with SARS-CoV-2 and 2,256 with influenza pneumonia, the primary out-
come occurred in 21% and 9%, respectively. Multi-state models differentiated oxygen requirement progression
between viruses, with SARS-CoV-2 manifesting rapidly-escalating early hypoxemia. Highly contributory classifier
variables for the primary outcome differed substantially between viruses.

Interpretation SARS-CoV-2 and influenza pneumonia differ in presentation, hospital course, and outcome predic-
tors. These pathogen-specific differential responses in viral pneumonias suggest distinct management approaches
should be investigated.
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Research in context

Evidence before this study

Pneumonia due to SARS-CoV-2 (Coronavirus Disease-
2019, COVID-19) has been compared to other viral
pneumonias, including influenza. Similarities between
COVID-19 and influenza pneumonia include heteroge-
neous presentation and severe complications, such as
acute respiratory distress syndrome (ARDS) and death.
Despite these similarities, outcomes in COVID-19 are,
overall, worse than for influenza.

Biological responses to SARS-CoV-2 and influenza
infection differ and are notable for heterogeneous but
overall decreased systemic inflammatory responses
among COVID-19 patients. Recent findings suggest
much of the underlying end-organ pathology in COVID-
19 is due to viral infection in the setting of comorbid
conditions, rather than specific immunological phenom-
ena. These findings raise the possibility that differences in
clinical outcomes in viral pneumonias represent observ-
able pathogen-specific differential host responses, rather
than differential risks for similar pathophysiologies.

Added value of this study

SARS-CoV-2 pneumonia and influenza pneumonia
patients present differently upon hospital admission,
progress differently through longitudinal oxygen
requirements, and have different predictors of mortality
among early clinical data.

Implications of all the available evidence

The findings emphasize the increased severity and
higher mortality with SARS-CoV-2 pneumonia versus
influenza pneumonia. Additionally, they suggest that
pathogen-specific factors are implicated in the develop-
ment of negative patient outcomes, conditional on hos-
pitalisationwith viral pneumonia. Future research
should investigate these possibilities and their implica-
tions for pneumonia management strategies.
Introduction
SARS-CoV-2 pneumonia has been compared to influ-
enza pneumonia,1�5 with similarities including hetero-
geneous presentation and severe complications such as
acute respiratory distress syndrome (ARDS) and death.1

Despite these similarities, SARS-CoV-2 pneumonia out-
comes are, overall, worse than for influenza.1 However,
granular evaluations of dynamic resource utilisation
during hospitalisation for these entities have not been
performed. Empirically comparing organizational
demands between these two pneumonias may inform
resource management in future scenarios where the
two viruses coexist,6 particularly given ongoing resource
availability variation, including intensive care unit (ICU)
beds and appropriately trained staff.7�9 Further, by
studying important outcome predictors in addition to
trajectories of viral pneumonias, new insights into clini-
cal course heterogeneity can be made that may inform
future clinical trials.

Biological responses to SARS-CoV-2 and influenza
infection differ and are notable for heterogeneous but over-
all decreased systemic inflammatory responses among
Coronavirus Disease 2019 (COVID-19) patients.4,5,10�12

Recent findings also suggest much of the underlying end-
organ pathology in COVID-19 is due to viral infection in
the setting of comorbid conditions, rather than specific
immunological phenomena.13 These findings raise the
possibility that different clinical outcomes in viral pneumo-
nias represent observable pathogen-specific differential
host responses, rather than differential risks for similar
pathophysiology,14,15 and therefore may have different pre-
dictors of outcomes despite broadly similar clinical mani-
festations at the bedside.

Thus, we aimed to compare the clinical courses and
predictors of clinical outcomes due to SARS-CoV-2 to
those of the most ubiquitous viral pneumonia, influenza.
Specifically, by comparing SARS-CoV-2 to influenza
pneumonia, we sought to identify unique differentiating
features specific to each pathogen. To these ends, we
applied state-of-the-art modelling approaches to routinely
available clinical data to evaluate the hospital course and
clinical outcome predictors based on host response to
infection. We hypothesized that early hospital courses
and outcome predictors would differ between SARS-CoV-
2 and influenza pneumonia.
Methods

Population, setting
At Barnes-Jewish Hospital (BJH) and 10 BJC HealthCare
community hospitals, we performed a retrospective
cohort study of all adults hospitalised with SARS-CoV-2
pneumonia between 03/16/2020 (BJC’s first SARS-CoV-
2 hospitalisation) and 12/31/2020 and influenza between
01/01/2015 and 03/17/2020 (both by polymerase chain
reaction testing). We included hospitalisations with length
of stay (LOS) � 24 hours and requiring supplemental
oxygen (as a pneumonia surrogate).
Ethics
Washington University’s Institutional Review Board
approved this project (#202008041) with a waiver of
informed consent. Additional methodology details can
be found in the Supplement.
Data, measurements

Processing. We extracted electronic health record
(EHR) data from Washington University’s research data
warehouse.16,17 For dynamic variables, we a priori
www.thelancet.com Vol 85 November, 2022
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selected the most extreme (highest/lowest) observation
during the first 24-hours of hospitalisation (Table-E1).
In discrete 12-hour windows from presentation, we
recorded each patient’s maximal oxygen support in six
ordinal groups: room air; 1-6 liters-per-minute (LPM);
7-15 LPM; humidified high-flow nasal cannula
(HHFNC); non-invasive ventilation (NIV); invasive
mechanical ventilation (IMV). Using diagnosis codes,
we identified Elixhauser comorbidities and estimated
comorbidity burdens as per van Walraven.18
Chest radiographs. To ascertain differences in pneu-
monia severity, we randomly selected 100 hospitalisa-
tions each with SARS-CoV-2 pneumonia and influenza
from BJH hospitalisations. Two investigators reviewed
the latest chest radiographs from Day-0 of hospitalisa-
tion to calculate the Radiographic Assessment of Lung
Edema (RALE) score, a validated index of pulmonary
edema severity in ARDS based on radiographic opacity
extent and density (range: 0 [none] - 48 [dense consoli-
dations >75% of each quadrant]).19 Based on our
planned use of medians as a measure of central ten-
dency, we estimated that 97 images per cohort would
yield 90% power to detect a RALE difference of 2 with a
2-sided alpha of 0.05.
Outcomes. The primary outcome was the composite of
hospital mortality or hospice discharge. Secondary out-
comes were these endpoints plus hospital/ICU LOS,
ICU admission, HHFNC, NIV, and IMV, and 28-day
ventilator-free-days (VFD).20,21
Statistical analysis

Modelling. We evaluated all outcomes via hierarchi-
cal multivariable logistic regression, Fine-Gray (LOS
accounting for the competing risk of hospital
death)22 and zero-inflated negative binomial (VFD)
models.21 In each model, the primary exposure was
pathogen, and covariates were age, gender, BMI,
race, and individual Elixhauser comorbidities, with
hospital treated as a random effect. Because care
delivery practices and outcomes, including intuba-
tion, evolved rapidly at the COVID-19 pandemic’s
beginning,16 we used the SARS-CoV-2 cohort to fit a
multivariable logistic regression model with linear
time trends (by month) in which the outcome was
invasive mechanical ventilation and the aforemen-
tioned covariates remained the same. To explore the
relationship between intubation rates and SARS-
CoV-2 pneumonia outcomes over time, we modeled
the primary outcome as a function of monthly intu-
bation rates, ranked ordinally, using an analogous
multivariable logistic regression approach.
www.thelancet.com Vol 85 November, 2022
Multi-state modelling. To investigate differential oxy-
gen requirement trajectories between pathogens, we
performed multi-state modelling on the ordinal level of
oxygen support for each patient over time. Within 12-
hour discrete-time windows, we categorised patients
into one of 8 mutually exclusive and exhaustive clinical
states consisting of their maximal oxygen support or dis-
charge/death (Figure-E1).

Using Alan-Johansen non-parametric analyses, we
evaluated clinical state-switching per patient.23 We esti-
mated the longitudinal probability of a patient having a
particular clinical status after entering one of four differ-
ent states: admission, supplemental oxygen, NIV, and
IMV. For each analysis, time-zero was entry into said
state. At each time-point, we also estimated instanta-
neous hazard rates for NIV, intubation, death, and
discharge. Finally, we estimated the duration of hospi-
talisation, IMV, NIV, and oxygen requirements and
assessed the cumulative incidence of NIV, IMV, and
death by Day-21 since hospitalisation.
Imaging. We used logistic regression to estimate the
independent relationship between RALE score and the
primary outcome, a priori adjusting for age and patho-
gen, which we expected to be important confounders.
Based on unadjusted analyses, we tested for pathogen-
RALE score interaction within this model.
Outcome prediction. To compare early predictors of
mortality, we trained supervised machine learning clas-
sifier models using “extreme gradient boosting”
(XGBoost) in each cohort to predict the primary out-
come.24 We chose XGBoost due to its high discrimina-
tion and the algorithm’s ability to incorporate missing
data without requiring imputation or excluding missing
observations, both of which are encountered with more
traditional approaches such as logistic regression.

We selected candidate predictors from the initial
24 hours in-hospital a priori (Table-E2) based on litera-
ture review and our clinical experience.25�28 We tuned
model hyperparameters (Supplement) to optimize area
under the receiver operator characteristic curve
(AUROC) through grid search in 1,000 bootstraps of
each cohort.26 We compared each model’s in-sample
AUROC to its discrimination in the alternate cohort (i.
e., compared the SARS-CoV-2 model’s bootstrap-repli-
cated internal AUROC to the SARS-CoV-2 model’s
AUROC in the influenza cohort, and vice-versa).

We used information gain (estimated variable contri-
butions for each tree in the model) to quantify variable
importance to predicting primary outcome risk. Under
the hypothesis that differential variable importance
would represent pathogen-specific differences in risk
for mortality, we used logistic regression � with the pri-
mary outcome as the dependent variable � to test for
3
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interaction between pathogen and each of the top-five
important variables in each classifier model.

To ensure that classifier models were not biased by
inclusion of patients presenting with mild respiratory
illness, we performed a sensitivity analysis in which we
excluded patients receiving < 4 LPM supplemental oxy-
gen within the first 24 hours of hospitalisation. In this
analysis, we refit classifiers and evaluated them in iden-
tical fashion to the primary analysis.
Statistical considerations. We reviewed univariate data
distributions via tabulations and density plots, visually
noting kurtosis (e.g., age, blood pressures) and skewing
(e.g., van Walraven comorbidity index, serum lactate
concentration, peripheral O2 saturation, LOS, and
VFDs) among a number of variables and outcomes. For
consistency, we chose to perform nonparametric statisti-
cal tests for all analyses, even though this risked lower
statistical power for some comparisons. Thus, we sum-
marized data using frequencies (proportions) or
medians (interquartile ranges [IQRs]) and compared
findings between viral cohorts using Kruskal-Wallis and
Variable SARS-CoV-2 (n

Age, years, median (IQR) 68 (56-77)

Female, n (%) 1224 (48.4)

Race, n (%)

White 1387 (54.8)

Black 1055 (41.7)

Other 56 (2.2)

BMI, kg/m2, median (IQR) 30.4 (25.6-36.4)

Van Walraven Comorbidity Index, median (IQR) 9.0 (2.5-17.0)

Congestive Heart Failure, n (%) 706 (27.9)

Arrhythmias, n (%) 750 (29.7)

Peripheral Vascular Disease, n (%) 344 (13.6)

Chronic Lung Disease, n (%) 821 (32.5)

Diabetes, n (%) 1120 (44.3)

Chronic Kidney Disease, n (%) 683 (27.0)

Cancer, n (%) 453 (17.9)

Coagulopathy, n (%) 255 (10.1)

Outcome

Composite of Death and Hospice Discharge, n (%) 535 (21.2)

Hospital Death, n (%) 442 (17.5)

Hospice Discharge, n (%) 93 (3.7)

ICU Admission, n (%) 1050 (41.5)

Hospital LOS, days, median (IQR) 7.1 (4.5-13.0)

ICU LOS, days, median (IQR) 7.2 (2.9-14.1)

HHFNC, n (%) 393 (15.5)

Noninvasive Ventilation, n (%) 791 (31.3)

Mechanical Ventilation, n (%) 541 (21.4)

Ventilator-Free Days at Day 28, median (IQR) 28 (17-28)

Table 1: Baseline Characteristics and Outcomes for Patients with SARS-
IQR, interquartile range; BMI, body-mass index; ICU, intensive care unit; LOS, le
Chi-squared tests. We compared classifier model
AUROCs via the Hanley/McNeil method with 2000-rep-
lication bootstrapped confidence intervals.29 We used the
Wald test for logistic regression interaction term signifi-
cance. We evaluated variance inflation factors (VIFs) for
exposure variables to avoid multicollinearity, with plans to
exclude variables with VIF > 5. For all statistical tests, we
considered p-values �0.05 significant.
Role of funders
The study funders had no role in study design, data col-
lection, data analyses, interpretation, or writing this
report.
Results

Patient characteristics
We identified 2,529 hospitalisations with SARS-CoV-2
pneumonia and 2,256 with influenza pneumonia
(Figure-E2). SARS-CoV-2 patients were of similar age to
influenza (Table 1; 68 vs 67 years; p = 0.30), but more
= 2529) Influenza (n = 2256) p-value

67 (57-77) 0.297

1201 (53.2) <0.001

<0.001

1527 (67.7)

681 (30.2)

48 (2.1)

28.8 (23.8-35.1) <0.001

17.0 (8.0-27.0) <0.001

1129 (50.0) <0.001

1159 (51.4) <0.001

537 (23.8) <0.001

1461 (64.8) <0.001

1070 (47.4) 0.024

889 (39.4) <0.001

390 (17.3) 0.872

544 (24.1) <0.001

204 (9.04) <0.001

154 (6.83) <0.001

50 (2.22) 0.030

909 (40.3) 0.406

5.2 (3.1-9.0) <0.001

0.0 (0.0-1.2) <0.001

311 (13.8) 0.095

330 (14.6) <0.001

361 (16.0) <0.001

28 (28-28) <0.001

CoV-2 Pneumonia and Influenza Pneumonia.
ngth of stay; HHFNC, humidified high flow nasal cannula.
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likely to be Black (42% vs 30%, p < 0.001). Patients
with SARS-CoV-2 pneumonia had significantly fewer
comorbidities than their influenza counterparts (van
Walraven Index 9 vs 17), including heart failure (28% vs
50%), chronic lung disease (33% vs 65%), and chronic
kidney disease (27% vs 39%; p < 0.001 for all).
Outcomes
Admissions with SARS-CoV-2 pneumonia more fre-
quently ended with death or hospice (21% vs 9%, p <

0.001) and were longer (LOS 7.1 vs 5.2 days, p < 0.001)
than those with influenza pneumonia. ICU admission
rates were similar in the cohorts (p = 0.41); however,
SARS-CoV-2 patients had longer ICU stays and
more received NIV and IMV than influenza patients
(p < 0.001 for both).

These differences remained significant after adjust-
ing for age, gender, BMI, race, Elixhauser comorbid-
ities, and potential hospital-level effects (primary
outcome: SARS-CoV-2 aOR 3.38 [95%CI 2.71�4.21,
p < 0.001]; IMV aOR 6.64 [5.05�8.74, p < 0.001]; hos-
pital LOS subdistribution hazard ratio 0.46 [0.42�0.50,
p < 0.001]; VFD aOR for zero-inflation model 3.59
[2.89�4.48, p < 0.001], VFD incident risk ratio for
count model 0.97 [0.96�0.99, p < 0.001]).

Among patients with SARS-CoV-2 pneumonia, the
adjusted odds for invasive mechanical ventilation
decreased monthly (with March 2020 as reference,
Figure 1. Oxygenation Trajectories of Hospitalised Patients with SA
alluvial plot depicts the oxygen requirement trajectories of patients
coded by patient status and their width represents the number of
of time after discharge or death). Abbreviations: IMV, invasive mech
fied high-flow nasal cannula; LPM, liters per minute.
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monthly aOR 0.34 [95% CI 0.21�0.53], p < 0.001,
Figure-E3). Months in which mechanical ventilation
rates were lower demonstrated lower adjusted mortality
(with March 2020 as reference, monthly aOR 0.47
[95% CI 0.31�0.71], p < 0.001).
Multi-state models
Using multi-state models, we observed pathogen-spe-
cific differences in oxygen requirement trajectories with
differential rates of early levels of respiratory support
between viruses (Figures 1/2a, Tables-E3/4). For
instance, more SARS-CoV-2 pneumonia patients
received NIV or IMV in the first week after admission
compared to influenza pneumonia (Day-1: SARS-CoV-2
21.7% [CI: 19.8%�23.7%] vs influenza 16.7%
[15.2%�18.3%]; Day-3: SARS-CoV-2 22.3% [20.1%�24.
7%] vs influenza 12.2% [10.5%�13.9%]; Day-7, SARS-
CoV-2 19.2% [17.0%�21.5%] vs influenza 7.1%
[5.7%�8.6%]; p < 0.001 for all). Overall, in SARS-CoV-
2, 44.1% received NIV or IMV, versus 27.3% in influenza
(p< 0.001).

Among IMV patients, the primary outcome was
more common in SARS-CoV-2 (51.8%) than in influ-
enza pneumonia (28.0%; p < 0.001). By day 7 post-
IMV, 14.6% (12.0%�17.3%) of SARS-CoV-2 patients
were discharged alive versus 28.9% (25.4%�32.5%) of
influenza patients. IMV-conditional trajectories diverged
by 7 days after intubation, at which point 52.7%
RS-CoV-2 (n = 2,529) and influenza pneumonia (n = 2,256). The
over their hospital course after admission. Alluviums are color-
patients. All patients had 28 days of observation time (inclusive
anical ventilation; NIV, noninvasive ventilation; HHFNC, humidi-
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Figure 2. Evolution of respiratory support among hospitalised patients with SARS-CoV-2 (n = 2,529) and influenza pneumonia
(n = 2,256) based on multi-state analyses. (a) depicts the proportion of patients estimated to be in each care state at any given time
point accounting for the transitions patients made between different clinical states over time (p < 0.001 between cohorts at days 1,
3, 7, and 14). (b) depicts instantaneous hazards for increasing levels of respiratory support for SARS-CoV-2 pneumonia and influenza
pneumonia, limited to Days 0 through 14 due to low n after this time point (p < 0.001 at day 14). Abbreviations: IMV, invasive
mechanical ventilation; NIV, noninvasive ventilation; HHFNC, humidified high-flow nasal cannula; LPM, liters per minute.
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(47.9%�57.5%) of SARS-CoV-2 patients remained
mechanically ventilated, versus 30.2% (25.7%�34.8%) of
influenza patients.

Instantaneous hazards for initiating supplemental
oxygen were similar between cohorts from hospitalisa-
tion through day 7, but diverged thereafter (Figure 2b).
Regardless of oxygenation status, however, SARS-CoV-2
pneumonia patients were approximately twice as likely
to require next-day escalation on Days 1, 3, and 7 than
influenza pneumonia (p< = 0.01 for all).

Imaging
Of 100 randomly selected hospitalisations per cohort,
92 SARS-CoV-2 pneumonia admissions and 100 influ-
enza admissions had chest radiographs within the first
24 hours. SARS-CoV-2 pneumonia radiographs had sig-
nificantly higher RALE scores than influenza (median 8
[4-15] vs 0 [0-5], p < 0.001; Table-E5; Figure 3). This sub-
set was generally similar to the primary analysis cohort,
although more patients were Black (Table-E6). In this
subset, the primary outcome (29% vs 14%, p = 0.009)
and IMV (27% vs 6%, p < 0.001) were more frequent
in SARS-CoV-2 than influenza pneumonia. SARS-CoV-
2 pneumonia RALE scores were similar regardless
of whether the primary outcome occurred (9 vs 8,
p = 0.99) but differed across IMV (14 vs 7, p = 0.003).
In contrast, influenza pneumonia RALE was signifi-
cantly higher for primary outcome patients (5 vs 0,
p = 0.01; Figure-E4) but not IMV patients (3 vs 0,
p = 0.102). In an adjusted model with the primary out-
come as the dependent variable, we observed a signifi-
cant interaction between viral pathogen and RALE
(p = 0.002), indicating that the relationship between
RALE and the outcome differed based on pathogen.

Outcome prediction
Classifier models within each viral cohort had similar
discrimination for primary outcome (SARS-CoV-2
AUROC 0.81 [0.79�0.84]; influenza AUROC 0.84
[0.80�0.87]; p = 0.90). When each model was evalu-
ated on the alternative cohort (e.g., SARS-CoV-2
model + influenza patients), the influenza-derived mod-
el’s discrimination was statistically worse (p < 0.001,
Figure-4a), suggesting that clinical outcome predictors
differ meaningfully between the two pathogens.

Predictor variable importance differed between the
models. In the SARS-CoV-2 model, the most contribu-
tory variables � in decreasing importance � were age,
systolic blood pressure (SBP), oxygen saturation, creati-
nine, and absolute neutrophil count (ANC) (Figure 4b).
Of these, age and SBP were among the top five contribu-
tory variables to the influenza model (Figure 4c); BMI,
albumin, and hematocrit comprised the remainder. Sig-
nificant outcome prediction interactions were present
between pathogen and oxygen saturation (p < 0.001),
hematocrit (p < 0.001), ANC (p = 0.001), BMI
(p = 0.018), and albumin (p = 0.022), but not creatinine
www.thelancet.com Vol 85 November, 2022
(p = 0.473). Although age was shared between the mod-
els’ top five predictors, it also demonstrated significant
interaction with pathogen (p < 0.001), whereas SBP did
not (p = 0.998).

In a sensitivity analysis excluding patients receiving
< 4 LPM oxygen, classifier models performed similarly
to the primary analysis (Table-E7). The influenza-
derived model again had worse discrimination in
the SARS-CoV-2 cohort than in the influenza cohort
(p = 0.002).
Discussion
Across eleven hospitals, carefully applying several mod-
ern modelling approaches to EHR data demonstrated
significant differences between SARS-CoV-2 and influ-
enza pneumonia in terms of radiology, clinical courses,
and outcome predictors. Our results suggest these
pneumonias have less in common than might be
expected of two viral infections which cause acute hyp-
oxemic respiratory failure.

Uniquely, our study presents a detailed comparative
mapping of differences in transitions of oxygenation
support between SARS-CoV-2 and influenza pneumo-
nia. SARS-CoV-2 pneumonia patients required higher
levels and rapid escalation of support on, and shortly
after, presentation, and they sustained increased risk for
deterioration throughout hospitalisation. ICU require-
ments were similar between viruses; however, in SARS-
CoV-2 pneumonia, rates of IMV were substantially
higher and length of stay longer. Instantaneous hazard
for escalation of care showed a linear decline during
hospitalisation in influenza, whereas in SARS-CoV-2,
we observed an initial decline followed by a gradual
increase after Day 7. These findings suggest an impor-
tant subset of patients that decline later during hospital-
isation that is specific to SAR-CoV-2 pneumonia.

The evidence of greater radiological abnormalities at
baseline in SARS-CoV-2 pneumonia suggests greater
infection in the lower respiratory tract or alveoli and
implicates viral pathogenicity as an important differen-
tiator between the pneumonias.30 Importantly, our find-
ings validate recent work demonstrating that baseline
radiography does not correlate with clinical outcomes in
COVID-19 ARDS.31 That influenza pneumonia patients
differ in this regard � paired with the clinical trajectory
patterns we observed � would indicate highly differen-
tial severity, rapidity, and resolution of respiratory
impairment between viral pneumonias.

These implications underscore the importance of
leveraging longitudinal and multidimensional clinical
data for informing both individual prognosis and, more
broadly, institution-level resource needs at a given time.
Understanding granular epidemiological data at an inter-
ventional-level may be important in settings where SARS-
CoV-2 and influenza are prevalent in the community con-
comitantly6 and resources may be constrained (e.g., ICU
7



Figure 3. Viral differences in Radiographic Assessment of Lung Edema Scores. In (a), SARS-CoV-2 pneumonia patients (n = 92) had
higher RALE Scores than influenza pneumonia patients (n = 100; p < 0.001)). (b) depicts the two-dimensional radiographic projec-
tion of RALE consolidation by quadrant, oriented as per traditional chest radiography convention. Scattered points within each
quadrant reflect the relative breadth (size) and density (opacification) of airspace consolidations. While scattered points correspond
to specific quadrants of airspace opacities, the points do not correspond to locations within individual quadrants. Abbreviations:
RALE, radiographic assessment of lung edema; LUQ, left upper quadrant.
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beds,32 respiratory support devices33 or appropriately
trained staff8). For example, in such settings, the shorter
lengths of stay coupled with lower levels of critical care
support in influenza pneumonia may warrant expansion
of high-dependency or step-down units, thereby freeing
higher-level critical resources for SARS-CoV-2.
Our work demonstrates distinct pathogen-specific
predictors of clinical outcomes between viral pneumo-
nias. SARS-CoV-2 pneumonia outcome prediction
relied most strongly on age and cardiorespiratory varia-
bles, in keeping with COVID-19’s well-described natural
history of severe disease involving respiratory failure
www.thelancet.com Vol 85 November, 2022



Figure 4. Discrimination and relative variable importance from XGBoost classifier models indicate differential predictors of mortality
between pathogens. In (a), discrete XGBoost classifier models to predict the composite of hospital mortality or hospice discharge
showed similar discrimination on in-sample evaluation (SARS-CoV-2 AUROC 0.81 [purple, left; n = 2,529]; influenza AUROC 0.84 [yel-
low, right; n = 2,256]), but whereas the SARS-CoV-2 model did not have significantly different performance when evaluated in the
influenza cohort (AUROC 0.77 [yellow, left]; p = 0.9), the influenza model had significantly worse discrimination when evaluated in
the SARS-CoV-2 cohort (AUROC 0.74 [purple, right]; p < 0.001). Panels (b and c) show the relative variable importance, measured in
information gain, for the SARS-CoV-2 (b) and influenza model (c) classifier models. Purple shading indicates variables shared among
each model’s top-five, while yellow shading indicates variables not shared. Abbreviations: AUROC, area under receiver operator
characteristic curve.
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and often shock.1 Notably, ANC featured prominently
among these outcome predictors in SARS-CoV-2 pneu-
monia but not influenza, underscoring the increasingly
recognized role of neutrophil biology in COVID-19
pathophysiology.34�36 By contrast, key predictors in
influenza pneumonia were closely related to patients’
baseline condition (e.g., BMI, serum albumin, anemia).

Diminishing performance when each pathogen’s
classifier model was evaluated on the alternative cohort
further substantiates these differences in outcome pre-
dictors. The SARS-CoV-2 pneumonia model had mod-
estly decreased performance in influenza, whereas the
influenza model � with hematologic and hepatic
markers providing substantial contributions � had a
larger drop in discrimination in SARS-CoV-2 pneumo-
nia. These findings suggest influenza outcomes may
relate to accrual of multiple organ failures, whereas
SARS-CoV-2 pneumonia may depend more on the
severity and refractory nature of a few specific organ fail-
ures. Moreover, these results underscore our evolving
understanding that SARS-CoV-2 pneumonia and
COVID-19 do not necessarily induce a systemic
“cytokine storm” of higher intensity than influenza
pneumonia. Indicators of pathophysiological cytokine
storm, such as temperature (inflammation),
www.thelancet.com Vol 85 November, 2022
hypotension (endothelial dysfunction), and serum bicar-
bonate (end-organ perfusion) were similarly repre-
sented as features of importance in both influenza and
SARS-CoV-2 classifier models. Notably, serum bicar-
bonate � which has been identified as a critical bio-
marker in the identification of the hypoinflammatory
ARDS phenotype37 � was not a variable of importance
in either pneumonia’s outcome classifiers, suggesting
that this particular phenotype may not be an important
determinant of mortality in this population. These find-
ings are further substantiated by lower levels of protein
biomarkers in COVID-19 compared other critical illness
syndromes.38,39

An important question raised by our study is “what
are the distinct pathophysiological phenomena of
SARS-CoV-2 infection which underpin these observed
differences between viral pneumonias?” While our
study’s retrospective design limits interpretation of our
findings to hypothesis generation, several interesting
patterns have nevertheless emerged. Age being the
most important predictor of SARS-CoV-2 pneumonia
outcome - in the presence of fewer comorbidities than
influenza - suggests that age-dependent, rather than
acquired, immunosenescence may be more important
in SARS-CoV-2-driven disease,40�43 a finding with
9
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particular relevance given analogous responses to
SARS-CoV-2 spike protein vaccines.44 The degree to
which these hypothesized pathogen-specific differences
are due to variable virus-host cell receptor binding affin-
ity, immune evasion, host response variance, or some
combination thereof requires further investigation.

Our study’s strengths include modern modelling
approaches to generate data-driven insights about viral
pneumonias, with each technique lending important
benefits to our work. Second, we used readily available
EHR data to enhance generalizability and allow easier
identification of subphenotypes in future studies. Add-
ing to this generalizability is our inclusion of all hospi-
talised pneumonia patients rather than just those with
critical illness, since ICU triage practices vary. Finally,
our diverse mix of urban, suburban, and rural hospitals
reinforces our findings’ generalizability, given previ-
ously described sociodemographic determinants of
COVID-19 outcomes.16

Limitations include potential temporal confounding,
including data-acquisition changes (our cohort includes
periods when two different EHRs were used), viral
strain variation, and practice changes. While we address
these limitations for influenza by including several
years to diversify influenza strain mix, our data were col-
lected prior to the emergence of the SARS-CoV-2 Delta
and Omicron variants and before widespread availability
of SARS-CoV-2 vaccines, monoclonal antibody
therapy, and inflammatory pathway inhibitors such as
baricitinib.45,46 Further, influenza vaccine status was
not available in our data. Due to unavailability of micro-
biology data in the influenza cohort, we could not evalu-
ate differences in bacterial co-infection between cohorts;
co-infection may be an important determinant of the
clinical course and outcomes in these patients.47,48

Our automated pneumonia definition - hospitalisa-
tion with supplemental oxygen - may lack the specificity
of a clinical diagnosis and could include some patients
receiving oxygen for non-pneumonia reasons including
chronic oxygen therapy. However, this operational defi-
nition benefitted our study by allowing standardized
identification of patients across several years of data.
Moreover, the observed rates of high-level oxygen sup-
port are more consistent with acute respiratory insuffi-
ciency rather than home oxygen continuation. Finally,
while a large proportion of radiographs among the
influenza population had no lung opacities, it is worth
noting that our review was limited to the first 24-hours
of admission and the accuracy of chest radiographs in
early viral pneumonia remains uncertain.49,50
Conclusions
SARS-CoV-2 pneumonia and influenza pneumonia dif-
fer markedly in hospital trajectories, radiography, and
outcome predictors, with SARS-CoV-2 disease more
severe in all evaluated parameters. These findings
emphasize observable pathogen-specific differential
host responses in viral pneumonias, which may have
implications beyond SARS-CoV-2 and influenza.
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